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Abstract— We provide a general approach for learning
robotic motor skills from human demonstration. To represent
an observed movement, a non-linear differential equation is
learned such that it reproduces this movement. Based on this
representation, we build a library of movements by labeling
each recorded movement according to task and context (e.g.,
grasping, placing, and releasing). Our differential equation is
formulated such that generalization can be achieved simply by
adapting a start and a goal parameter in the equation to the
desired position values of a movement. For object manipulation,
we present how our framework extends to the control of gripper
orientation and finger position. The feasibility of our approach
is demonstrated in simulation as well as on the Sarcos dextrous
robot arm. The robot learned a pick-and-place operation and
a water-serving task and could generalize these tasks to novel
situations.

I. INTRODUCTION

Anthropomorphic robots assisting humans can become
widespread only if these robots are easy to program. Easy
programming might be achieved through learning from
demonstration [1], [2], [3]. A human movement is recorded
and later reproduced by a robot. Three challenges need to
be mastered for this imitation: the correspondence problem
[4], generalization, and robustness against perturbation. The
correspondence problem means that links and joints between
human and robot may not match. Generalization is required
because we cannot demonstrate every single movement that
the robot is supposed to make. Learning by demonstration is
feasible only if a demonstrated movement can be generalized
to other contexts, like different goal positions. Finally, we
need robustness against perturbation: replaying exactly an
observed movement is unrealistic in a dynamic environment,
in which obstacles may appear suddenly.

To address these issues, we present a model that is based
on the dynamic movement primitive (DMP) framework [5],
[6]. In this framework, any recorded movement can be
represented with a set of differential equations. Representing
a movement with a differential equation has the advantage
that a perturbance can be automatically corrected for by the
dynamics of the system (robustness against perturbation).
Furthermore, the equations are formulated in a way that
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adaptation to a new goal is achieved by simply changing
a goal parameter. This characteristic allows generalization.
Here, we will present a new version of the dynamic equations
that overcomes numerical problems with changing the goal
parameter that occurred in the previous formulation [7].

We represent a movement trajectory in end-effector space
to address the correspondence problem. For object manipu-
lation – here, grasping and placing – besides the end-effector
position, we also need to control the orientation of the gripper
and the position of the fingers. The DMP framework allows
to combine the end-effector motion with any additional
degree-of-freedom (DOF); thus, adding gripper orientation
in quaternion notation and finger posture is straight-forward.
In our robot demonstration, we use resolved motion rate
inverse kinematics to map end-effector position and gripper
orientation onto the appropriate joint angles [8].

To deal with complex motion, the above framework can
be used to build a library of movements primitives out of
which complex motion can be composed by sequencing.
For example, the library may contain a grasping, placing,
and releasing movement. Each of these movements, which
was recorded from human demonstration, is represented by
a differential equation, and labeled accordingly. For moving
an object on a table, a grasping-placing-releasing sequence is
required, and the corresponding primitives are recalled from
the library. Due to the generalization ability of each dynamic
movement primitive, an object may be placed between two
arbitrary positions on the table based solely on the three
demonstrated movements.

In the remainder of this article, we explain in Section II
the dynamic movement primitive framework and present the
new modified form. Section III describes building a library of
movements. In Section IV, we present an application of the
framework on a simulated as well as on a real Sarcos robot
arm. In Section V, we conclude this approach and provide
an outlook for future work.

II. DYNAMIC SYSTEMS FOR MOVEMENT
GENERATION

This section briefly describes the dynamic movement
primitive framework, discusses movement generalization to
new goals, presents our modified DMP formualtion, and its
extension to obstacle avoidance.

A. Dynamic Movement Primitives

Dynamic movement primitives can be used to generate
discrete and rhythmic movements. Here, we focus on discrete
movements. A one dimensional movement is generated by



integrating the following set of differential equations1, which
can be interpreted as a linear spring system perturbed by an
external forcing term:

τ v̇ = K(g − x) −Dv + (g − x0) f (1)

τẋ = v , (2)

wherex and v are position and velocity of the system;x0

andg are the start and goal position;τ is a temporal scaling
factor;K acts like a spring constant; the damping termD
is chosen such that the system is critically damped, andf
is a non-linear function which can be learned to allow the
generation of arbitrarily complex movements. This first set
of equations is referred to as a transformation system. The
non-linear function is defined as

f(s) =

∑

i
wiψi(s)s

∑

i
ψi(s)

, (3)

whereψi(s) = exp(−hi(s− ci)
2) are Gaussian basis func-

tions, with centerci and width hi, andwi are adjustable
weights. The functionf does not directly depend on time;
instead, it depends on a phase variables, which monotoni-
cally changes from1 towards0 during a movement and is
obtained by the equation

τ ṡ = −α s , (4)

where α is a pre-defined constant. This last differential
equation is referred to as canonical system. These sets of
equations have some favorable characteristics:
• Convergence to the goalg is guaranteed (for bounded

weights) sincef(s) vanishes at the end of a movement.
• The weightswi can be learned to generate any desired

smooth trajectory.
• The equations are spatial and temporal invariant, i.e.,

movements are self-similar for a change in goal, start
point, and temporal scaling without a need to change the
weightswi.

• The formulation generates movements which are robust
against perturbation due to the inherent attractor dynam-
ics of the equations.

To learn a movement from demonstration, first, a move-
mentx(t) is recorded and its derivativesv(t) and v̇(t) are
computed for each time stept = 0, . . . , T . Second, the
canonical system is integrated, i.e.,s(t) is computed for
an appropriately adjusted temporal scalingτ . Using these
arrays,ftarget(s) is computed based on (1) according to

ftarget(s) =
−K(g − x) +Dv + τ v̇

g − x0
, (5)

wherex0 andg are set tox(0) andx(T ), respectively. Thus,
finding the weightswi in (3) that minimize the error criterion
J =

∑

s

(

ftarget(s) − f(s)
)2

is a linear regression problem,
which can be solved efficiently.

A movement plan is generated by reusing the weightswi,
specifying a desired startx0 and goalg, setting s = 1,

1We use a different notation as in [5] to highlight the spring-like character
of these equations.

and integrating the canonical system, i.e. evaluatings(t).
As illustrated in Fig. 1, the obtained phase variable then
drives the non-linear functionf which in turn perturbs the
linear spring-damper system to compute the desired attractor
landscape.

Fig. 1. Sketch of a one dimensional DMP: the canonical system drives
the nonlinear functionf which perturbs the transformation system.

B. Generalization to New Goals

In this section, we describe how to adapt the movement
to a new goal position by changing the goal parameterg.
The original DMP formulation has three drawbacks: first,
if start and goal position,x0 andg, of a movement are the
same, then the non-linear term in (1) cannot drive the system
away from its initial state; thus, the system will remain at
x0. Second, the scaling off with g − x0 is problematic if
g−x0 is close to zero; here, a small change ing may lead to
huge accelerations, which can break the limits of the robot.
Third, whenever a movement adapts to a new goalgnew such
that (gnew− x0) changes its sign compared to (goriginal − x0)
the resulting generalization is mirrored. As an example from
our experiments, a placing movement on a table has start and
goal positions with about the same height; thus, the original
DMP formulation is unsuitable for adapting this movement
to new goal positions.
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Fig. 2. Comparison of goal-changing results between old (Left) and
new (Right) DMP formulation in operational space(Y1, Y2) with one
transformation system for each dimension. The same original movement
(solid line) and goals are used for both formulations. The dashed lines show
the result of changing the goal before movement onset (Top) and during the
movement (Bottom).

C. Modified Dynamic Movement Primitives

Here, we present a modified form of the DMPs that cures
these problems (Fig. 2), while keeping the same favorable



properties, as mentioned above. We replace the transforma-
tion system by the following equations [7]:

τ v̇ = K(g − x) −Dv −K(g − x0)s+Kf(s) (6)

τẋ = v , (7)

where the non-linear functionf(s) is defined as before.
We use the same canonical system as in (4). An important
difference from (1) is that the non-linear function is not
multiplied any more by(g−x0). The third termK(g−x0)s
is required to avoid jumps at the beginning of a movement.
Learning and propagating DMPs is achieved with the same
procedure as before, except that the target functionftarget(s)
is computed according to

ftarget(s) =
τ v̇ +Dv

K
− (g − x) + (g − x0) s . (8)

The trajectories generated by this new formulation for
different g values are shown in Fig. 2. In our simulation
and robot experiments we use this new formulation.

D. Obstacle Avoidance

A major feature of using dynamic systems for movement
representation is robustness against perturbation [5]. Here,
we exploit this property for obstacle avoidance [9] by adding
a coupling termp(x,v) to the differential equations of
motion

τ v̇ = K(g−x)−Dv−K(g−x0) s+Kf(s)+p(x,v) . (9)

We describe obstacle avoidance in 3D end-effector space,
therefore the scalarsx, v, v̇ turn into vectorsx,v, v̇ and the
scalarsK,D became positive definite matricesK,D. For
the experiment in this paper, we used the coupling term

p(x,v) = γRvϕexp(−β ϕ) , (10)

whereR is a rotational matrix with axisr = (x−o)×v and
angle of rotation ofπ/2; the vectoro is the position of the
obstacle,γ andβ are constant, andϕ is the angle between
the direction of the end-effector towards the obstacle and
the end-effector’s velocity vectorv relative to the obstacle
[7]. The expression (10) is derived from [10] and empirically
matches human obstacle avoidance. In the robot experiment
we usedγ = 1000 andβ = 20.

III. BUILDING A LIBRARY OF MOVEMENTS

This section briefly motivates the concept of a library
of movements and their application in object manipulation
tasks.

A. Motion Library Generation

Learning DMPs only requires the user to demonstrate
characteristic movements. These DMPs form a set of basic
units of action [1]. For movement reproduction only a simple
high level command - to choose a primitive (or a sequence of
them) and set its task specific parameters - is required. More-
over, adaption to new situations is accomplished by adjusting
the startx0, the goalg, and the movement durationτ . Thus, a
collection of primitives referred to asmotion libraryenables

Fig. 3. Conceptual sketch of an imitation learning system (adapted from
[1]). The components of perception (yellow) transform visual information
into spatial and object information. The components of action (red) generate
motor output. Interaction between them is achieved using a common motion
library (blue). Learning (green) improves the mapping between perceived
actions and primitives contained in the motion library for movement
recognition and selection of the most appropriate primitive for movement
generation.

a system to generate a wide range of movements. On the
other side, such a motion library can be employed to facilitate
movement recognition in that observed movements can be
compared to the pre-learned ones [5]. If no existing primitive
is a good match for the demonstrated behavior, a new one
is created (learned) and added to the system’s movement
repertoire (Fig. 3). This makes the presented formulation
suited for imitation learning.

B. Attaching Semantic

For imitation learning with DMPs, we chose a low-level
approach, namely imitation of trajectories [2]. However, ad-
ditional information is needed by the system to successfully
perform object manipulation tasks. For a pick-and-place
operation for example the system has to select a proper
sequence of movement primitives, that is, first a grasping,
then a placing and finally a releasing primitive. Therefore, it
is necessary to attach additional information to each primitive
movement which facilitates this selection. Moreover, once a
library of movement primitives is acquired, it is desirable
to have the system be able to find sequences of primitive
movements that accomplish further tasks. Traditional artifi-
cial intelligence planning algorithms tackle this problem by
formalizing the domain scenario. In particular, they define
a set of operators with pre- and post-conditions and search
for a sequence of them which transfers the world from its

Fig. 4. Objects are defined through actions that can be performed on them
(Left), e.g. a cup is represented as a thing which can be used to drink water
from. On the other side, actions are defined through objects (Right), e.g. the
way of grasping an object depends on the object - a can requires a different
grip than a pen.



initial state to the goal state. The post-conditions provides
information about the change in the world, whereas the
preconditions ensure that the plan is executable. Thus, such
algorithms are based on discrete symbolic representations of
object and action, rather than the low-level continuous details
of action execution.

A link between the low-level continuous control repre-
sentation (as typical in robotic applications) and high-level
formal description of actions and their impact on objects (as
necessary for planning) has been, for example, formalized
by the concept of Object-Action Complexes [11], [12]. This
concept proposes that objects and actions are inseparably
intertwined (Fig. 4).

C. Combination of Movement Primitives

The ability to combine movement primitives to generate
more complex movements is a prerequisite for the concept
of a motion library. Here, we show how the presented
framework provides this ability.

It is straight forward to start executing a DMP after the
preceding DMP has been executed completely, since the
boundary conditions of any DMP are zero velocity and
acceleration. However, DMPs can also be sequenced such
that complete stops of the movement system are avoided
(Fig. 5). This is achieved by starting the execution of the
successive DMP before the preceding DMP has finished. In
this case, the velocities and accelerations of the movement
system between two successive DMPs are not zero. Jumps
in the acceleration signal are avoided by properly initializing
the succeeding DMP with the velocities and positions of its
predecessor (vpred→ vsucc andxpred → xsucc).
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Fig. 5. Chaining of four straight minimum-jerk movement primitives,
whose endpoints are marked by black dots (a). The movements generated by
the DMPs are drawn alternating blue solid and red dashed lines to indicate
the transition between two successive DMPs. The movement direction
is indicated by arrows. The remaining movements (b) result from using
different switching times (a lighter color indicates an earlier switching time).

IV. EXPERIMENT

The following Section describes how we applied the
presented framework of DMPs on the Sarcos Slave arm to
accomplish object manipulation tasks, such as grasping and
placing. As experimental platform we used a seven DOF
anthropomorphic robot arm (Fig. 6) equipped with a three
DOF end-effector.

A. Learning DMPs from Demonstration

Learning DMPs from demonstration is achieved by regard-
ing each DOF separately and employing for each of them an

Fig. 6. Sketch of the Sarcos Slave arm, a seven DOF anthropomorphic
robot arm with a three DOF end-effector.

individual transformation system. Thus, each DMP is setup
with a total of ten transformation systems to encode each
kinematic variable. In particular, the involved variables are
the end-effector’s position (x, y, z) in Cartesian space, the
end-effector’s orientation (q0, q1, q2, q3) in quaternion space,
and finger position(θTL, θTV , θFAA) in joint space. Each of
them serve as a separate learning signal, regardless of the
underlying physical interpretation. However, to ensure the
unit length of the quaternionq, a post-normalization step
is incorporated. The setup is illustrated in Fig. 7, note, a
single DMP encodes movements in three different coordinate
frames simultaneously.

To record a set of movements, we used a 10 DOF
exoskeleton robot arm, as shown in Fig. 8. Visual observa-
tion and appropriate processing to obtain the task variables
would be possible, too, but was avoided as this perceptual
component is currently not the focus of our research.

The end-effector position and orientation are recorded at
480 Hz. The corresponding trajectories for the finger move-
ments are generated afterwards accordingly: for a grasping
movement, for example, a trajectory was composed out of
two minimum jerk movements for opening and closing the

Fig. 7. Sketch of the 10 dimensional DMP used to generate movement
plans for the Sarcos Slave arm.



Fig. 8. Sarcos Master arm used to record a human trajectory in end-
effector space. Here, the subject demonstrates a pouring movement which
after learning the DMP enabled a robot to pour water into several cups
(Fig. 12).

gripper. The corresponding velocities and accelerations for
all DOF were computed numerically by differentiating the
position signal.

These signals served as input into the supervised learning
procedure described in II-A. For each demonstrated move-
ment a separate DMP was learned and added to the motion
library.

B. Movement Generation

To generate a movement plan, a DMP is setup with the
task specific parameters, i.e., the startx0 and the goalg. In
our DMP setup (Fig. 7), these are the end-effector position,
end-effector orientation, and the finger joint configuration.
The startx0 of a movement is set to the current state of
the robot arm. The goalg is set according to the context
of the movement. For a grasping movement, the goal
position(x, y, z) is set to the position of the grasped object
and the grasping width is set according to the object’s
size. However, finding an appropriate goal orientation is
not straight forward, as the end-effector orientation needs
to be adapted to the characteristic approach curve of the
movement. Approaching the object from the front results in a
different final posture as approaching it from the side. In case
of a grasping movement, we developed a method to automati-
cally determine the final orientation by propagating the DMP
to generate the Cartesian space trajectory and averaging over
the velocity vectors to compute the approach direction at the

Fig. 9. Snapshots of theSL Simulator showing a simulation of the Sarcos
Slave arm performing a grasping (Top) and a placing movement (Bottom).
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Fig. 10. The desired trajectories (blue lines) from the movements shown
in Fig. 9 adapted to new goals (red lines) indicated by the grid.

end of the movement. For other movements, like placing and
releasing, we set the end-effector orientation to the orienta-
tion recorded from human demonstration. Finally, we useτ
to determine the duration of each movement. In simulation
we demonstrate the reproduction and generalization of the
demonstrated movements. Our simulated robot arm has the
same kinematic and dynamic properties as the Sarcos Slave
arm. The reproduction of grasping and placing are show in
Fig. 9. The generalization of these movements to new targets
is shown in Fig. 10.

C. Task Space Control
To execute DMPs on the robot we used a velocity based

inverse kinematics controller as described in [13], [8]. Thus,
the task space reference velocitiesẋr are transformed into
the reference joint space velocitiesθ̇r (Fig. 11). The ref-
erence joint positionθr and acceleration̈θr are obtained
by numerical integration and differentiation of the reference
joint velocities ẋr. The desired orientation, given by the
DMP as unit quaternions, is controlled using quaternion
feedback as described in [14], [8].

Fig. 11. DMP control diagram: the desired task space positions and
velocities arexd , ẋd , the reference task space velocity commands areẋr ,
the reference joint positions, joint velocities, and joint accelerations areθr,
θ̇r, and θ̈r .

The reference joint position, velocities and acceleration
are transformed into appropriate torque commandsu using
a feed-forward and a feedback component. The feed-forward
component estimates the corresponding nominal torques to
compensate for all interactions between the joints, while the
feedback component realizes a PD controller.

D. Robot Experiment
We demonstrate the utility of our framework in a robot

demonstration of water-serving (Fig. 12). First, a human
demonstrator performed a grasping, pouring, retreating bot-
tle, and releasing movement as illustrated in Fig. 8. Second,
the robot learned these movements and added them to the
motion library. Third, a bottle of water and three cups
were placed on the table. Fourth, an appropriate sequence
of movement primitives were chosen manually. Fifth, each
DMP were setup with corresponding goalg. Finally, the
robot executed the sequence of movements and generalized
to different cup position simply through changing the goalg
of the pouring movement.

To demonstrate the framework’s ability to adapt online
to new goals as well as avoid obstacles, we extended the
experimental setup with a stereo camera system. We used a
color based vision system to visually extract the goal position
as well as the position of the obstacle (noise: SD = 0.001m



Fig. 12. Movement reproduction and generalization to new goal with the
Sarcos Slave Arm. The top row shows the reproduction of a demonstrated
pouring movement in Fig. 8, and the bottom row shows the result of
changing the goal variable.

per dimension). The task was to grasp a red cup and place
it on a green coaster, which changes its position after
movement onset, while avoiding a blue ball-like obstacle
(Fig. 13). To accomplish this task a similar procedure was
used as before. Except, this time, the Cartesian goal of the
grasping movement was set to the position of the red cup
and the goal of the placing movement was set to the green
coaster. The goal orientation for the grasping movement
were set automatically as described in Section IV-B, whereas
the orientation of the placing and releasing were adopted
from demonstration. This setup allows us to demonstrate the
framework’s ability to generalize the grasping movement by
placing the red cup on different initial positions. Our robot
could adapt movements to goals that changed their position
during the robot’s movement. Additionally, movement trajec-
tories were automatically adapted to avoid moving obstacles
(Fig. 13 and video supplement).

Fig. 13. Sarcos Slave arm placing a red cup on a green coaster. The first
row shows the placing movement on a fixed goal. The second row shows the
resulting movement as the goal changes (white arrow) after movement onset.
The third row shows the resulting movement as a blue ball-like obstacle
interferes with the placing movement.

V. CONCLUSIONS AND FUTURE WORK

This paper extended the framework of dynamic movement
primitives to action sequences that allow object manipu-
lation. We suggested several improvements of the original
movement primitive framework: robust generalization to
new goals, human like adaptation, and automatic obstacle

avoidance. Moreover, we added semantic information to
movement primitives, such that they can code object oriented
action. We demonstrated the feasibility of our approach in
an imitation learning setting, where a robot learned a water-
serving and a pick-and-place task from human demonstra-
tion, and could generalize this task to novel situations.

The approach is not restricted to the presented experimen-
tal platform. Any type of motion capture system that is capa-
ble of extracting the end-effector’s position and orientation
can substitute the Sarcos Master arm and any manipulator
that is able to track a reference trajectory in task space can
substitute the Sarcos Slave arm.

Future work will significantly extend the movement library
such that a rich movement repertoire can be represented.
Furthermore, work will focus on associating objects with
actions (similar to [12]) to enable planning of action se-
quences. Finally, we will apply this extended framework on
a humanoid robot.
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