
Invasive Computing for Robotic Vision

Johny Paul and Walter Stechele M. Kröhnert, T. Asfour and R. Dillmann
Institute for Integrated Systems Institute for Anthropmatics
Technical University of Munich Karlsruhe Institute of Technology

Germany Germany
{Johny.Paul, Walter.Stechele}@tum.de {Kroehnert, Asfour, Ruediger.Dillmann}@kit.edu

Abstract— Most robotic vision algorithms are computationally
intensive and operate on millions of pixels of real-time video
sequences. But they offer a high degree of parallelism that can
be exploited through parallel computing techniques like Inva-
sive Computing. But the conventional way of multi-processing
alone (with static resource allocation) is not sufficient enough
to handle a scenario like robotic maneuver, where processing
elements have to be shared between various applications and
the computing requirements of such applications may not be
known entirely at compile-time. Such static mapping schemes
leads to inefficient utilization of resources. At the same time it is
difficult to dynamically control and distribute resources among
different applications running on a single chip, achieving high
resource utilization under high-performance constraints. Invasive
Computing obtains more importance under such circumstances,
where it offers resource awareness to the application programs
so that they can adapt themselves to the changing conditions,
at run-time. In this paper we demonstrate the resource aware
and self-organizing behavior of invasive applications using three
widely used applications from the area of robotic vision - Optical
Flow, Object Recognition and Disparity Map Computation.
The applications can dynamically acquire and release hardware
resources, considering the level of parallelism available in the
algorithm and time-varying load.

I. INTRODUCTION

Multicore Processor System-on-chip (MPSoC) is gaining
increasing interest in embedded computing, due to their
enhanced performance capabilities. Some of the MPSoCs
available today are Tileras 64-core processor [2], Ambric
(with 336, 32-bit RISC processors) [17], an 80-core Intel
prototype processor [21], Xetal-II [2] (a SIMD processor with
320 processing elements). Significant reduction in processing
time could be achieved using such MPSoC architectures. For
example a real-time optical flow implementation on Ambric is
described in [11], with the algorithm statically mapped to the
Processing Elements (PE). However, this static implementation
has a rigid structure and it fails to operate if the predefined
number of PEs are not available at an instance of time. It also
does not explain how another application can run in parallel on
the same MPSoC. Hence this is not flexible enough to handle
dynamically changing applications, e.g. robotics.
Although all the above mentioned architectures offer the
capability of exploiting different levels of parallelism, they all

perform static resource allocation and hence the degree of par-
allelism for the applications has to be defined at compile-time.
Early work on multicore programming and multicore compil-
ers, including scheduling algorithm for multiprogramming in
hard real-time [16], parallelizing programs for multiprocessors
[19], and static scheduling algorithms for multiprocessors [14],
has shown that static scheduling is not sufficient for compute
intensive applications. Machine learning for multicore resource
management has been investigated in [3], with results being
applied in the Milepost compiler [9]. However, thread distri-
bution requires off-line training, which seems not applicable
for dynamically changing applications. In [6] management of
shared resources in MPSoC has been investigated, i.e. shared
caches, off-chip memory, taking into account bandwidth and
power budget. However, a Neural Network has been applied,
which requires off-line training which seems not feasible for
advanced MPSoC in dynamically changing applications.
In contrast to the aforementioned approaches, Invasive Com-
puting was introduced [20]. In brief, Invasive Computing is a
methodology to manage and control the parallel execution of
various applications on an MPSoC with many CPUs by giving
the power to manage resources (i.e. computing, communica-
tion and memory resources) to the applications themselves and
thus allow the running programs to manage and coordinate the
resources by themselves in a decentralized manner. Through
Invasive Computing, a given application program gets the
ability to explore and dynamically spread its computations
to neighboring processors in a phase called invasion, then to
execute portions of its code in parallel based on the available
cores. Afterwards, once the program terminates or enters a
new phase with less parallelism, the program may enter a
retreat phase, deallocating resources and resuming execution
sequentially on a single core. This approach enables applica-
tions to self-explore the degree of parallelism available and to
exploit dynamic resource requirements while avoiding fully
centralized control of execution. Resource conflicts during
invasion will be handled by an agent system, which is a topic
for further research.
In this paper we will investigate principles of Invasive Com-
puting applied on a humanoid robot like ARMAR III [4],
who has to deal with various vision algorithms like stereo
vision, object recognition, object grasping, obstacle detection,
autonomous navigation etc. The load on the robots computing
platform may vary from time to time, as various algorithms



individually and in combination have to be loaded based on
the operation performed by the robot at each instance of time.

II. INVASIVE ARCHITECTURE

The Invasive architecture consists of heterogeneous tiles
connected by a Network-on-Chip (NoC). Each tile can con-
tain I/O units, loosely coupled RISC CPUs, or massively
parallel processor blocks called Tightly Coupled Processor
Arrays(TCPA) [12]. TCPAs consists of numerous light weight
processing elements(PE). Image processing algorithms with
regular loops for pixel processing highly benefit from TCPAs.
Loosely coupled processors on the other hand can be used
extensively for post-processing of the initial features com-
puted by TCPAs. Additional hardware blocks called CIC(core
ilet controller) help the operating system to efficiently map
application threads based on the instantaneous system load.
Figure 1 shows an architectural overview. More details about
the hardware architecture are beyond the scope of this paper.

CPU CPU

CPU CPU

Memory

Memory

CPU iCore

iCore CPU

TCPA

Memory

Memory

CPU iCore

CPU

Memory

CPU

CiC
MemoryI/O

CPU

CPU CPU

CPU

Memory

CiC

CPU

CPU CPU

CPU

Memory

CiC

CPU

CPU CPU

CPU

NoC

Router

N
A

NoC

Router

N
A

NoC

Router

N
A

NoC

Router

N
A

NoC

Router

N
A

NoC

Router

N
A

NoC

Router

N
A

NoC

Router

N
A

NoC

Router

N
A

Fig. 1. InvasIC Architecture

III. RESOURCE AWARE PROGRAMMING

In the recent past we have seen a growing number of
applications which posses varying computing requirements at
runtime. This includes optical flow computation (length of the
optical flow vector is proportional to the search area) [8], an
object recognition algorithm based on scale invariant SIFT
features [5](more the number of features detected, higher the
computing power required) and the computation of Another
example is the disparity map computation in [18]. This al-
gorithm works on large amount of data (stereo images) and
a possible way to speed up such an algorithm is to copy
its data to the tile-local memory (TLM) from the relatively
slow main memory (DDR). But adapting the algorithm based
on the number of available cores at the same time utilize
the TLM in an efficient manner is challenging. How to

model such applications when the underlying HW cannot scale
at run-time, according to the changing requirements of the
applications? How can we ensure that the applications get
sufficient computing power so that the results are available
on time? In this paper we present three case studies based
on three different applications with different processing re-
quirements, within the area of robotic vision. Using these case
studies we demonstrate how Invasive Computing can solve the
aforementioned problems by creating a feedback loop in the
system using the resource exploration techniques.

A. Optical Flow on TCPA

Here we demonstrate the benefits of Invasive Computing,
using the optical flow implementation in [8] due to its highly
parallel implementation on FPGA. Also it posseses all the
features described above and is widely used in robotic ap-
plications where the flow vector pattern can be used for robot
navigation or obstacles detection. The optical flow algorithm
is implemented on the TCPA. In order to self-explore resource
availability in the neighborhood, a resource exploration con-
troller (invasion controller) is integrated within each process-
ing element (PE). Using these invasion controllers, different
regions of available resources can be claimed, explored, and
reserved by applications in a fast and distributed manner. The
availability of 100s of PEs, along with the dedicated inter-
connect mechanism between neighboring PEs makes TCPA
an idea platform to implement low levels pixel processing
applications like optical flow.
The optical flow computation in [8] involves three stages, first
of which is image filter to remove ambient noise. The image
filtering algorithm involves a sliding 2D window of size [3×3]
or bigger over the complete image. The window is placed,
centered at every pixel in the image and each pixel is modified
based on its neighboring pixels and the weights as in Equation
(1) where P (x, y) is the pixel at location [x,y], W (x, y) is the
corresponding weight and w is window size.

Ps(x, y) =

∑x+w/2
x1=x−w/2

∑y+w/2
y1=y−w/2 P (x, y) ∗W (x, y)∑

W (x, y)
(1)

Conventional way to increase parallelism/multi-threading for
such applications is to split the image horizontally into sub-
images and then assign it to threads. The individual results
are combined later. But such implementations have two main
problems. The results from processing sub-images have to be
stored in external memory as there may not be sufficient cache
in massively parallel processor arrays (MPPA) like TCPA.
The partial results are combined by a separate thread, leading
to two-stage processing. The second stage increases memory
bandwidth requirements and this is a critical for large MPPAs
as available bandwidth does not scale with PE count. A second
problem arises as extra rows belonging to the neighboring sub-
images have to be read by every thread while processing the
pixels along border. This becomes critical for large windows,
e.g. for an image with resolution 640 × 480 pixels, window
size of 10× 10 and 20 threads, each thread has to read 33%
excess data to process its sub-section. All these factors reduces



the scalability and performance benefits from using MPPAs.
Also the other applications might slow down as they encounter
excessive latency during memory access.
A careful inspection will show that for a sliding window

PE[0,0] 

In_p_1

Out_p_1

In
_p

_0

PE[0,1] 

In_p_1

Out_p_1

In
_p

_0

PE[1,1] 

In_p_1

Out_p_1

In
_p

_0

PE[1,0] 

In_p_1

Out_p_1

In
_p

_0

Invasion depth

W
in

do
w

 s
ize

BU
FF

ER
BU

FF
ER

BUFFERBUFFER BUFFERBUFFER

BU
FF

ER
BU

FF
ER

PE[2,0] 

In_p_1

Out_p_1

In
_p

_0
PE[2,1] 

In_p_1

Out_p_1

In
_p

_0

BUFFERBUFFER

BUFFERBUFFER BUFFERBUFFER BUFFERBUFFER

BU
FF

ER
BU

FF
ER

BU
FF

ER
BU

FF
ER

Window 1 Window 2 Window 3

Fig. 2. Image filtering on TCPA

approach each window share its pixels with the neighboring
window. Thus if multiple neighboring windows/pixels are
processed simultaneously, it can lead to much better utilization
of memory BW. To process one pixel for a window size of
3 × 3, we map the application onto a set of 3 PEs as shown
in Figure 2. Each PE processes one row within the window
and together they can process one complete window in few
iterations. Moreover to exploit the parallelism in MPPA, mul-
tiple windows can be processed simultaneously. For example
another set of 3 PEs, if available can process the neighboring
window by reusing the data read by the first set of PEs, through
continuous data exchange over the dedicated interconnect. This
helps to reduce the overall execution time without increasing
the memory BW requirements. The memory architecture and
technique used to fill the pixel data into the I/O buffers in
Figure 2 is beyond the scope of this paper and is explained
in [15]. Equation 2 can be used to compute clocks/pixel(CPP)
value for various configuration during image filtering, where
id is invasion depth (the number of windows processed
simultaneously), Cp is the number of clock to process one row
within the window, Cd is the number of clocks to discard pixel
which does not belong to the current window and Cconst is the
time to reinitialize the variable after processing one window
and move on to the next.

CPP =
(Cp ∗ w) + (id− 1)Cd + Cconst

id
(2)

The second stage is census signature generation where a
unique signature is computed for every pixel in a frame based
on its neighboring pixels. This stage uses fixed window size as
in case of image filtering and hence a mapping scheme similar
to image filtering can be adopted. The third stage operates as
follows. When two consecutive signature images are ready,
the signature of every pixel in frame (t) is compared with
signature of pixels in frame (t+ 1). Since a comparison with
every other signature is a computationally intensive task, the

search region is limited to a small region in frame (t + 1)
located around the candidate pixel from frame (t). More
details about the optical flow implementation is beyond the
scope of this paper and can be obtained from [8].
To detect fast motion, a wider search region is necessary.
But this also leads to higher computing requirements as more
signatures need to be compared. Hence, based on the scenario
or application requirements, the seed PE raises a request to
invade [w × id] region of the TCPA array, where w is the
window size and id is invasion depth, very similar to image
filtering. After infection, each PE processes its corresponding
row within the 2D window. An incoming signature value from
frame(t) has to be matched with a window of signatures from
frame(t+1). In case of unique match, a vector is generated
with its endpoints extending from center of the window to the
location of the matching signature. In case of multiple match,
a vector will not be generated. As one PE processes only a
section of a complete window, the results are not final and have
to be compared with results of other PEs for multiple match
condition. The clocks/pixel values can be calculated using the
Equation 3 where Cs is the clocks required to move a result
from one PE to its neighbor over the dedicated interconnect.
This equation shows that for an increasing w, the processing
time can be constrained by varying the value of id.

CPP =
(Cp ∗ w) + (w − 1)Cs + Cconst

id
(3)

In case of insufficient resource the application can decide
whether to reduce the window size and hence avoid a frame
drop or decide to drop the frame as it may not be possible
to deliver the results on time. The resources will be released
immediately enabling other applications to use it more effi-
ciently.
Based on simulations, the behavior of Invasive Computing
applications is analyzed using clocks/pixel (CPP ) value as
an index for evaluation. A low CPP value indicates low
execution time or low power consumption (at reduced oper-
ating frequency). The graph in Figure 3 was plotted using
Equations (2) and (3), for a fixed window size. Cconf is
the time to configure the TCPA interconnect structure and
load the executable code into the PEs. The values in Table I
were obtained using a cycle accurate simulator published
in [13]. Graph in Figure 3 indicates variation of CPP value

TABLE I
SIMULATION RESULTS

Stage Cp Cs Cd Cconst Cconf

Image Filter 3 - 1 1 42
Census Sign Generation 2 2 - 9 105
Flow Vector Generation 2 2 - 4 101

against invasion depth(id) for image filtering, signature and
vector generation stages of optical flow algorithm. The graph
clearly shows that the CPP decreases with an increase in
id. The execution time almost reduced to half upon moving
from an invasion depth of one to two and the acceleration



1

11

21

31

41

51

61

1 3 5 7 9 11 13 15

C
lo
ck
s/
p
ix
e
l (
cp

p
)

Invasion depth (id)

IMF SG VG

Fig. 3. Clocks/pixel Vs Invasion Depth (IMF: image filtering, SG: signature
generation, VG: vector generation)

is consistent over the range of values for id. The results
prove that our implementation is flexible enough to continue
processing based on the available resources, which is not
possible with the Ambric implementation in [11].

B. Object Recognition through Invasive Computing

Numerous object recognitions algorithms are available to-
day, one of which is based on Harris features and SIFT
descriptors [5]. This paper presents a combination of the Harris
corner detector and the SIFT descriptor, which computes
features with a high repeatability and very good matching
properties in real-time. The objects to be recognized at run
time are known beforehand and their features are stored in the
database in a kd-tree structure. At runtime, the algorithm looks
for matching features in the input frame to detect objects as
shown in Figure 4. The left sub-image is the real-time input

Fig. 4. Harris SIFT object recognition [5]

from the camera mounted on robot head while the template
stored in database is shown on the right. The number of
features to be matched is based on the features computed by
Harris Corner Detection algorithm. Hence the overall features
detected can vary based on the objects present in the frame,
their orientations and lighting conditions. Hence the processing
time also vary based on the varying conditions. We selected
this application to demonstrate how such algorithms benefit
from Invasive Computing while running on a set of loosely
coupled RISC processors (this algorithm is not suitable for
TCPA because of kd-tree based nonlinear search).
In Invasive Computing we try to constrain the processing
time under varying load by acquiring and releasing processing
elements at runtime. This means the application can request
for extra processing elements if the features to be matched

is above a threshold. For e.g, the feature matching can be
performed on two RISC CPUs simultaneously each perform-
ing a kd- tree based search in one-half region of the frame.
The partial results can be combined later. Another approach
would be to acquire processing elements based on the objects
stored in the database and the objects currently detected in
the input frame. Most often, in a real-time implementation,
an exhaustive search is not required in every frame, as there
is a high probability for the previously detected object to
exist in the current frame and a low probability for finding
a new object in every new frame. Hence the algorithm can
be optimized so that an exhaustive search is performed only
once in every second, looking only for an already existing
object in the rest of the frames. A simple example with 3
objects in the database, while only one is detected in the last
frame, the total features to be matched can be reduced to one-
third (assuming equal number of features from every object).
Additional PEs will be acquired only when necessary and
thus releasing them to other applications whenever possible.
Moreover the exhaustive search can then be delayed if the
PEs are overloaded with workload from other applications.
This makes Invasive Computing significantly different from
conventional multi-threading or multi tasking setup, where all
the available PEs are shared by applications without having
any notion about the availability of resource or current load.
Our approach can ensure better distribution of application
programs and load balancing, as the applications can breathe
based on their processing requirements at the same time
avoiding overloading of the PEs.

C. Disparity Map on RISC

This section shows how the calculation of a disparity
map from a pair of stereo camera images can benefit from
resource-aware programming. In contrast to the optical flow
implementation, the disparity map algorithm is implemented
in the X10 programming language [7] and is designed to run
on invasive RISC CPUs. Invasive features are available by
using the resource-aware programming methods and functional
simulation tools presented in [10]. As the invasive compiler,
operating system and hardware are currently in an early stage
of development the programs are simulated on a desktop
computer as a first step. A first working version of the
mentioned components is expected next year.
Both a single-core and a resource-aware multi-core version of
the disparity map algorithm were implemented in X10 based
on the work published by Faugeras in 1993 [18]. As described
in this paper, the algorithm operates on a pair of rectified stereo
images. These images can for example be retrieved from the
humanoid robot head of ARMAR-IIIa [4]. The output of the
algorithm is a disparity map image with pixel colors correlated
to the distance of the objects visible in the input images.
Smaller values correspond to objects further away and are
displayed in a darker gray color. To calculate this correlation
value a sliding window is moved across the stereo images to
find the best match. The IVT toolkit [1] provides a reference
implementation of this algorithm in C++ which is used for



comparisons later on.
The single-core variant of the algorithm is implemented in
X10 and matches the IVT implementation and processes the
complete image in one large but efficient loop. However, it
does not make use of resource-aware concepts and is tailored
for architectures similar to those found in the simulation
computer or in ARMAR-III. These architectures typically have
large amounts of main memory which is accessible through
a fast BUS interface. Embedded systems with possibly more
cores but less main memory would not be able to execute
this algorithm, at least not very efficiently. Due to higher
restrictions in embedded domains it is therefore desirable to
use resource-aware solutions which can exploit the constraints
imposed by the underlying system. In order to show the
benefits of resource-aware computing a multi-core capable
version of the disparity map algorithm has been developed.
It can adapt to different resource situations and is described
in more detail below.
To achieve resource-awareness it is necessary for algorithms
to react to changing requirements and available resources. As
a basis for the following discussion and evaluation we use
an architecture description for the simulator. The architecture
consists of a main memory and two compute tiles being
connected through a NoC. Each tile consists of 4 RISC
processors and a block of tile-local memory (TLM). If this
architecture is implemented in real hardware, the TLM has
faster access times than the main memory.
It is easily recognizable that an algorithm running on one
core and accessing only the main memory will have the
longest execution time possible. The single-core version of
the disparity map algorithm is an example for this category as
it does not take advantage of the faster TLM or multiple CPU
cores. Therefore it puts a lot of load on the NoC by constantly
accessing the main memory.
Key to exploiting the available architecture and its resources is
using a distributed approach. In our approach, the computation
is split up into more fine-granular work packages. Once the
partial results are ready they are merged into the complete
result image. As the single-core version already provides a
very efficient implementation it is used for processing the
work packages. Algorithm 1 shows the complete listing of
the different steps needed to calculate the disparity map. First
of all, the maximum number of wanted PEs is requested in
line 1. After that, the validity of the claimed resources is tested,
followed by the most interesting part of the algorithm (lines 3
to 8). These lines show the adaptability to changing resource
assignments. For distributing the image data both the count
of available processing resources and the amount of available
TLM are taken into account. This enables the algorithm to run
on systems which are equipped with a small amount of TLM.
Faster access times of the TLM are another advantage over
constantly accessing the main memory. In the design of the
Invasive Computing architecture all components are connected
through a NoC which might slow down tasks with intensive
I/O behaviour. The load of the NoC is greatly reduced by
copying the necessary data into the TLM. In addition to that,

Algorithm 1 Invasive disparity map algorithm
1: claim← invade(maxPEs)
2: if claim 6= invalid then
3: n← claim.numberOfPEs()
4: mem← claim.localMemory()
5: data[]← divideIntoBlocks(imageData, n,mem)
6: for all pe ∈ claim.PEs() do
7: pe.localMemory.data← data[pe.id]
8: end for
9: infect(disparityMapFunction())

10: synchronizeparalleloperations
11: for all pe ∈ claim.PEs() do
12: result[pe.id]← pe.localMemory.data
13: end for
14: retreat(claim)
15: end if

the CPUs benefit from a shorter and faster BUS connection.
However, the big difference between current algorithms using
static resource allocation and resource-aware implementations
becomes more obvious with more than one process running
in parallel. In the case of static allocation the process is
not able to perform its work if one or more resources are
occupied. In contrast, the invasive approach can adapt to
an ever changing resource situation. If a critical process is
for example occupying half of the available resources, the
invasive disparity map algorithm is able to adjust its degree
of parallelism by only using the remaining free resources.
During execution the request for additional cores and memory
is only partially fullfilled. In this case the input and output
images will either be split into larger chunks getting processed
by each available core or into a lot of smaller chunks with
each core queueing up several work packages. The version
chosen depends on the amount of useable TLM and available
processor cores.
A PC running Ubuntu Linux 8.04 and X10 (version 2.2.1 using
socket communication) on a Core i7 (4 cores with Hyper-
Threading @ 2.93GHz) processor is used to perform the eval-
uation. To achieve the best performance both the X10-runtime
and the invasive simulator including the implementations are
compiled from scratch with the C++ backend using the fol-
lowing flags -Doptimize=true -DNO_CHECKS=true.
Measurement of the overall execution time is performed by
executing 5 runs of each algorithm with one run consisting of
100 sequential executions of the algorithm on the same set of
input images. Both IVT and single-core X10 versions of the
disparity map algorithm can not use more than one PE as they
are not capable of parallelizing their computation.
Table II lists the evaluation results. The first thing to notice
is the IVT implementation being faster than the X10 imple-
mentations. Currently the X10 runtime does not implement a
very efficient way to access Array data structures and therefore
results in performance slowdowns. Additionally, the invasive
algorithms are executed in a simulator accounting for parts of



the execution time. Moreover, the invasive implementation is
using invasive api calls such as invade(), infect(), retreat()
to allocate, use, and release resources compared to the single-
core X10 implementation. Comparison of the execution times
of both algorithms shows that the runtime-overhead of using
the invasive api is relatively small. Considering that in the
invasive version the image data blocks also need to be copied
to and from TLM the overhead is comparably low. Considering
the execution time of the invasive version of the algorithm
the performance visibly increases with the number of used
PEs. The usage of the Core i7 processor supporting Intel’s

TABLE II
PERFORMANCE EVALUATION (UNITS: TIME [ms], VARIANCE [ms2],

STANDARD-DEVIATION (SD) [ms])

Algorithm #PEs Mean Min Max Variance SD
IVT 1 38 37 90 9 - 73 3 - 9
X10 1 93 84 143 123 - 273 11 -17
Invasive 1 135 125 236 10 - 197 3 - 14
Invasive 2 138 125 193 8 - 120 3 - 11
Invasive 3 143 104 283 38 - 345 6 - 18
Invasive 4 144 131 283 12 - 353 3 - 19
Invasive 5 120 89 150 20 - 38 4 - 6
Invasive 6 105 98 134 11 - 38 3 - 6
Invasive 7 96 65 148 21 - 58 4 - 8
Invasive 8 90 81 213 15 - 309 3 - 18

HyperThreading technology enables the processor to schedule
two threads on the same core simultaneously. This can on one
hand boost the overall performance but can also hinder it if si-
multaneous threads need to use the same processing resources.
Regarding the varying standard deviations the HyperThreading
can probably be made responsible for this. When running on
real hardware this problem is going to be eliminated. Thus
the next step is running experiments on real hardware once
the necessary components of the Invasive Computing project
are ready.

IV. CONCLUSION

In this paper we have investigated a new paradigm of
resource-aware computing, called Invasive Computing, on
three case studies from Robotic Vision, optical flow on TCPA,
disparity map calculation and object tracking both on RISC
clusters. Although still work in progress, we could show self-
organized adaptation of performance and functionality with
respect to availability of computing resources through invasive
programming. Multiple applications sharing same computing
resources may dynamically scale their performance and func-
tionality depending on the current state of the robot. In future
work, we plan to extend our investigations from computing
resources towards memory usage and on-chip communication.

V. ACKNOWLEDGMENT

The authors wish to thank Frank Hannig, Vahid Lahri
and Sascha Roloff from University of Erlangen-Nürnberg,
Germany, for their support in TCPA investigations and the
invasive simulator as well as Prof. Gregor Snelting and An-
dreas Zwinkau for the invasive X10 framework. This work was

supported by the German Research Foundation (DFG) as part
of the Transregional Collaborative Research Centre Invasive
Computing (SFB/TR 89).

REFERENCES

[1] http://ivt.sourceforge.net.
[2] A. Abbo, R. Kleihorst, V. Choudhary, et al. Xetal-II: A 107 GOPS, 600

mw massively parallel processor for video scene analysis. IEEE Journal
of Solid-State Circuits, 43(1):192–201, 2008.

[3] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, et al. Using
machine learning to focus iterative optimization. 2006.

[4] T. Asfour, K. Regenstein, P. Azad, et al. ARMAR-III: An integrated
humanoid platform for sensory-motor control. In 6th IEEE-RAS Inter-
national Conference on Humanoid Robots. IEEE, 2006.

[5] P. Azad, T. Asfour, and R. Dillmann. Combining harris interest points
and the sift descriptor for fast scale-invariant object recognition. In
Intelligent Robots and Systems, 2009. IROS 2009. IEEE, 2009.

[6] R. Bitirgen, E. Ipek, et al. Coordinated management of multiple inter-
acting resources in chip multiprocessors: A machine learning approach.
In Proceedings of the 41st annual IEEE/ACM International Symposium
on Microarchitecture, pages 318–329. IEEE Computer Society, 2008.

[7] P. Charles, C. Grothoff, C. von Praun, et al. X10: an object-oriented
approach to non-uniform cluster computing. In Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications. ACM, 2005.

[8] C. Claus, A. Laika, L. Jia, and W. Stechele. High performance FPGA-
based optical flow calculation using the census transformation. IEEE
Intelligent Vehicle Symposium, June 2009.

[9] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks,
B. Mendelson, E. Bonilla, J. Thomson, H. Leather, et al. Milepost gcc:
machine learning based research compiler. 2008.

[10] F. Hannig, S. Roloff, G. Snelting, J. Teich, and A. Zwinkau. Resource-
aware programming and simulation of mpsoc architectures through
extension of x10. In Proceedings of the 14th International Workshop on
Software and Compilers for Embedded Systems, SCOPES ’11. ACM,
2011.

[11] B. Hutchings, B. Nelson, S. West, et al. Optical flow on the ambric
massively parallel processor array (MPPA). In 17th IEEE Symposium
on Field Programmable Custom Computing Machines. IEEE, 2009.

[12] D. Kissler, F. Hannig, J. Teich, et al. A highly parameterizable parallel
processor array architecture. In IEEE International Conference on Field
Programmable Technology (FPT). IEEE, 2006.

[13] A. Kupriyanov, D. Kissler, F. Hannig, and J. Teich. Efficient Event-
driven Simulation of Parallel Processor Architectures. In Proceedings
of the 10th International Workshop on Software and Compilers for
Embedded Systems (SCOPES), pages 71–80. ACM Press, 2007.

[14] Y. Kwok and I. Ahmad. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Computing Surveys
(CSUR), 31(4):406–471, 1999.

[15] V. Lari, F. Hannig, and J. Teich. System integration of tightly-coupled
reconfigurable processor arrays and evaluation of buffer size effects on
their performance. In Proceedings of the International Conference on
Parallel Processing Workshops, pages 528–534. IEEE, 2009.

[16] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. Journal of the ACM (JACM), 1973.

[17] B. Nelson, S. West, R. Curtis, et al. Comparing fine-grained performance
on the ambric mppa against an fpga. In International Conference on
Field Programmable Logic and Applications (FPL). IEEE, 2009.

[18] O. Faugeras and B. Hotz and H. Mathieu and others. Real-time
Correlation-based Stereo : Algorithm, Implementations and Applica-
tions. Technical Report 2013, INRIA, 1993.

[19] J. Ramanujam and P. Sadayappan. A methodology for parallelizing
programs for multicomputers and complex memory multiprocessors. In
Proceedings of the 1989 ACM/IEEE conference on Supercomputing,
pages 637–646. ACM, 1989.

[20] J. Teich. Invasive Algorithms and Architectures. it–Information Tech-
nology, 50:5, 2008.

[21] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, et al. An 80-
tile 1.28 tflops network-on-chip in 65nm cmos. In Solid-State Circuits
Conference, 2007, pages 98–589. IEEE, 2007.


