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Abstract— Exoskeletons are considered to be a promising
technology for assisting and augmenting human performance.
A number of challenges related to design, intuitive control and
interfaces to the human body must be addressed. In this paper,
we approach the question of a minimal sensor setup for the
realization of control strategies which take into account the
actions currently performed by the user. To this end, we extend
our previous work on online classifications of a human wearing
a lower limb exoskeleton in two directions. First, we investigate
the minimal number of sensors that should be attached to
the exoskeleton to achieve a certain classification accuracy by
investigating different sensor setups. We compare results of
motion classification of 14 different daily activities such as
walking forward and going upstairs using Hidden Markov
Models. Second, we analyse the influence of different window
sizes, as well as the classification performance of different
motion types when training on multi- and single-subjects. Our
results reveal that we can reduce our sensor setup significantly
while achieving about the same classification performance.

I. INTRODUCTION

The area of augmenting exoskeletons moved into focus in
research as well as in industrial applications in recent years.
Such devices can be used for example to enhance human’s
motor abilities. Apart from their mechatronics design, the
interface to the human body and the control strategies for
exoskeletons are the key for intuitive and effortless operation
by the user. In this work, we address the following research
question: what is the minimal sensor setup for a lower limb
exoskeleton which is needed for a reliable recognition and
classification of human’s actions?

In our previous work, we presented a lower limb exoskele-
ton (KIT-EXO-1) with two active Degrees of Freedom (DoF)
with a concept for a force-based interface to the human body
[1]. In [2], we introduced a Hidden Markov Model (HMM)
based motion classification system and evaluated it using an
unilateral, passive lower limb exoskeleton for the left leg,
which is equipped with seven 3D force sensors arranged
in a way to correspond to the main muscles in the human
leg to allow robust capturing of interaction forces between
the exoskeleton and the human lower limb. Furthermore,
3 Inertial Measurement Units (IMUs) are attached on the
device, one on each segment. We evaluated the online
classification performance with multi-subject data using a
sliding-window approach. We further investigated the latency
and generalization performance of our approach with multi-
subject data and different window sizes.
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Fig. 1: Passive exoskeleton with 7 3D-force (red) and 3 IMU
sensors (blue). The numbers correspond to the sensor labels.

In this paper, we present an evaluation comparing multi-
and single-subject classification performance using different
window sizes. Furthermore, we analyse the classification
accuracies of single motion types and address the question
of a minimal set of sensors required to achieve a certain
classification accuracy.

The paper is organized as follows. Section II covers
a brief overview of sensor setups and machine learning
methods and their combinations used in the area with and
without exoskeletons as well as different feature reduction
approaches. In Section III, we give a short recap of our
previous work and an overview of different feature selection
methods. Section IV covers our evaluations and results, while
Section V offers the conclusion and outlook.

II. RELATED WORK

The problem of finding an optimal sensor setup in com-
bination with a suitable human motion recognition and
classification system was addressed by several authors in
the literature. Tsai et al. [3] studied upper arm motion pat-
terns using multi-channel EMG signals and Support Vector



Machines (SVMs) for the control of exoskeleton robots.
EEG-based human-robot interfaces also find application for
controlling different lower limb exoskeletons ([4], [5], [6]).
The H2 exoskeleton is controlled using identified patterns
from EEG and sEMG signals, based on Artificial Neuronal
Network and SVM classification [7].

One disadvantage of using EEG or EMG sensors is the
loss of classification accuracy due to the individualized signal
patterns of each subject ([8], [9], [10]). Therefore, mechan-
ical sensors, such as Inertial Measurement Units (IMUs)
or torque sensors, are often used for motion classification,
with and without exoskeletons. It is especially common
in industrial environments to place inertial sensors on the
human body ([11], [12], [13]).

Attal et al. [11] compared different machine learning
approaches, such as SVMs and Hidden Markov Models
(HMMs), by using input from three inertial sensors placed
on the left ankle, the right thigh and the chest. Malaisé
et al. used a wearable motion tracking suit (MVN Link
suit Xsens) consisting of 17 IMUs and a sensorized glove
(Emphasis Telematics) that processed force data for motion
classification via HMMs [14], [15]. Their work focuses on
industrial applications.

Taborri et al. [16] used force and IMU sensors to detect the
gait phase of a lower limb orthosis. Wang et al. [17] classified
motions with SVMs and IMU data and predicted possible
upcoming motions with HMMs for the Non-Binding Lower
Extremity Exoskeleton (NBLEX). Gong et al. [18] proposed
a real-time, on-board training and recognition method for an
active pelvis orthosis using two IMUs.

How to reduce the number of sensors and features in
order to scale down computational effort while keeping
high classification and prediction accuracy is a common
problem. A widely used strategy is to apply feature selection
algorithms that retrieve only the relevant features for the
motion classification process. In our previous work [19],
we used a wrapper-based method for whole-body human
motion recognition based on kinematic data using HMM:s for
motion classification and showed that a lower-dimensional
feature spaces is sufficient to achieve high motion recognition
performance (4 dimensions and 97.76% accuracy).

Malaisé et al. [14] made comparisons amongst Principal
Component Analysis (PCA), feature-based, and wrapper-
based methods for their HMM-based motion classification
approach using data from a wearable motion tracking suit and
a sensorized glove. In their analysis of data from 13 subjects,
they showed that a wrapper-based method performed best
compared to the other two.

III. SENSOR SYSTEM AND MOTION CLASSIFICATION

We provide a brief overview of our previous works ([2],
[19]) on motion classification, system setup, data and meth-
ods which are used for the evaluations in Section IV.

A. Exoskeleton and Sensors

Our passive lower limb exoskeleton for the left leg (see [2]
and Figure 1) was also used for this work. The frames of the

exoskeleton cover the thigh, shank and foot. The connection
between these three components consists of orthotic revolute
joints'. To wear the exoskeleton, orthotic Velcro straps are
used on the anterior thigh and shank.

Orientations and linear accelerations of the thigh, shank
and foot are measured with a total of 3 IMUs2, one on each
limb segment. The data is recorded at a frequency of 80 Hz.
To measure the interaction forces between the exoskeleton
and the wearer 7 individual 3D force sensors® are placed
over the large muscles of the front and back of the thigh, as
well as on the shank. The raw data of the force sensors are
collected with a maximum frequency of 100 Hz.

B. Data

Our previous collected data described in [2] consists
of 13 different motion activities, namely: Walking For-
ward (WF), Walking Backward (WB), Turn Left (TL), Turn
Right (TR), Sidesteps Right (SR), Sidesteps Left (SL), Going
Upstairs (GU), Going Downstairs (GD), Going Downstairs
Backwards (GDB), Lift Object (LO), Drop Object (DO),
Stand Up (SU) and Sit Down (SD). Based on our results,
we also decided to add the motion Stand (ST) to our
motion classes. This motion has already been recorded in
our previous study but was not used. This left us with a total
of 14 different motion types. Every motion was recorded
10 times, each performed by 10 subjects (5 male, 5 female).
Since the IMU data (80 Hz) and the force data (100 Hz)
were recorded at a different frequency, the IMU values were
interpolated to 100 Hz and the timestamps were unified.

C. Motion Classification

The evaluations and results reported in Section IV are
based on a Hidden Markov Model (HMM) multi-class classi-
fication. We trained one HMM for each motion type, leading
to 14 HMMs in total. Our HMMs were trained with a fully
connected topology and diagonal covariance matrices. The
number of states for each HMM added up to 14 states and
Gaussian distributions were used to model observations. To
ensure online application, we use a sliding window approach
- splitting training and test data into windows of 100, 200,
300, 400 or 500 ms (depending on our evaluation). We start
a new window every 10ms. A currently tested window is
assigned to the HMM with the highest log-likelihood.

As training input, we used the values of the force and IMU
sensors. The force feature vector consists of the 3D force
data of every force sensor, resulting in a total of 21 values
for all seven force sensors. The IMU feature vector contains
the 3D linear acceleration, as well as the Roll-Pitch-Yaw
angles for every segment. This leads to a dimensionality for
the IMU feature vector of 18 (containing all 3 IMUs). For
further information about our motion classification approach,
we refer to [2].
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D. Feature Selection

There are different methods for retrieving the optimal
feature set for the chosen motion classification system. One
approach is to test every possible feature or sensor com-
bination (brute-force approach). Depending on the number
of features or sensors, this is not always feasible, due to
long training times. A solution for this problem are feature
selection methods. These algorithms are used to reduce the
dimensionality of the input data for motion classification.
A subset of a high dimensional feature set is selected
realizing the best classification performance. There are three
types of methods which are often used in the context of
machine learning: embedded, filter-based, and wrapper-based
methods [20].

Embedded methods select the features based on the results
of the training process and are therefore specific to a chosen
machine learning algorithms. Filter-based methods assign a
score to the features individually, regarding the observation,
based on a given filter measure. There is a large number of
such filter methods available [21]. Filter-based methods are
not classifier-dependent and therefore not time-consuming
since no training of the classifier is needed. A drawback
is that the algorithm does not know relationships amongst
the features, which could lead to selection of redundant
features. Wrapper-based methods [22] are based on the
performance of a classifier within the tested features. In
contrast to embedded methods, this approach evaluates the
classification performance and not the classifier itself. Here,
a strategy for searching through the feature space must
be chosen. In contrast to filter-methods, this method can
consider relationships between features. Since the chosen
feature subsets are based on classification results, this method
has a higher computational effort as embedded or filter-based
methods.

In our approach we use the wrapper-based method we
developed in our previous work [19], where we conducted a
feature space dimensionality reduction for the recognition of
whole-body human actions based on Hidden Markov Models.
Here, the total number of features is denoted as N. The
chosen classifier (in this case HMM) is trained independently
for each single feature combination. Afterwards, the outcome
of the trained model is evaluated with a chosen metric which
has to be set before. The best features of amount M are
retrained in combination with one other feature. For every
iteration, one feature is added to this combination until the
chosen maximum dimensionality of feature combinations is
reached. Additionally, several feature subsets are kept at each
iteration to reduce the risk of eliminating important subsets.
For the evaluation of the given feature subset, a stratified
3-fold cross validation is used. For further information, we
refer to [19].

Due to our sensor setup the total number of features N is
denoted as 10 since our features corresponds to the sensor
values introduced in Section III-B. As chosen in [19] we
also set the best amount of features M = 10. To reduce
computational costs we scaled our stratified 5-fold cross

validation down to a stratified 3-fold cross validation as
in [19]. Furthermore, we reduced the amount of trainings
step as proposed in [19].

IV. EVALUATIONS

We first give a more detailed overview regarding the
results of our single subject evaluations compared to our
previous presented results in [2] before introducing the
motion classification performance per motion type. Then,
we investigate if there are specific motion combinations
often mixed up in the classification. Finally, we address the
question of a minimalistic sensor setup.

A. Single Subject Evaluation

To better compare ourselves to other motion classification
approaches, we performed further analysis regarding single
subject evaluations with window sizes of 100-500 ms since
many other approaches are just training and testing on single-
subjects and not multi-subjects. We performed a stratified
5-fold cross validation using the data of all 10 sensors
of our passive exoskeleton for our HMM-based motion
classification as presented in Section III-C. In this evaluation
we only used the data of 13 motion types (see Section III-
B) to directly compare our new results to the ones of our
previous work [2].

The results can be seen in Table I. The first column
depicts the window size, the second column the average
classification accuracy when training on all subjects (AS)
and the last column the average classification accuracy when
training on single-subjects (SS).

TABLE I: Accuracies for different window sizes comparing
single- and multi-subject evaluations.

Window Size [ms] | Accuracy AS [@%)] | Accuracy SS [@%)]

100 82.92 95.35
200 89.16 97.39
300 92.80 98.36
400 95.00 98.95
500 96.46 99.33

When all 10 subjects (AS) are contained in the training
set, the average accuracy of window size 100 ms adds up to
82.92 %. With an increasing window size, the accuracy also
increases since the observing time of the windows also raises
and thereby the data gets less unambiguous (see also [2]).
By running a single-subject (SS) evaluation where only one
subject is considered in the training and testing set for every
evaluation, the classification accuracy is already very high at
the beginning and increases slower for bigger window sizes.

Comparing both evaluations shows that the average ac-
curacy of the SS evaluations increase enormously for the
window sizes 100, 200 and 300 ms compared to the AS eval-
vation. This reveals that our approach of using a combination
of force and IMU sensors can achieve a high accuracy of
95.35 %, even for a window size of 100 ms. Due to the small
window size the approach is therefore online applicable.



B. Classification Performance per Motion Type

In our next evaluation we wanted to analyse in detail
how the classification performance of each single motion
is conducted for training on all subjects combined or just
training on a single subject. This evaluation was performed
with all 14 motion classes, a stratified 5-fold cross validation
and a window size of 100-500 ms (leaning on our results
of [2]).

B Single-Subject M All-Subjects
100
90
80
70
60
50
40
30
20
10

Accuracy [%]

WF WB TL TR LO DO SL SR GU GD GDB sD SU ST

Motion Type

Fig. 2: Classification accuracy per motion type using a
window size of 100 ms.

Figure 2 shows the results for the analysis of window
size 100 ms. Blue depicts the single-subject evaluations (SS)
and orange the evaluations over all subjects combined (AS).
Every bar group corresponds to one motion type. The ab-
breviations for every motion type are listed in Section III-B.
The height of every bar corresponds to the accuracy of the
motion classification. Figure 2 reveals that the classification
accuracy of the SS evaluation (blue) achieve high results for
all motion types. Between the different motion types there
is only a slight difference, only Turn Left (TL) and Turn
Right (TR) have a slightly lower classification accuracy as
the other motions.
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Fig. 3: Classification accuracy per motion type using a
window size of 200 ms.

The classification accuracy of the AS evaluation (orange)
in Figure 2 is much less (as also stated in Section IV-A).

Here, a widely scattered performance between the single
motion types can be observed. The motions Turn Left (TL),
Turn Right (TR) and Drop Object (DO) have the lowest
classification accuracies around 75%. Sidesteps Left (SL)
and Sidesteps Right (SR) have the highest accuracy with
about 90 %.

Figure 3 depicts the results when running the same eval-
uation for a window size of 200 ms. The SS evaluation can
achieve overall higher accuracies as with using a window size
of 100 ms. The motions Turn Left and Turn Right perform
again slightly worse. The classification accuracies in the AS
evaluation retrieved as well better results. The difference
between Going Downstairs (GD), Going Upstairs (GU) and
Going Downstairs Backwards (GDB) become less. The same
behaviour can be observed for the window sizes 300, 400 and
500ms and are therefore not depicted here in detail.

C. Mixed Up Motions

Based on the results of Section IV-B we wanted to
further investigate which motion was classified and what real
motion was actually performed (mixed up motion). We were
interested if there are certain motion combinations causing
a worse classification performance or if there is an overall
tendency of wrong classified motion pairs. This evaluation
was also conducted with all 10 subjects, all 14 motion
classes, a stratified 5-fold cross validation and window sizes
of 100-500 ms. Every presented evaluation is an excerpt of
all mixed up motion combinations. For every window size
the top 5 combinations are shown.

TABLE II: Comparison of real performed and classified
motions for window size 100-500ms. Abbreviations: see
Section I11-B

WS [ms] | Classified Motion | Real Motion | Amount [%)]

100 WB GDB 4.81
GD WF 4.42
TL WF 3.86
GDB WB 3.41
DO SD 3.13
200 WB GDB 6.85
GD WF 5.05
TR WF 3.80
TL WF 3.63
DO SD 3.32
300 WB GDB 10.12
GD WF 5.68
TR WF 4.95
TL WF 4.36
DO SD 3.81
400 WB GDB 12.84
GD WF 7.21
TR WF 5.69
TL WF 4.82
DO SD 3.97
500 WB GDB 14.77
TR WF 8.73
GD WF 8.67
TL WF 5.26
DO SD 4.62




Table II depicts the results. The first columns corresponds
to the analysed window size, the second column contains the
classified motion, the next one the real performed motion and
the last column depicts how often this combination appears
amongst all wrong classified motions. The classification
accuracy for every window size is shown in Table I in
Section IV-A.

For every window size almost the same observations can
be made. The most mixed up motion combinations for every
window size are Walking Backward (WB) and Going Down-
stairs Backward (GDB). The underlying motion is nearly
the same despite the difference that the Going Downstairs
Backward motion has a larger vertical component. This is
similar to Walking Forward and Going Downstairs which as
well is mixed up. Here, the vertical component of the motion
should be taken into account to improve the classification
accuracy. One solution to this could be to rate the vertical
component stronger.

The confusion of Turn Right/Left (TR/TL) and Walking
Forward (WF) could arise due to the fact that the motions
Turn Right/Left have locomotion elements of Walking For-
ward since the subject was asked to walk a 90° motion.

The motion types Drop Object (DO) and Sit Down (SD)
have also similar locomotion elements since during sitting
down a squat motion is performed which was also conducted
when dropping the box (back-friendly dropping of the object
and no leaning forward dropping).

For smaller window sizes the amount of wrong classified
pairs is in general smaller and more widely dispersed as
with bigger window sizes. For window size 300ms and
larger the differences became more significant. One solution
could be to cut the recordings to remove ambiguous parts
such as in the motions Turn Right/Left. Nevertheless, it is
more relevant to apply more intelligent solutions to these
problems since there are always elements of other motions
integrated. A further approach could be to implement a
high level classification strategy which takes for example the
last n classifications into account or reduces the calculated
classification accuracy for unlikely motion transitions, e.g. if
the person is sitting it is unlikely that the person will perform
any kind of walking motion next.

D. Reduced Sensor Setup

Our final analysis addresses the question of a minimalistic
sensor setup resulting from reducing the number of sensors
in our sensor setup while still achieving a high classification
accuracy. In Figure 1 the labels of the sensors are depicted.
The force sensors are highlighted in red and the IMU sensors
are coloured blue. To this end, we first investigate a reduction
of number of sensors using a brute-force approach. In our
case we have 10 sensors from which we can choose.

This sensor setup is composed of seven 3D force sensors
which deliver force information in x,y and z direction and
three IMU sensors, each of which provides linear accelera-
tion and RPY-angle information. With 10 possible sensors,
we retain 1023 possible combinations to test. These evalu-
ations were conducted with all 10 subjects, all 14 motion

classes, a stratified 5-fold cross validation and a window
size of 300ms (based on our results of [2]). With this
window size we can achieve with all 10 sensors combined
a classification accuracy of 92.80% (see Table I, using
13 motions). We conducted the brute-force analysis for all
possible combinations and we discuss here important aspects
of these results.
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Fig. 4: Classification accuracies using single IMU or single
force F' sensors.

Figure 4 reveals that by using just one single IMU sensor
we achieve a classification accuracy in the range of 64.40 %-
76.50 %. The best result with IMU sensor 3 is just around
16 % less than the result of using all 10 sensors combined.
The IMU sensors 1 and 3 perform similar, however IMU
sensor 2 performs much worse as a single used sensor. The
force sensors, denoted as I, can just achieve an accuracy in
the range of 22.47 %-41.19 %.

Table III shows the classification performance of different
sensor combinations. For each amount of sensor with differ-
ent sensor combinations, the top 10 sensor combinations are
listed. The first column shows the amount of used sensors,
the second and third column which force and IMU sensors
are used and the last column the classification performance.
Using two sensors combined the classification accuracy
increases. Mostly, one force sensor and one IMU sensor
are combined. Regarding the results of the single sensor
evaluation, the assumption could be that combining two IMU
sensors would achieve the highest classification accuracies.
This is the case for a combination of IMU sensor 1,3 and 1, 2
but the combination of IMU sensor 2,3 can just achieve
79.49 % (not shown in Table III since this combination does
not belong to the top 10 sensor combinations). Starting from
dimension 2, the force sensors move more into focus.

In combination with force sensors, only IMU sensor 1
and 3 appear. The force sensors 5 and 7 are used more
often than the others but there is no such strict tendency
of upcoming sensors such as with the IMU sensors. The
difference of the classification accuracy between the top 5
single sensor pairs are very small (between 0.01 %-2.06 %).
This occurs for all sensor pairs from 2 up to 9 sensors
combined. Therefore, an absolute assertion about the best
sensor combination per dimension can not be made, but



rather a statement about tendencies which sensors often
appear.

Also with adding more sensors the best results are
achieved with a combination of two or more IMU sensors.
The combination of IMU sensor 1 which is located on the
upper leg, with IMU sensor 3 which is located on the foot
provides the best results. Regarding the force sensors, a
similar observation, as when using two sensors combined,
can be made. The force sensors 3,5,6 and 7, which are
located over the whole leg, are used. Here as well a tendency
that some muscles play a more important role than others
cannot be observed.

TABLE III: Classification accuracies using 2-4 sensors com-
bined.

Amount Sensors | Force Sensor | IMU Sensor | Accuracy [@%]

2 - 1,3 86.35
7 3 85.34

- 1,2 84.66

5 3 84.60

2 3 84.29

3 3 83.86

7 1 83.73

5 1 83.42

6 3 83.05

1 3 83.03

3 5 1,3 89.53
7 1.3 89.08

6 1.3 89.04

3 1,3 88.81

2 1,3 88.42

- 1,23 88.38

1 1,3 88.21

6 1.2 87.95

5 1,2 87.90

3 1,2 87.69

4 6,7 1,3 90.73
3,6 1,3 90.69

5,6 1.3 90.48

35 1.3 90.44

5,7 1,3 90.42

L5 1.3 90.33

6 1,23 90.30

5 1,23 90.26

2,6 1.3 90.21

2,5 1,3 90.17

For the other combination results when using 2-4 sensors
combined, which are not presented here in detail, the IMU
sensor 1 and 3 achieve better results than IMU sensor 2 or
no IMU sensor. Force sensor 1 and 2 become more relevant.
Using more sensors the differences between the worst and
best results gets smaller. When IMU and force sensors are
used in combination the difference in classification accuracy
is at least for 2 used sensors 45 %, for 3 used sensors 32 %
and for 4 used sensors 23 %. The difference gets smaller with
increasing amount of sensors.

When using 5-10 sensors combined there is first a small
increase in the classification accuracy as listed in Table IV.
Here, the differences between the sensor combination results
become very small. Therefore, only the best sensor combina-
tions for each dimension are listed. Table IV reveals that us-

ing up to 6 sensors combined the classification accuracy still
increases. From 7 to 10 it decreases and increases slightly.
An important observation at this point is that we already
achieve with 6 sensors (92.20 %) about the same classifica-
tion performance as when using all 10 sensors (92.40 %).

TABLE 1V: Classification accuracies using 5-10 sensors
combined.

Amount Sensors | Force Sensor | IMU Sensor | Accuracy [@%)]

5 \ 3.5 | 123 | 9116
6 | 135 | 123 | 9220
7 | 1567 | 123 | 9261
8 | 12567 | 123 | 9285
9 | 123567 | 123 | 9277
10 | 1234567 | 123 | 9240

E. Systematic Exploration

The analysis was also conducted with the systematic
exploration of the features space approach described in
Mandery et al. [19]. We want to compare if the same results
of the brute-force approach can be achieved compared to
the approach of [19]. If that is the case, future analysis can
be faster executed since not all sensor combinations have
to be tested. As in the brute-force approach, we used all
10 subjects, all 14 motion classes and a window size of
300ms. In the approach of [19] a stratified 3-fold cross
validation instead of a stratified 5-fold cross validation was
applied which we also chose. This leads as well to a reduced
training and testing time.

The results of both approaches differ slightly due to
the different k-fold cross validation values and amount of
training steps. But the overall tendency of common used
sensors is the same. Also here, due to the similar clas-
sification results per dimension, can not be spoken of a
best sensor combination for dimensions 2 or more. Since a
combination of only force sensors performs worse than using
a combinations of the sensor modalities or only IMU sensors,
for dimension 3 and higher there are no combinations of just
using force sensors further trained. When just using one or
two sensors combined, IMU sensor 2 performs much worse
than the other two IMU sensors. Therefore, for dimensions 3
and higher, using only IMU sensor 2 is often not trained
and tested due to the worse results before. Since these ones
are more outliers and do not conduct after the common
tendency, it is not drastic that these are thrown out by the
approach of [19]. With our data and feature sets it was
possible to reduce the training and testing time by one third
with the systematic exploration of the feature space approach
compared to the brute-force approach.

V. CONCLUSION

In this paper, we investigated the quality of our motion
classification approach using Hidden Markov Models for an
unilateral, lower limb passive exoskeleton which is equipped



with seven 3D force sensors and three Inertial Measurement
Units (IMUs) based on our previous work [2]. Our data set
contains 14 different daily activities of 10 subjects. In our
first evaluation, we compared the classification accuracies
when all subjects (AS) or single-subjects (SS) are consid-
ered in the training set. Also for small window sizes, the
classification accuracy drastically increases when training on
SS.

In the two following evaluations we analysed in detail how
each single motion performed in the AS and SS evaluation.
The motions Turn Left (TL), Turn Right (TR), Going Up-
stairs (GU), Going Downstairs (GD) and Going Downstairs
Backwards (GDB) performed in the SS evaluation slightly
worse than the other motions. In the AS evaluation the
differences between the single motion types were higher.
Furthermore, similar motions such as GD and Walking For-
ward (WF), GDB and Walking Backwards (WB), TR/TL and
WF were often mixed up in the classification process due to
their similar locomotion elements.

Our final analysis covered the search of a minimalistic
sensor setup. Here, we compared the results of a brute-force
approach with a systematic exploration of the feature space
and have shown that the overall tendencies of common used
sensors remain the same and no important combinations are
discarded. Using a combination of just 6 sensors we can
already achieve about the same classification accuracy as
using 10 sensors. With our systematic exploration we can
reduce the training time by one third.

Our approach and sensor setup were applied so far to one
specific exoskeleton. The same sensor positions should have
the same results on other exoskeletons. We want to verify
this in future studies with our new adjustable lower limb
exoskeleton. Future tests should further be conducted with
active exoskeletons to verify if the motion patterns change
significantly.

We will conduct deeper analysis based on the results of
the systematic exploration of the feature space approach of
Mandery et al. [19]. Here, we want to investigate if the best
sensor combination changes with the window size. Further-
more, we want to analyse if sensor combinations are subject-
specific when training on single subjects. Additionally, we
will investigate if derived features of our data set achieve
better results.
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