
Learning Efficient Omni-directional Capture Stepping for Humanoid
Robots from Human Motion and Simulation Data

Johannes Pankert, Lukas Kaul and Tamim Asfour

Abstract— Two key questions in the context of stepping for
push recovery are where to step and how to step there. In
this paper we present a fast and computationally light-weight
approach for capture stepping of full-sized humanoid robots. To
this end, we developed an efficient parametric step motion gen-
erator based on dynamic movement primitives (DMPs) learnt
from human demonstrations. Simulation-based reinforcement
learning (RL) is used to find a mapping from estimated push
parameters (push direction and intensity) to step parameters
(step location and step execution time) that are fed to the
motion generator. Successful omni-directional capture stepping
for 89% of the test cases with pushes from various directions
and intensities is achieved with minimal computational effort
after 500 training iterations. We evaluate our method in a
dynamic simulation of the ARMAR-4 humanoid robot.

I. INTRODUCTION

One of the fundamental requirements for successful op-
eration of humanoid robots in the real world is robust-
ness against external disturbances such as pushes. Several
balancing strategies are available, but in case of a strong
enough push, taking a step is the most promising way to
maintain balance. The stepping trajectory in this case has to
be generated fast and needs to be adapted to the intensity
and direction of the applied push to guarantee effective
push recovery. In this paper we address both, fast motion
generation and adaptation, and we evaluate it in a dynamic
simulation of the ARMAR-4 robot. An overview of the
presented work is shown in Fig. 1. Our approach stands out
among other works in the literature due to its computational
efficiency and the intrinsic human-likeness of the generated
stepping motions.

We start with human motion recordings of recovery steps,
adapt them to the kinematics of the ARMAR-4 robot, (see
[1]) and learn joint-level DMPs [2] from those demonstra-
tions. The DMPs are encapsulated in a parametric step-
trajectory generator. If the robot needs to step the trajectory
generator is called with a set of push parameters that the
robot can sense. The low-dimensional mapping from push
to step parameters can be efficiently learned using reinforce-
ment learning.

Converting human motions to dynamically stable robot
trajectories is generally difficult due to the complex dynamics
of bipedal robots. Some more recent works have addressed
this problem with machine learning techniques, requiring

The authors are with the High Performance Humanoid Technolo-
gies Lab, Institute for Anthropomatics and Robotics, Karlsruhe Institute
of Technology (KIT), Germany, {lukas.kaul, asfour}@kit.edu,
johannes@pankert.eu

This work has been supported by the German Federal Ministry of
Education and Research (BMBF) under the project INOPRO (16SV7665).

Fig. 1: The Recovery Stepping Pipeline. This paper focuses on the
policy that maps estimated push parameters p to step parameters
s and on a DMP-based step trajectory generator that turns the
step parameters into stepping motions (red box). Evaluation is
carried out in simulation. An enlarged version of the step trajectory
generator is depicted in Fig. 2.

a very large number of training iterations (e. g. [3]). In
contrast to these methods, our approach reduces the problem
of motion generation to finding a small set of high-level
parameters such as the step goal and the execution speed
of the step, making the problem much more tractable.

We show that our approach enables omni-directional
human-like capture stepping on a humanoid robot coping
with pushes of varying intensities. A successful parameter
mapping can be learned in simulation with RL starting from
very few initial training examples. The proposed approach is
shown to be computationally light-weight and thus suited to
be implemented on real robotic hardware.

II. RELATED WORK

Balancing and push recovery has been a topic of ongo-
ing research for decades. Within this broad field, different
approaches can be classified into three categories or combi-
nations thereof, namely ankle-, hip- and stepping- strategies.

This classification was introduced in the biomechanics liter-
ature in [4] and adopted by the robotics community (e. g.
in [5]). Our work presented here exclusively focuses on
stepping strategies.

In a widely adopted way of formalizing robotic step
strategies for push recovery, the term Capture Point was
coined by Pratt et al. in [6]. The capture point denotes
the point on the ground on which the robot needs to step
to come to rest. Its location can be analytically derived
for the linear inverted pendulum model (LIPM). Extensions
and similar formalizations were presented under the names
XcoM [7], ICP [8] and 3D DCM [9]. Despite their reliance
on drastically simplified dynamic models, Capture Point
methods have successfully been applied to push recovery
and walking [10], [11]. Recently, a method for changing
the locomotion from walking or running to hopping was
introduced that demonstrated push-recovery by single-legged
hopping [12]. As one way of bridging the gap between
planning and control methods derived from simplified ab-
stractions and more complex models, learning techniques
have been proposed for finding control policies for walking
[13], postural balancing [14] or suitable capture points for
a 3-dimensional robot model [15]. This particular work is
closely related to ours, and we adopt their notion of the
Stopping Energy as a quality measure of push recovery
attempts in the reward function of our RL-routine.

Dynamic Movement Primitives (DMPs) are a way to
encode trajectories as dynamical systems [2]. DMPs have
been widely used in robotic applications due to their virtue
of easy parameterization and fast motion adaptation [16],
[17]. In the presented work we use the DMP formulation
established in [18] with a transformation system for each
robot joint and a shared, time-independent canonical system.

Ankle, hip and step strategies for push recovery based
on DMPs have been investigated in theory and application
to a small PKU-HR5 humanoid robot in [19]. In contrast
to our work, the authors used a task-space DMP to model
end-effector trajectories. With this approach, the joint angles
have to be calculated by solving the inverse kinematics at
every time-step, which is computationally expensive for more
complex humanoids. Another differentiation to our work
is that the authors only investigate pushes from the back,
whereas our method generalizes to pushes from different
directions.

III. APPROACH

We propose a capture step generator based on step trajec-
tories from human motion-capture recordings that takes as
input a set of step parameters (see Fig. 2). The demonstration
motions are encoded as joint-level DMPs. A reinforcement
learning procedure is used to learn appropriate step parame-
ters from push parameters that can be estimated by the robot.
The learning was executed in a dynamic physics simulation
of the 63 DoF ARMAR-4 robot in which arbitrary pushes
from every direction can be applied.

A. Step Trajectory Generator

Joint-angle DMPs are created based on trajectories ac-
quired in human motion-capture demonstrations. The ac-
quisition of these demonstration trajectories is described in
section IV. We use the DMPLib C++ library1 which, among
others, provides an implementation of the DMP formulation
presented in [18]. The step is divided into two segments
conceptually: The lunge step is the placement of the first
foot after the push has been applied. During the recovery
step the other foot follows such that the robot recovers to its
original posture. Separate DMPs are used to represent both
step segments.

Using the spatial scaling properties of the DMPs, the
origin of the lunge step is set to the robot’s current joint angle
configuration, making it independent of the robot’s initial
state. The capture DMP’s goal is the capture configuration.
The capture configuration depends on the desired foot loca-
tion at the end of the capture step and is computed by solving
the inverse kinematics using a constrained IK solver. The
origin of the recovery step DMP is the capture configuration.
The goal configuration is the initial configuration of the lunge
step, driving the robot back to its stable initial pose at a new
location.

Both DMPs, the IK to generate the capture configuration,
and the final configuration are encapsulated within a step
trajectory generator implemented in C++ as a component
of the ArmarX [20] robot development environment. Fig. 2
depicts the structure of this generator.

1) Step Parameters: Trajectories for steps into all direc-
tions are generated according to a small set of high-level
parameters: The desired foot location (the step target) is
parametrized by a step angle and a step length parameter.
With the capture step duration and the recovery step dura-
tion the execution speeds of both parts are controlled. The
underlying DMPs are temporally rescaled accordingly. Based
on the trajectory selection parameters selection length and
selection angle, the DMP with parameters closest to the se-
lection parameters is chosen as a basis for the generated step.
Choosing DMP selection parameters independently of the
step parameters allows mitigation of otherwise problematic
discontinuities at the decision boarders by the RL algorithm.
We call these six parameters the step parameters.

2) Push Parameters: The applied pushes were character-
ized with the two parameters (normalized) push impulse and
direction. The normalized push impulse is computed as the
integral over the applied push force F (t) normalized by the
subject’s mass m to achieve better comparability between
different robots:

p =
1

m

tstop∫
tstart

F (t)dt [Ns/kg] (1)

The second parameter, the push angle, describes the direction
of the push with respect to the pushed subject.

1https://gitlab.com/h2t/DynamicMovementPrimitive

https://gitlab.com/h2t/DynamicMovementPrimitive

Recovery Step DMP

Capture
Configuration

Generator

Step Target Execution Speeds

Final Configuration

Initial Configuration

Capture Step DMP

Trajectory Selection

Fig. 2: The blue frame contains the parameterizable step trajectory
generator. It consists of the capture and recovery step DMP, a stable
final configuration and the capture configuration generator that
converts step targets to joint angle configurations. The parameters
are the step target, the execution speeds and the trajectory selection
parameters. The initial configuration is neither part of the trajectory
generator nor a parameter to be chosen.

3) Ankle Control: The motion capture trajectories
recorded for the ankle joints were not directly suitable to
train the DMPs on. Retrieving high quality ankle trajectories
from motion capture recordings is known to be difficult
for rigid skeleton models with relative small feet [21].
We therefore discarded the recorded ankle trajectories and
actively control the ankle joint using the following strategy:
For the swing foot, the ankle joints are driven such that
the foot is aligned in parallel with the ground. The stance
foot’s ankle joints are driven along linear trajectories from
the origin to the target configuration (both during the lunge
and the recovery step).

B. Policy Learning

Taking the right step with the right speed is achieved by
means of a learned policy that maps push parameters to step
parameters, π(p) = s. p ∈ P ⊂ R2 is a push parameter
vector and s ∈ S ⊂ R6 a step parameter vector. The problem
of finding an optimal mapping can be formulated as:

Find the optimal policy π∗ : P → S (2)

that minimizes J(π) =

∫∫
P

E(p, π(p))dp (3)

with P =̂ space of push parameters
S =̂ space of step parameters
E =̂ error weight function

In our implementation we use Alg. 1 to learn the policy
function π.

For learning we use an initial list of training examples

Algorithm 1 Algorithm to find a policy that maps push
parameters to step parameters

1: function LEARNPOLICY(L0)
2: R0 ← PUSHRECOVERYTESTING(L0)
3: successRate← 1
4: for i← 1 . . . N do
5: πi ← TRAIN(Li−1, Ri−1)
6: {p̃1, p̃2, . . . , p̃10} ←

EXPLORE(Li−1, successRate)
7: L̃← {(p̃1, πi(p̃1)), (p̃2, πi(p̃2)), . . . , (p̃10, πi(p̃10))}
8: R̃← PUSHRECOVERYTESTING(L̃)
9: successRate← MEAN(R̃.success)

10: L+ ← L̃ where (R̃.success = true)
11: R+ ← R̃ where (R̃.success = true)
12: Li ← {Li, L

+}
13: Ri ← {Ri, R

+}
14: end for
15: πfinal ← TRAIN(LN , RN)
16: return πfinal
17: end function

L0 as an input. Training examples are pairs of push and
step parameters (p, s) for which push-recovery experiments
have successfully been performed. These examples were
derived from human motion capture experiments2. For these
examples, push experiments are performed.

Two performance criteria describe the outcome of a push
experiment. The first simple standing/not standing criterion is
evaluated 3 s after the push. A second (non-binary) indicator
is the Stopping Energy as proposed in [15]:

Estopping :=
1

2
v2COM +

1

2

g

l
|~x|2 (4)

The first term represents the massless kinetic energy. vCOM

is the velocity of the robot’s center of mass (COM). The
second term can be interpreted as a form of potential energy.
|~x| is the distance between the centroid of the robot’s support
polygon and the floor projection of the COM. Estopping = 0
means that the robot is statically stable. The performance
indicators r are saved in the list R0.
L0 and R0 are the initial inputs for the following learning

iterations: In each iteration we train a function approximator
as a regressor to the correct parameter mapping based on all
available training examples Li, considering the performance
indicators Ri. We use a feed-forward neural network with 4
hidden-layers as an approximator. Each layer has 10 neurons
with sigmoid activation functions. The input- and output-
layers match the dimensionality of P and S. Linear activation
functions are used in the output-layer. The neural network
trained in iteration i of the learning algorithm is the current
policy πi.

2Since a human recovering from a push usually combines different
balancing techniques such as hip, ankle and step strategies but our approach
solely relies on capture steps, we had to reduce the applied push impulses
to obtain valid training examples. The reduction factor varied for different
directions and was in the range of 25% to 80%.

Fig. 3: ARMAR-4 recovering from a push applied from the side (red arrow in the second image). Temporal order of the images from left
to right 0.32 s spacing. The green area is the robot’s current support polygon. The turquoise and blue dots are the Zero Moment Point
and the floor projection of the robot’s Center of Mass.

Our network architecture is relatively simple compared to
those used in the deep learning literature such as [22] and
[23]. This is a virtue of the fact that we learn a step parameter
vector instead of the entire step trajectory, which greatly
reduces the dimensionality of the problem to an extent that
such a simple neural network is sufficient. More complex
network designs would increase the risk of overfitting or
require more data to train.

The error function E(p, s) is used to weight the training
samples depending on the performance criterion:

E(p, s) := Es(p, s) + Edistance(p) (5)

with

Es(p, s) := MINMAX(− log(Estopping(p, s))) (6)
Edistance(p) := MINMAX(dnearest neighbor(p))) (7)

Es(p, s) promotes training examples with a low Stopping
Energy. Edistance(p) endorses samples in areas of the P
space with a low density of training examples to ensure
solitary positive samples in the P-space are not disregarded
in the regression.

At each iteration, 10 new push parameters are selected de-
pending on the last iteration’s success rate. If the rate is high,
push parameters in areas of the P space that are sparsely
populated with training examples will be selected to drive
exploration. This is done by randomly generating large sets
of parameters and selecting those with the highest nearest
neighbor distances to the existing samples. If the success
rate is low, the push parameters are distributed randomly in
the P space. The proximity of the new parameters to the
existing samples makes it likely for the selected pairs to be
successful, the ’knowledge’ of the current policy is exploited.
Figure 4 visualizes the selection process for the exploitation
and exploration case.

The current policy πi is applied to the newly generated
push parameters. The ten pairs (p, s = πi(p))1...10 are eval-
uated in the simulation environment. Successful pairs and
their performance indicators are added to the list of training
examples. After N iterations, the algorithm terminates and
returns the final policy, trained on the complete list of

0 50 100 150
0.1
0.12
0.14
0.16
0.18
0.2

ϕ[deg]
p[
N
s/
k
g
]

(a) Exploration

0 50 100 150
0.1
0.12
0.14
0.16
0.18
0.2

ϕ[deg]

p[
N
s/
k
g
]

(b) Exploitation

Fig. 4: Generation of new push parameters for exploration and ex-
ploitation. Purple crosses represent the existing samples L. Orange
dots are the newly created samples.

training examples.
During the first iterations of the algorithm, the function

approximator has to be trained on relatively few examples.
To increase the number of training examples in the first 50
iterations, we also include push experiments that failed (i. e.
the robot was not standing after 3 s) but in which both steps
were executed before the robot fell. After these 50 iterations
of ’warm-starting’ the learning, the failed experiments are
removed from the list of positive examples. An additional
bias is set in the evaluation function for the truly successful
experiments to favor them over the failed experiments:

Ẽ(p, s) := E(p, s) + Esuccess(p, s) with (8)

Esuccess(p, s) :=

{
5 if R̃(p̃, πi(p̃)).success = true
0 else

(9)

IV. EXPERIMENTAL SETUP

The proposed step trajectory generator uses DMPs based
on human sample motions. In subsection IV-A we describe
the experimental setup needed to record those demonstra-
tion. The reinforcement learning algorithm interacts with a
simulated world to learn appropriate capture steps. Subsec-
tion IV-B illustrates the environment we set up to evaluate
the performance of the generated step trajectories and the
learning procedure.

Fig. 5: Push-Recovery experiment in the motion capture lab. Temporal order of the images from left to right 0.2 s spacing.

A. Human Motion Data Collection

Human capture steps were recorded with a marker-based
VICON motion capture system. Fig. 5 shows an example
of the data collection procedure. Subject B (on the right)
pushes subject A (on the left) with an apparatus recording the
push force. Subject A always takes a capture step consisting
of a lunge and a recovery step, and comes to a still stand
in the initial posture. Pushes were applied with varying
intensities and from different angles, forcing subject A to
take steps of different lengths into different directions. White
tape markings on the floor guide subject B in choosing
the planned push angles. Pushes were applied from the
angles φ ∈ {0◦, 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, 150◦, 180◦}
and with two different intensities (soft and hard), aimed at
provoking steps with lengths of approximately 30 cm and
50 cm, resulting in 18 different experiments. The sector
(180◦, 360◦) was omitted because of the human body’s
symmetry with respect to the sagittal plane. The motion
capture recordings are publicly available as part of the KIT
Whole-Body Human Motion Database [24] with the subject
ID #1721 3.

The VICON system records marker-positions in Cartesian
coordinates. They are converted to joint-angle trajectories
of the Master Motor Map (MMM) human reference model
with tools available from the MMM framework [25]. These
reference model trajectories are then converted to joint-angle
trajectories for the ARMAR-4 robot [1]. Of the ARMAR-4’s
63 actuated degrees of freedom we consider the 14 joints in
our conversion that comprise the two legs and the torso since
we exclusively focus on stepping motions.

B. Dynamic Simulation

Push experiments were performed in the ArmarX Sim-
ulation environment. ArmarX Simulation encapsulates the
Bullet physics library [26]. The trajectory generator step size
was set to 10ms. The inner simulation loop operates with a
step size of 0.5ms.

The majority of the force profiles measured during the mo-
tion capture push experiments roughly revealed an isosceles
triangular shaped time-force profile. Fig. 6 shows examples
of time-force profiles for different recorded pushes of the
type ’soft’. The duration of the pushes shows very little
variation, whereas the peak force depends on the intensity

3https://motion-database.humanoids.kit.edu/list/
motions/?subjects=1721

of the applied push. Based on these findings we chose to
implement isosceles triangular shaped force profiles with a
duration of 0.5 s for our simulation experiments, mimicking
the real-world conditions.

0 0.2 0.4 0.6 0.8 1
0

20

40

Time t[s]

Fo
rc

e
F
[N

]

Fig. 6: Multiple force recordings during push trials. The recorded
force profiles resemble isosceles triangles and all have similar
durations. The effective push impulse depends on the maximum
of the push force.

The step trajectory generator and the dynamic simulation
engine can be interfaced externally. They take a set of push
and step parameters as input, simulate a push and the robot’s
motion and return a set of performance indicators r for the
push experiment.

V. EVALUATION

After 500 learning iterations, ARMAR-4 was able to
perform successful capture steps in all directions to recover
from pushes with varying intensities. The attached video
shows several simulated push-recovery experiments4, all of
which are consistent with the velocity capabilities of the real
robot. Fig. 3 shows an exemplary capture step sequence.
In subsection V-A we will discuss the evaluation of the
step-parameter learning routine and in subsection V-B the
computation speed of the approach.

A. Learned Step Parameters
For nine pairs of push and step parameters (p, s) derived

from the motion-capture recordings, initial successful push

4https://youtu.be/eLVUd1DdTOo

https://motion-database.humanoids.kit.edu/list/motions/?subjects=1721
https://motion-database.humanoids.kit.edu/list/motions/?subjects=1721
https://youtu.be/eLVUd1DdTOo

0 50 100 150

0.08

0.1

0.12

0.14

0.16

Push Angle ϕ[deg]

Pu
sh

Im
pu

ls
e

p[
N
s/
k
g
]

(a) P space after 500 training iterations

0 50 100 150
0.08

0.1

0.12

0.14

Push Angle ϕ[deg]

Pu
sh

Im
pu

ls
e

p[
N
s/
k
g
]

(b) Validation, motion capture derived initial
training examples.

140 160 180

0.22

0.24

0.26

0.28

0.3

Push Angle ϕ[deg]

Pu
sh

Im
pu

ls
e

p[
N
s/
k
g
]

(c) Validation, hand picked initial training
examples (harder pushes).

Fig. 7: Successful (blue) and unsuccessful (red) push experiments in the push parameter space

recovery experiments could be performed in simulation (see
subsection III-B). In nine other cases, the robot executed
both steps but fell afterwards. Those 18 examples were
the initial training data. The impulses of these 18 pushes
were in the range [0.75Ns/kg, 0.151Ns/kg] and the angles
spread across [0◦, 180◦]. Alg. 1 was executed for 500 it-
erations. Fig. 7a shows successful and failed experiments
performed during training in the 2D space of push parameters
(the P space).

To evaluate the learned policy, a 10 × 10 grid of push
parameters was spanned in the P space. The final policy
was applied to all grid points and the resulting pairs were
evaluated in the dynamic simulation environment. Fig. 7b
shows the results in the P domain. A success rate of 75%
could be achieved.

The developed algorithm operates in a rectangular subset
of the P domain that encloses the initial training exam-
ples. Since the motion-capture-derived push impulses are
relatively low, the learned policy does not perform well
for stronger pushes. To evaluate the capabilities of learning
push recovery for stronger pushes, we ran the algorithm
on a set of five manually selected initial parameter-vector
pairs (p, s)init. The impulses of these training examples
were in the range [0.2Ns/kg, 0.3Ns/kg] in good accordance
with the impulses measured in the motion capture experi-
ments (the mean recorded push impulse was 0.277Ns/kg).
To reduce the required training time, we chose the initial
training parameters from the exemplary push angle range
[130◦, 180◦].

After 500 training iterations the performance of the final
policy was evaluated on a 10 × 10 grid. Fig. 7c shows the
evaluation result. The push recovery attempt was successful
in 89% of the test cases. In an intermediate step we
evaluated the policy π200 based on the first 200 training
iterations on the same grid, resulting in a success rate of
69%. As expected the developed algorithm improves the
stepping policy over the course of the learning process.

B. Computational Performance

To evaluate the computation speed of the DMP method,
we measured the time it takes to compute the joint angles

for one DMP trajectory time step. The differential equations
of the transformation systems and the canonical system were
solved for one iteration with an Euler 1-step integrator. The
right column of Tab. I lists the mean execution times over
10 steps for 12 different capture step DMPs. The mean
execution time is 195.11 µs and the standard deviation is
26.56 µs. The measurements were performed on a Desktop
PC with an Intel R© CoreTM i7-4790 CPU running a non-
realtime Linux OS. The fast execution times suggest that a
realtime implementation with high sampling rates is feasible.

We compare the DMP computation times to the time it
takes to solve a constrained IK problem. A fixed-pose con-
straint was enforced on the stance foot while the swing foot
was made to follow a predefined trajectory. The left column
of Tab. I displays the measured times for IK solution steps in
12 different stepping trajectories. The mean execution time
is 2507.25 µs and the standard deviation is 2590.05 µs. The
mean execution time is about 10 times greater than that
of the DMP computation. The high standard deviation is
unfavorable for realtime implementations.

TABLE I: Execution time for solving a constrained inverse kinemat-
ics (IK) problem compared to stepping the transformation systems
of a DMP once.

TConstrainedIK [µs] TEuler 1−Step [µs]
1198 184.7
6244 184.7
314 185.7
5300 189
532 183.5
738 189.2
1259 190.6
6376 279.1
329 191.3
5960 188.6
577 186.7
1260 188.2

VI. CONCLUSION

We presented a system that can produce dynamically con-
sistent stepping motions for push recovery of the ARMAR-4
humanoid robot from estimated push parameters. The system
consists of two components, a learned policy that maps

push parameters (direction and intensity) to step parameters
(step location and step execution time), and a step trajectory
generator that produces joint-level trajectories from the step
parameters. The parameter mapping is represented as feed-
forward neural network and trained in a dynamic simulation
using reinforcement learning, initialized on very few initial
examples. The trajectory generator is based on Dynamic
Movement Primitives derived from human demonstrations
of push recovery actions and allows generating stepping
motions in arbitrary directions.

Our results show that the learned parameter mapping is
successful in 89% of our trials for harder pushes after as
little as 500 training iterations. This efficiency is achieved by
reducing the dimensionality to a small number of parameters
and and delegating the rest to the trajectory generator.
Since the trajectory generator is based on joint-level DMPs
(rather than on end-effector DMPs) it requires very little
computation time. Our evaluation suggests a more than 10-
times speed-up over deriving the joint trajectories with a
constrained IK.

A. Future Work
Our method assumes that push intensity and direction are

provided. We are working on the online estimation of these
parameters with ARMAR-4’s integrated 6 DOF force-torque
sensors in the ankles, extending our earlier IMU-based work
[27] and completing the pipeline shown in Fig. 1.

During the learning process we could observe phases in
which samples from an area of the P space were selected
repeatedly, without noticeably improving the policy (see
Fig. 7a, top right corner). For those cases, adding noise to
the predicted step-parameter vector could be helpful to find
a suitable parametrization and could be explored in future
work. In addition, we plan to apply ankle or hip balancing
after the recovery step to mitigate the inevitable gap between
simulation and robot experiments.

REFERENCES

[1] T. Asfour, J. Schill, H. Peters, C. Klas, J. Bücker, C. Sander, S. Schulz,
A. Kargov, T. Werner, and V. Bartenbach, “ARMAR-4: A 63 DOF
torque controlled humanoid robot,” in 2013 13th IEEE-RAS Interna-
tional Conference on Humanoid Robots (Humanoids), Oct. 2013, pp.
390–396.

[2] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in Proceedings
2002 IEEE International Conference on Robotics and Automation
(Cat. No.02CH37292), vol. 2, 2002, pp. 1398–1403.

[3] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deep-
Mimic: Example-Guided Deep Reinforcement Learning of Physics-
Based Character Skills,” arXiv:1804.02717 [cs], Apr. 2018.

[4] F. B. Horak and L. M. Nashner, “Central programming of postu-
ral movements: adaptation to altered support-surface configurations,”
Journal of neurophysiology, vol. 55, no. 6, pp. 1369–1381, 1986.

[5] Z. Aftab, T. Robert, and P.-B. Wieber, “Ankle, hip and stepping strate-
gies for humanoid balance recovery with a single model predictive
control scheme,” in Humanoid Robots (Humanoids), 2012 12th IEEE-
RAS International Conference on. IEEE, 2012, pp. 159–164.

[6] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture Point:
A Step toward Humanoid Push Recovery,” in 2006 6th IEEE-RAS
International Conference on Humanoid Robots, Dec. 2006, pp. 200–
207.

[7] A. L. Hof, “The extrapolated center of mass concept suggests a simple
control of balance in walking,” Human movement science, vol. 27,
no. 1, pp. 112–125, 2008.

[8] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt,
“Capturability-based analysis and control of legged locomotion, part 1:
Theory and application to three simple gait models,” The International
Journal of Robotics Research, vol. 31, no. 9, pp. 1094–1113, 2012.

[9] J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-dimensional
bipedal walking control based on divergent component of motion,”
IEEE Transactions on Robotics, vol. 31, no. 2, pp. 355–368, 2015.

[10] B. J. Stephens and C. G. Atkeson, “Push recovery by stepping for
humanoid robots with force controlled joints,” in Humanoid Robots
(Humanoids), 2010 10th IEEE-RAS International Conference On.
IEEE, 2010, pp. 52–59.

[11] J. Englsberger, C. Ott, M. A. Roa, A. Albu-Schäffer, and G. Hirzinger,
“Bipedal walking control based on capture point dynamics,” in In-
telligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on. IEEE, 2011, pp. 4420–4427.

[12] T. Kamioka, H. Kaneko, M. Kuroda, C. Tanaka, S. Shirokura,
M. Takeda, and T. Yoshiike, “Dynamic gait transition between walk-
ing, running and hopping for push recovery,” in Humanoid Robotics
(Humanoids), 2017 IEEE-RAS 17th International Conference on.
IEEE, 2017, pp. 1–8.

[13] R. Tedrake, T. W. Zhang, and H. S. Seung, “Learning to walk in 20
minutes,” in Proceedings of the Fourteenth Yale Workshop on Adaptive
and Learning Systems, vol. 95585. Yale University New Haven (CT),
2005, pp. 1939–1412.

[14] S.-J. Yi, B.-T. Zhang, D. Hong, and D. D. Lee, “Learning full body
push recovery control for small humanoid robots,” in Robotics and
Automation (ICRA), 2011 IEEE International Conference on. IEEE,
2011, pp. 2047–2052.

[15] J. Rebula, F. Canas, J. Pratt, and A. Goswami, “Learning Capture
Points for humanoid push recovery,” in 2007 7th IEEE-RAS Interna-
tional Conference on Humanoid Robots, Nov. 2007, pp. 65–72.

[16] D. H. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement re-
production and obstacle avoidance with dynamic movement primitives
and potential fields,” in Humanoids 2008 - 8th IEEE-RAS International
Conference on Humanoid Robots, Dec. 2008, pp. 91–98.

[17] Y. Zhou and T. Asfour, “Task-Oriented Generalization of Dynamic
Movement Primitive,” in IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2017.

[18] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

[19] D. Luo, X. Han, Y. Ding, Y. Ma, Z. Liu, and X. Wu, “Learning push
recovery for a bipedal humanoid robot with Dynamical Movement
Primitives,” in 2015 IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids), Nov. 2015, pp. 1013–1019.

[20] N. Vahrenkamp, M. Wächter, M. Kröhnert, K. Welke, and T. Asfour,
“The robot software framework ArmarX,” it - Information Technology,
vol. 57, no. 2, Jan. 2015.

[21] L. Kovar, J. Schreiner, and M. Gleicher, “Footskate Cleanup for
Motion Capture Editing,” in Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, ser. SCA
’02. New York, NY, USA: ACM, 2002, pp. 97–104.

[22] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne,
“DeepMimic: Example-Guided Deep Reinforcement Learning of
Physics-Based Character Skills,” arXiv:1804.02717 [cs], Apr. 2018,
arXiv: 1804.02717. [Online]. Available: http://arxiv.org/abs/1804.
02717

[23] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement
learning,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, p. 41,
2017.

[24] C. Mandery, Ö. Terlemez, M. Do, N. Vahrenkamp, and T. Asfour,
“The KIT whole-body human motion database,” in 2015 International
Conference on Advanced Robotics (ICAR), Jul. 2015, pp. 329–336.

[25] C. Mandery, O. Terlemez, M. Do, N. Vahrenkamp, and T. As-
four, “Unifying representations and large-scale whole-body mo-
tion databases for studying human motion,” IEEE Transactions on
Robotics, vol. 32, no. 4, pp. 796–809, 2016.

[26] E. Coumans, “Bullet physics library,” Open source: bulletphysics. org,
vol. 15, p. 49, 2013.

[27] L. Kaul and T. Asfour, “Human push-recovery: Strategy selection
based on push intensity estimation,” in International Symposium on
Robotics (ISR), 2016, pp. 547–554.

http://arxiv.org/abs/1804.02717
http://arxiv.org/abs/1804.02717

	Introduction
	Related Work
	Approach
	Step Trajectory Generator
	Step Parameters
	Push Parameters
	Ankle Control

	Policy Learning

	Experimental Setup
	Human Motion Data Collection
	Dynamic Simulation

	Evaluation
	Learned Step Parameters
	Computational Performance

	Conclusion
	Future Work

	References

