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Abstract. Corner-detection techniques are being widely used in computer vision
– for example in object recognition to find suitable candidate points for feature
registration and matching. Most computer-vision applications have to operate on
real-time video sequences, hence maintaining a consistent throughput and high
accuracy are important constrains that ensure high-quality object recognition. A
high throughput can be achieved by exploiting the inherent parallelism within the
algorithm on massively parallel architectures like many-core processors. However,
accelerating such algorithms on many-core CPUs offers several challenges as the
achieved speedup depends on the instantaneous load on the processing elements.
In this work, we present a new resource-aware Harris corner-detection algorithm
for many-core processors. The novel algorithm can adapt itself to the dynamically
varying load on a many-core processor to process the frame within a predefined
time interval. The results show a 19% improvement in throughput and an 18%
improvement in accuracy.

Keywords: Harris corner detection, resource-aware programming, invasive com-
puting, adaptive pruning

1 Introduction

Corner detection is used within computer-vision algorithms like motion detection,
image registration, video tracking, feature descriptors for object recognition etc. to
infer the contents of an image. Several corner detectors exist today in the literature
and comparative evaluations have shown that the Harris [9] corner detectors achieve
some of the best results. Recent evaluations in real-time applications such as video
tracking [7], visual SLAM [8] and robotic navigation [19] have demonstrated that the
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preferred way to detect features in a scene is the use of a Harris detector in combination
with more complex feature descriptors. Harris detectors are also used in the humanoid
robot ARMAR-III [2] for recognizing and tracking textured objects [3]. A humanoid
robot like ARMAR has to handle various tasks like vision, motion planning, speech
recognition, etc. with the workload spread across multiple industrial PCs. The data from
various sensors flows into the processing system, each dedicated for a different task like
computer vision, motion control, speech processing, etc. Similarly, the humanoid robot
Asimo uses two PCs, a control and planning processor plus an additional digital signal
processor (DSP) for sound processing [18]. Two processor boards were also used in the
humanoid robots HRP-2 [11] and HRP-4C [12]. The Hand Arm System from DLR [10]
has three layers of computing hierarchy consisting of COTS PCs for control applications,
an auxiliary Linux workstation for user interfaces and a composition layer constituted
by FPGAs for hardware-accelerated tasks.
The use of multiple PCs results in high power consumption, low interconnect bandwidth
and occupies a large amount of space on the robot. The use of many-core processors
can mitigate some of the above mentioned problems on account of their immense
computational power assembled in a compact design. However, the available resources
on a many-core chip (processing elements (PEs), memories, interconnects, etc.) have to
be shared among various applications running concurrently, which leads to unpredictable
execution time or frame drops for vision applications. Our work focuses on analyzing
the effect of sharing resources on a conventional Harris detector and propose a new
resource-aware Harris detector to resolve the issues. Evaluations shows that the newly
proposed Harris detector is capable of adapting to varying load conditions on the many-
core processor and delivers better results in terms of throughput, accuracy and latency.
This work also describes how to distribute the workload on the massively parallel PEs
for best results, avoiding frame drops, even under varying load conditions.
This paper is organized as follows. Section 2 describes the state-of-the-art algorithms
used for corner detection and different schemes using for accelerating the algorithm.
Section 3 provides a brief overview of the conventional Harris detector and describes
some of the challenges with implementing a conventional Harris detector on many-core
processors. Section 4 starts with a brief description of various pruning techniques to
accelerate corner detection. This is followed by the description of the resource-aware
corner detector using an enhanced pruning technique. Section 5 provides an overview of
the many-core system used for evaluation and Section 6 describes the implementation
and results, followed by Section 7, which concludes the paper.

2 State of the Art

Several techniques exist today to detect corners in an image. These include Harris corner
detection [9], SUSAN [20], FAST [17], etc. Independent of the technique used, corner
detection is a compute-intensive task and two main techniques have been used to speed
it up. The first approach focuses on algorithmic techniques to reduce the computational
complexity, while the second employs hardware accelerators or graphics processing units
(GPUs) to accelerate the conventional algorithm. Independent of the technique used, they
all pose a challenge to the programmer; how to control the worst-case execution time
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and avoid frame drops when the resources on the processor are shared across multiple
applications. High throughput can be guaranteed using hardware accelerators based on
field-programmable gate arrays (FPGAs). However, the flexibility offered by FPGAs is
quite low and requires very high effort in terms of design, implementation and verifica-
tion. On the other hand, GPUs are very powerful and provide significant acceleration
over small multi-core processors due to their massively parallel architecture. However,
they consume very high power, are less flexible, difficult to debug and require data
transfers between processor and the hardware accelerator, which increases the overall
latency.
The use of many-core processors can overcome many of the above mentioned hurdles
as they offer higher computing power necessary to accelerate the algorithms, while
at the same time retaining the simplicity in programming and debugging. Today it is
possible to put onto a single chip a large number of general-purpose cores, certainly
tens of highly complex cores as on Intel’s Single-Chip Cloud Computer [15] or Tilera’s
64-core processor [4]. A major challenge associated with todays many-core systems
is the question of how to program such systems to make best use of their computing
power. In order to address these issues, [14] propose a new resource-aware operating
system (ROS) for many-core hardware, with direct support for parallel applications and
a scalable kernel. ROS offers a resource-management scheme based on resource provi-
sioning which enables system-wide, efficient accounting and utilization of resources.
Resources such as cores and memory are explicitly granted to the applications and
revoked. The kernel exposes information about a process’s current resource allocation
and the system’s utilization, and allows the application programs to make requests based
on this information.
The demand for more stringent (OS-supported) resource awareness was also proposed
in [21], put forward by a new programming methodology called Invasive Computing.
The main idea and novelty of Invasive Computing is that it extends resource-aware
programming support to various layers in the many-core system like resource-aware OS,
communication interfaces like Network-on-Chip (NoC), and PEs. Programs running
on this system get the ability to explore and dynamically spread their computations
to neighboring processors and execute portions of code with a high degree of paral-
lelism in parallel based on the availability of resources. Once the program terminates
or if the degree of parallelism is expected to be lower again, the program may enter a
retreat phase. At this point, the resources can be deallocated and execution resumed,
for example, sequentially on a single processor. In this work, a resource-aware Harris
corner-detection algorithm is evaluated using the Invasive Computing methodology.
However, the concepts demonstrated in this work are platform-independent and can be
demonstrated on any resource-aware platform including ROS.

3 Harris Corner Detection

This section provides a brief overview of the conventional Harris corner-detection algo-
rithm. The calculation is based on the local auto-correlation function that is approximated
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by a matrix M over a small window w for each pixel p(x, y):

M =

[∑
wW (x)I2x

∑
wW (x)IxIy∑

wW (x)IxIy
∑

wW (x)I2y

]
=

[
a b
c d

]
(1)

where Ix and Iy are horizontal and vertical intensity gradients, respectively, and W (x)
is an averaging filter that can be a box or a Gaussian filter. The eigenvalues λ1 and λ2
(where λ1 ≥ λ2) indicate the type of intensity change in the window w around p(x, y).
If both λ1 and λ2 are small, p(x, y) is a point in a flat region. If λ1 is large and λ2 is
small, p(x, y) is an edge point and if both λ1 and λ2 are large, p(x, y) represents a corner
point. Harris combines the eigenvalues into a single corner measure R as shown in (2) (k
is an empirical constant with value 0.04 to 0.06). Once the corner measure is computed
for every pixel, a threshold is applied on the corner measures to discard the obvious
non-corners.

R = λ1λ2 − k · (λ1 + λ2)
2 = (ac− b2)− k · (a+ c)2 (2)

Corner detection is often employed as the first step in computer-vision applications
with real-time video input. Hence, the application has to maintain a steady throughput
and good response time to ensure quality results. However, the presence of other high-
priority tasks may alter the behavior of the corner-detection algorithm. To evaluate such
a dynamically changing situation, we analyzed the behavior of the conventional Harris
detector on a many-core processor with 32 PEs. Fig. 1 shows resource-allocation schemes
(left) along with the execution-time profiles (right). A video input with 640 × 480
pixels at 10 frames per second was used, with the test running for 20 seconds. To
evaluate the impact of other applications running concurrently on the many-core system,
applications like audio processing, motor control, etc. were used. These applications
create dynamically changing load on the processor based on what the robot is doing at
that point in time. For instance, the speech-recognition application is activated when the
user speaks to the robot. The conventional OS scheduler schedules the threads of the
applications based on the overall system load. Sharing of available resources resulted in
the execution-time profile shown in Fig. 1. It can be seen that the execution time varies
from 0 to 430 milliseconds, based on the load condition. A lack of sufficient resources
leads to very high processing intervals or frame drops (a processing interval of zero
represents a frame drop). The number of frames dropped during this evaluation is as
high as 20% and the worst-case latency increased by 4.3x (100 milliseconds to 430
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Fig. 1: Variation in processing interval based on available resources
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milliseconds). Frame drops reduce the quality of the results and the robot may lose track
of the object if too many consecutive frames are dropped. In order to overcome these
challenges, we present a modified Harris detector for many-core processors capable of
allocating resources based on the current workload. The algorithm can also adapt the
workload based on the currently available resources. The following sections demonstrate
how the resources are claimed and how the processing interval can be constrained to
guarantee consistent throughput and processing intervals.

4 Pruning Techniques

A pruning technique to reduce the computational complexity of the conventional Harris
detector is described in [22]. This technique relies on the fact that in most situations, the
obvious non-corners constitute a large majority of the image. Hence the Harris detectors
incur a lot of redundant computations as they evaluate the entire image for a high corner
response. From (2), R is most influenced by the term (ac − b2) as the two (a + c)
terms cancel out. For a good corner, R needs to be a large value. Hence maximizing
(ac− b2) can select good corners without explicit eigenvalue computation. However, this
technique cannot demonstrate a noticeable speedup on platforms with FPU as the pixels
are pruned away in the final step, just before eigenvalue computation. The limitations in
[22] can be resolved using the multi-stage pruning technique described in [1]. The main
difference between these techniques is that the second one can prune away pixels at a
very early stage. A corner response (CR) is defined as:

CR = min (|Ix| , |Iy|) , (3)

where Ix and Iy are the horizontal and vertical pixel-intensity derivatives. If CR is greater
than a predefined gradient threshold, the pixel is a corner candidate and should be retained
for processing in the subsequent steps. This technique ensures that the non-corner pixels
are removed prior to more intensive processing. All candidate corners from the previous
steps are further assessed by computing the eigenvalues as in the conventional Harris
detector (2). Finally a non-maxima suppression is applied to suppress the corners that
are close to each other. Some of the challenges posed by the conventional Harris detector
on a many-core system can be resolved using the pruning techniques described above.
In situations where the system is under-utilized, the threshold can be reduced, thereby
processing more pixels and achieving a higher accuracy, whereas increasing the threshold
can prune away more pixels when the processing system is heavily loaded by other
high-priority tasks. Fig. 3 shows the relation between the threshold and the processing

Bricks kitchen Corridor Window Bunny Serial

Fig. 2: Snapshot of the video-sequences used for evaluation
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Fig. 4: Resource-aware pruning

interval. The results were captured by applying the pruning technique to six different
video sequences whose snapshots are shown in Fig. 2 (each video sequence consists
of 200 frames). In order to evaluate the impact of pruning on the accuracy of detected
corners, we use the metrics named precision and recall as proposed in [13]. The value
of recall measures the number of correct matches out of the total number of possible
matches, and the value of precision measures the number of correct matches out of
all matches returned by the algorithm. From Fig. 3 it can be seen that the application
performs well for a threshold below four. However, increasing the threshold further
results in a drastic decrease in precision and recall rates (as low as 60% for a threshold of
12). Values beyond this point are not plotted in the graph as the corners with an accuracy
below 60% are not suitable for practical use. The second drawback of this algorithm is
that it offers only few candidate points for adaptations within an acceptable accuracy
range.
In order to overcome the challenges with the multi-stage pruning technique, we present
an enhanced pruning technique with better flexibility and higher accuracy compared to
the conventional pruning technique presented in Section 4. Our algorithm uses a new
threshold model as described in (4), where product of vertical and horizontal difference
in pixel intensities is used and the candidates with low CR values are pruned away.

CR = (|Ix · Iy|) (4)

This new model results in significantly more selection points as shown in Fig. 4, offering
a higher flexibility to the resource-aware algorithm whenever adaptations are necessary.
In addition to this, there is a significant improvement in both precision and recall rates.
For example, precision is improved from 84.0% to 90.8% and recall is improved from
82.3% to 89.2% for the same speedup value of 35%. The new model shows a consistent
improvement in precision and recall for the entire range and higher values are obtained
as the threshold is increased. A more detailed analysis on the video sequences shows that
the effects of pruning vary based on the scene. For example, the speedup achieved (using
the same threshold) is low for cluttered scenes like Bricks while the majority of the
pixels can be pruned away for scenes with plain backgrounds. Fig. 5 shows the relation
between speedup and accuracy for all six video sequences. This means that the amount
of computing resources required to perform the corner detection will vary from one
scene to another based on the nature of the foreground, background, etc. and therefore
the resources have to be allocated on a frame-to-frame basis, based on the scene captured.
A resource-aware many-core platform meeting the above requirements, is presented in
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Section 5 with emphasis on how to allocate and release resources in real-time based on
application requirements.

5 Evaluation Platform

As described in Section 2, our work focuses on exploring the benefits of resource-aware
Harris corner detection. Therefore, we implemented our algorithms on top of OctoPOS
[16], a resource-aware operating system for Invasive Computing. OctoPOS shares the
same view with ROS [14] as far as application-directed resource management of many-
core processors is concerned. Also, both approaches resort to an event-based kernel
architecture and largely benefit from asynchronous and non-blocking system calls. The
main difference, however, is in the execution model of OctoPOS that was specifically
designed to support invasive-parallel applications.

5.1 System Programming Interface

At the OctoPOS interface, resource-aware programming maps to three fundamental sys-
tem calls: invade(), infect() and retreat(). The typical usage of these calls
in the course of an application programm are depicted in Fig. 6. First, the application’s

start

invade

workload
distribution

infect

retreat

exit

Fig. 6: Structure of an invasive program Fig. 7: Execution model of applications in
OctoPOS
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resource demand has to be expressed to the system. We call this the invade phase. It
yields a set of resources in the form of a claim, the central data structure in the system
for representing the resources associated with an application (processors, memory, etc.).
Depending on the structure of the claim, the application has to distribute its workload
accordingly. For example, it can tune its algorithms towards the number of processors
present in the claim. Actual computation is then performed using the infect call. After
execution finishes, another computation phase can be started on the same set of resources,
resources can be released using retreat, or additional resources can be acquired using
invade. The basic concept of Invasive Computing states that an application dynamically
expands and shrinks its set of resources at runtime according to its own demand and
that it can react to undersupply situations where not enough resources are available.
Hence, depending on the current system state, the resulting claim may or may not fulfill
the demands specified before. On the other side, once an application gets a claim, it
gains full control over the associated resources. This guarantee on the acquired resources
enables the application to balance its workload according to the dynamic runtime state of
the system. Assumptions made during workload distribution before the infect phase hold
until the application itself changes its resource allocation following the infect phase.

The main building blocks of applications in OctoPOS are so-called i-lets: Fragments of a
program potentially executed in parallel with mostly run-to-completion semantics. These
are represented by function and data pointers and thus are very lightweight entities. An
i-let is like a Cilk procedure [5], but allows for the blocking of its executing thread by
creating a “featherweight” continuation when actually releasing a PE. An application
can create an arbitrary number of i-lets to be executed – potentially in parallel – using
the infect system call. As depicted in Fig. 7, OctoPOS forwards i-lets to processor-local
buffer queues for execution. Overall, this leads to an efficient implementation of i-let
creation and dispatching. Moreover, with a tiled hardware architecture as described in
Section 5.2, the buffering scheme is a possible candidate for hardware acceleration: To
execute i-lets on distant tiles without obstructing the processors in the tile, the buffers
can be maintained in hardware and accessed directly through the NoC. This leads to a
very scalable system architecture especially suitable for many-core systems.

5.2 Hardware Architecture

Our target many-core processor consists of 9 tiles interconnected by a NoC. Each
compute tiles consists of 4 cores interconnected by a local bus and some fast, on-chip
tile-local memory, with a total of 32 cores (LEON3, a SPARC V8 design by Gaisler [6])
spread across 8 tiles. The 9th tile is a memory and I/O tile encompassing a DDR-III
memory controller and Ethernet, UART, etc. for data exchange and debugging. Each core
has a dedicated L1 cache while all the cores within a tile share a common L2 cache for
accesses that go beyond the tile boundary to the external DDR-III memory. L1 caches are
write-through and L2 is a write-back cache. Cache coherency is only maintained within
the tile boundary to eliminate a possible scalability bottleneck when scaling to higher
core counts. Therefore, data consistency has to be handled by the programmer through
proper programming techniques that are built on top of hardware features to provide
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consistent data access and exchange between the different cache-coherency domains.
This scheme is somewhat similar to the Intel SCC.

6 Implementation and Results

The first step in the resource-aware Harris detector is to allocate sufficient resources to
perform corner detection within the interval specified by the user. The number of PEs
required is calculated based on the input-image resolution, the processing interval, the
nature of the scene, etc. The analysis starts with the generation of a differential image,
where each pixel is computed using (4). In order to speed up the pruning logic within the
algorithm, an integral histogram is computed from the differential image as described
in Algorithms 1 and 2, where n is the total number of pixels to be processed, Idiff is
the differential image, limit is the maximum possible value generated by (4) and H is
the integral histogram computed from differential image. Once the integral histogram is
computed, the values in the bin represent the number of pixels to be processed by the
algorithm when the threshold is set to histogram-bin-index. The number of PEs (Npe) is
calculated using (5).

Npe ≥
n · Tprn + Ppix(th) · Thcd

Texe · η(Npe)
(5)

where n is the total number of pixels, Tprn is the processing time per pixel until the
generation of integral histogram, Ppix is the number of pixels to be processed as com-
puted by the pruning algorithm (a function of the threshold value th), Thcd is the time
to compute R for pixels with CR above threshold, Texe is the processing interval and
η(Npe) represents the algorithm’s efficiency as a function of degree-of-parallelism or
available resources (Npe). Including an efficiency factor is important as every additional
i-let created by the algorithm also creates additional load on the external memory and
shared communication interfaces, limiting the overall scalability. For the best results,
the threshold value th can be set to zero so that the algorithm will attempt to process
all pixels in the image. It should be noted that Tprn and Thcd may vary based on the
actual implementation and processor architecture. Hence these values are estimated by

Algorithm 1 Differential image

1: i← 0
2: h← 0
3: while i < n do
4: Idiff (i)← |dx(i) · dy(i)|
5: h(Idiff (i))← h(Idiff (i)) + 1
6: i← i+ 1
7: end while

Algorithm 2 Integral histogram
1: i← 0
2: H ← 0
3: while i < limit do
4: k ← i
5: while k < limit do
6: H(i)← H(i) + h(k)
7: k ← k + 1
8: end while
9: i← i+ 1

10: end while
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profiling the application on the target platform. Fig. 8 shows the change in efficiency
against degree of parallelism, on the target HW. It can be seen clearly that when the
number of i-lets is doubled from 1 to 2, the execution time does not halve, but is reduced
by a factor of 1.96, which means an efficiency of 98%. In the next step, an invade request
(for Npe) is raised and the OS makes a final decision on the number of PEs considering
the current system load. The PE count may vary from zero (if the system is too heavily
loaded and no further resources can be allocated at that point in time) to the total number
of PEs requested (provided that a sufficient number of idle PEs exist in the system and
the current power mode offers sufficient power budget to enable the selected PEs). This
means that under numerous circumstances the application has to adapt to the limited
resources offered by the runtime system by increasing the threshold value th until the
condition in (6) is satisfied.

Ppix(th) ≤
Npe · Texe · η(Npe)− n · Tprn

Thcd
(6)

The new workload is processed by the allocated PEs and the resources can be released
at the end of the processing interval or a new invade request can be raised if more PEs
are required for the next frame due to a change in the scene. The behavior of the new
resource-aware Harris detector is depicted in Fig. 9. The resource-allocation scheme
remains same as described in Fig. 1. The execution-time profile in Fig. 9 shows that the
resource-aware Harris detector can constrain the execution time per frame to the specified
value of 100 milliseconds. The use of the conventional algorithm resulted in very high
latencies under circumstances where sufficient resources are not available, and dropped
frames occasionally. The values of precision and recall drops slightly in the region where
the application has to adapt by pruning pixels. However, this helps to avoid overshoot
in execution time and eliminate frame drops, so that results are consistently available
within the predefined intervals. An overall comparison between the two scenarios is
shown in Table 1. The use of the conventional algorithm leads to a very high worst-case
execution time(WCET) and frame drops. The precision and recall values are low for
the conventional algorithm as a frame drop leads to zero precision and recall for that

Throughput WCET Precision Recall
Conventional 81% 4.31x 0.82 0.81
Resource-aware 100% 1.04x 0.98 0.98

Table 1: Comparison between conventional and resource-aware Harris detectors
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particular frame. In brief, the resource-aware Harris detector can operate very well under
dynamically changing conditions by adapting the workload, avoiding frame drops and
regulating the WCET, leading to high precision and recall rates.

7 Conclusion

This paper presented a resource-aware Harris corner detector and demonstrated how to
estimate the resources required for corner detection based on the scene, the resolution of
the input image and the user-specified time interval. The application is aware of available
resources on the many-core processor and can adapt the workload if sufficient resources
are not available. The enhanced corner detector can generate results within the specified
search interval and avoid frame drops. Our experiments show that incorporating resource
awareness into the conventional Harris detector can significantly improve the quality
of the algorithm. A detailed evaluation was conducted on an FPGA-based hardware
prototype to ensure the validity of the results. The results show up to 19% improvement
in throughput and 18% improvement in accuracy as described in Section6. Though the
evaluations were conducted using the OS and hardware explained under Section 5, the
benefits are expected to be visible on any resource-aware platform including ROS [14].
The resource allocation and release happens once per frame and the additional overhead
in execution time is negligible when compared to the time taken by the detector to
process millions of pixels in every frame.
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