
Resource-Aware Programming for Robotic Vision
Johny Paul, Walter Stechele
Technical University of Munich,

Institute for Integrated Systems,
{Johny.Paul, Walter.Stechele}@tum.de

Manfred Kröhnert, Tamim Asfour,
Karlsruhe Institute of Technology,

Institute for Anthropomatics
{Kroehnert, Asfour}@kit.edu

Abstract— Humanoid robots are designed to operate in human
centered environments. They face changing, dynamic environ-
ments in which they need to fulfill a multitude of challenging
tasks. Such tasks differ in complexity, resource requirements,
and execution time. Latest computer architectures of humanoid
robots consist of several industrial PCs containing single- or dual-
core processors. According to the SIA roadmap for semiconduc-
tors, many-core chips with hundreds to thousands of cores are
expected to be available in the next decade. Utilizing the full
power of a chip with huge amounts of resources requires new
computing paradigms and methodologies.

In this paper, we analyze a resource-aware computing method-
ology named Invasive Computing, to address these challenges.
The benefits and limitations of the new programming model
is analyzed using two widely used computer vision algorithms,
the Harris Corner detector and SIFT (Scale Invariant Feature
Transform) feature matching. The result indicate that the new
programming model together with the extensions within the
application layer, makes them highly adaptable; leading to better
quality in the results obtained.

I. INTRODUCTION

Humanoid robots have to fulfill many different tasks during
operation including recognizing objects, navigating towards a
goal region, avoiding collisions, maintaining balance, planning
motions, having conversations, and many more. Additionally
they have to work in highly dynamic and ever changing human
centered environments. Taking a closer look, all of these
tasks have different requirements depending on their objec-
tives. Some tasks are computationally or data-flow intensive
and some are control flow intensive. Some are continuously
running at a specific frequency while others are doing their
work asynchronously triggered by external events.

A. Conventional Architectures used on Humanoid Robots

Current humanoid robot control architectures share similar
hardware setups consisting of one or more industrial PCs
equipped with single- or dual-core processors. These architec-
tures are quasi-parallel in the sense that the applications are
mapped statically to various compute units. The architecture
of the humanoid robot Asimo uses two PCs, a control and
planning processor plus an additional digital signal processor
(DSP) for sound processing [15]. Similarly, two processor
boards (one for realtime-control, one for non-realtime tasks)
are used by the humanoid robots HRP-2 and HRP-4C [8],
[9]. In contrast, there are five industrial PCs and PC/104
systems built into the humanoid robot ARMAR-III (Fig. 1)

each dedicated to different tasks like computer vision, low-
level control, high-level control, and speech processing [1].

All presented robots are autonomous as they do not rely
on external resources while operating. Most systems use
standard PC components for computation while sometimes
utilizing dedicated hardware for specialized tasks such as
DSPs for sound recognition. On these mostly homogeneous
architectures almost all tasks share the same set of resources.
However, one PC is sometimes dedicated to speech recognition
and synthesis.

Fig. 1. Humanoid Robot ARMAR-III

B. Challenges and difficulties on Existing Hardware

Robot-specific tasks need to be executed on the hardware
built into the robot. Timely execution of tasks is guaranteed
as the underlying hardware is selected to be able to cope with
worst case requirements.

In the past, Graphics Processing Units (GPU) and Field
Programmable Gate Arrays (FPGA) have offered significant
speedup to computer vision applications. In [3], [10], var-
ious case studies have been presented comparing GPU vs.
FPGA implementations. There seems to be no “one fits all”
solution, but the benefits and drawbacks are manifold: GPUs
benefit from higher clock frequencies than FPGAs, due to
their custom layout. On the other hand, programming GPUs
efficiently can be as tedious as hardware development in
VHDL and their massive power consumption prevent them
from being used on mobile robots. FPGAs offer a higher
degree of freedom in optimizing memory architectures, data
types and pipeline structures at lower power consumption.



However, programming FPGAs require HDL experience, and
FPGA designs consume more time during development and
testing.

The use of many-core processors can mitigate some of
the above mentioned problems on account of their immense
computational power assembled in a compact design. Embrac-
ing emerging many-core technologies like Intels Single-Chip
Cloud Computer (SCC) [7] or Tileras Tile64 [2] seems evident.
Once many-core technologies become a de-facto standard
the question arises of how to handle such large amounts of
resources and how to program these systems efficiently. A
common practice as of now is to do static resource allocation
at compile time as described in [12]. However, static alloca-
tion schemes have issues with dynamic scenarios. Often, the
changing requirements lead to under-utilization since resources
are often occupied without performing any useful work.

On the other hand, dynamic scheduling can improve re-
source utilization. However, the available resources on a many-
core chip (processing elements (PEs), memories, intercon-
nects, etc.) have to be shared among various applications
running concurrently, which leads to unpredictable execution
time or frame drops for vision applications.

This paper is organized as follows. Section II describes
some of the challenges faced by vision applications on a
conventional many-core system using the example of a widely
used image processing algorithm called Harris Corner detector.
In Section III we introduce the concepts of resource-aware
computing including proposed hardware units. Section IV
presents our evaluation and results from the resource-aware
model using two different applications, Harris Corner and
SIFT (Scale Invariant Feature Transform) feature matching.
Finally Section V concludes the paper.

II. PROBLEM DESCRIPTION

Corner detection is often employed as the first step in
computer-vision applications with real-time video input.
Hence, the application has to maintain a steady throughput
and good response time to ensure quality results. However,
the presence of other high-priority tasks may alter the
behavior of the corner-detection algorithm. To evaluate such
a dynamically changing situation, we analyzed the behavior
of the conventional Harris detector on a many-core processor
with 32 PEs. A video input with 640 × 480 pixels at 10
frames per second was used, with the test running for 20
seconds. To evaluate the impact of other applications running
concurrently on the many-core system, applications like audio
processing, motor control, etc. were used. These applications
create dynamically changing load on the processor based on
what the robot is doing at that point in time. For instance,
the speech-recognition application is activated when the user
speaks to the robot.

Sharing of available resources among various applications
running concurrently, resulted in a resource allocation pattern
as shown in Fig. 2 and an execution-time profile shown
in Fig. 3. It can be seen that the execution time varies from

0 to 430 milliseconds, based on the load condition. A lack of
sufficient resources leads to very high processing intervals or
frame drops (a processing interval of zero represents a frame
drop). The number of frames dropped during this evaluation is
as high as 20% and the worst-case latency increased by 4.3x
(100 milliseconds to 430 milliseconds). Frame drops reduce
the quality of the results and the robot may lose track of the
object if too many consecutive frames are dropped.
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Fig. 2. Resource allocation scheme
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Fig. 3. Variation in processing interval based on available resources

We attempt to tackle some of these issues though a
novel resource-aware programming methodology called In-
vasive Computing. We envision that the use of Invasive
Computing mechanisms into future computing paradigms will
significantly contribute to solve this problem. This work also
describes how to distribute the huge workload on the massively
parallel PEs for best performance, and how to generate results
on time (avoiding frame drops) even under varying load
conditions.

III. INVASIVE COMPUTING

Invasive Computing as a synonym for resource-aware com-
puting was first introduced in 2008 [17]. One major goal of
the project is to investigate more elegant and efficient ways of
dealing with massive parallelism within the future many-core
platforms. In this section we describe the nature and features
of an Invasive Computing platform and outline the differences
and advantages compared to other available platforms.

A. Programming Model for Invasive Computing

Invasive Computing is about managing parallelism in and
between programs on a Multi-Processor System on Chip
(MPSoC). This is achieved by empowering applications to
manage processing-, memory-, or communication-resources
themselves, hence the term resource-aware computing. Re-
source management in an invasive system is divided into three
distinct phases, also depicted in Fig. 4:



1) invade: acquire resources
2) infect: use resources
3) retreat: release resources
Programs can specify amounts of resources needed for

execution in the invade-phase. Granted resources are used in
the infect-phase for example by distributing program binaries
onto processing elements. Resources can be released after
usage in the retreat-phase. However, it is also possible to keep
acquired resources and directly proceed with a new infect-
phase.

invade infect retreat

Fig. 4. Phases of Invasive Computing

In contrast to static methods the invasive approach leads to
a more decentralized resource allocation scheme. This allows
programs to self-explore the system they are running on by
requesting and releasing resources depending on the current
degree of parallelism. Granted resources may differ from
requested ones, a situation where the affected programs must
adapt to. In case of fewer assigned resources a program might
choose a different algorithm in order to proceed. This self-
adaption to current resource distributions can lead to increased
overall system stability and failure tolerance as well as better
load balancing.

B. Hardware Architecture for Invasive Computing

Our target many-core processor has a tiled architecture
interconnected by a NoC [6], as shown in Fig. 5. Each compute
tile consists of 4 cores interconnected by a local bus and
some fast, on-chip tile-local memory, with a total of 32 cores
(LEON3, a SPARC V8 design by Gaisler [4]) spread across
8 tiles. The 9th tile is a memory and I/O tile encompassing a
DDR-III memory controller and Ethernet, UART, etc. for data
exchange and debugging. Each core has a dedicated L1 cache
while all the cores within a tile share a common L2 cache for
accesses that go beyond the tile boundary to the external DDR-
III memory. L1 caches are write-through and L2 is a write-
back cache. Cache coherency is only maintained within the tile
boundary to eliminate a possible scalability bottleneck when
scaling to higher core counts. Therefore, data consistency has
to be handled by the programmer through proper programming
techniques that are built on top of hardware features to provide
consistent data access and exchange between the different
cache-coherency domains. This scheme is somewhat similar
to the Intel SCC. The prototype design runs on a multi-FPGA
platform from Synopsys called CHIPit System [16] (consisting
of six Xilinx Virtex-5 XC5VLX330 FPGAs) with the clock
frequency set to 50 MHz.

IV. RESOURCE-AWARE APPLICATIONS

This section describes the resource-aware model for Harris
Corner and SIFT feature matching based on KD-Trees and

Fig. 5. InvasIC Hardware Architecture

also demonstrates the benefits obtained through the resource-
aware programming model. The results obtained are compared
with their conventional counterparts.

A. Harris Corner Detection Algorithm

The humanoid robot ARMAR-III uses a Harris Corner
detector [5] as the first stage in the object-recognition and
-tracking algorithm and has to operate on the real-time video
stream produced by the cameras on the robot. Hence, it has to
maintain a steady throughput and good response times to en-
sure high-grade results, because any deterioration in the quality
of the detected corners will negatively affect the remaining
stages of the object-recognition algorithm. The quality loss
encountered by Harris Corner detector due to frame drops
has already been discussed in Section II. The use of the
conventional algorithm resulted in very high latencies under
circumstances where sufficient resources are not available, and
dropped frames occasionally.

The resource-aware model of Harris Corner [14] is based
on the idea that in most situations, the obvious non-corners
constitute a large majority of the image. Hence the Harris de-
tectors incur a lot of redundant computations as they evaluate
the entire image for a high corner response. The conventional
Harris Corner detector is based on the local auto-correlation
function that is approximated by a matrix M over a small
window w for each pixel p(x, y):

M =

[ ∑
wW (x)I2x

∑
wW (x)IxIy∑

wW (x)IxIy
∑

wW (x)I2y

]
=

[
a b
c d

]
(1)



where Ix and Iy are horizontal and vertical intensity gradi-
ents, respectively, and W (x) is an averaging filter that can be
a box or a Gaussian filter. The eigenvalues λ1 and λ2 (where
λ1 ≥ λ2) indicate the type of intensity change in the window
w around p(x, y). If both λ1 and λ2 are small, p(x, y) is a
point in a flat region. If λ1 is large and λ2 is small, p(x, y) is an
edge point and if both λ1 and λ2 are large, p(x, y) represents
a corner point. Harris combines the eigenvalues into a single
corner measure R as shown in Equation 2 (k is an empirical
constant with value 0.04 to 0.06). Once the corner measure is
computed for every pixel, a threshold is applied on the corner
measures to discard the obvious non-corners.

R = λ1λ2 − k · (λ1 + λ2)
2 = (ac− b2)− k · (a+ c)2 (2)

In order to enhance the conventional detector to a resource-
aware detector, a corner response (CR) is defined in Equa-
tion 3, where product of vertical and horizontal difference in
pixel intensities is used and the candidates with low CR values
are pruned away.

CR = (|Ix · Iy|) (3)

Bricks Kitchen Corridor

Window Bunny Cereal

Fig. 6. Snapshot of the video-sequences used for evaluation

In order to evaluate the impact of pruning on the accuracy
of detected corners, we use the metrics named precision and
recall as proposed in [11]. The value of recall measures the
number of correct matches out of the total number of possible
matches, and the value of precision measures the number of
correct matches out of all matches returned by the algorithm.
As an aftereffect of pruning, the values of precision and recall
drops slightly in the region where the application has to adapt
by pruning pixels. However, this helps to avoid overshoot
in execution time and eliminate frame drops, so that results
are consistently available within the predefined intervals. An
overall comparison between the two scenarios is shown in
Table I.

The use of the conventional algorithm leads to a very high
worst-case execution time(WCET) and frame drops. The preci-
sion and recall values are low for the conventional algorithm
as a frame drop leads to zero precision and recall for that

Throughput WCET Precision Recall
Conventional 81% 4.31x 0.82 0.81
Resource-
aware

100% 1.04x 0.98 0.98

TABLE I
COMPARISON BETWEEN CONVENTIONAL AND RESOURCE-AWARE HARRIS

DETECTORS

particular frame. In brief, the resource-aware Harris detector
can operate very well under dynamically changing conditions
by adapting the workload, avoiding frame drops and regulating
the WCET, leading to high precision and recall rates.

It is interesting to note that the effects of pruning vary
based on the scene. For example, the speedup achieved (using
the same threshold) is low for cluttered scenes like Bricks
while the majority of the pixels can be pruned away for
scenes with plain backgrounds. This means that the amount of
computing resources required to perform the corner detection
will vary from one scene to another based on the nature of the
foreground, background, etc. and therefore the resources have
to be allocated on a frame-to-frame basis, based on the scene
captured.

B. Nearest-Neighbor Search on Kd-Trees

The object-recognition process used on the ARMAR robot
consists of two major steps. In the first step, the robot is
trained to recognize the object. A training data set consisting
of SIFT features is created for every known object to be
recognized. The second step in the recognition process has
real-time requirements as it helps the robot to interact with its
surroundings (by recognizing and localizing various objects)
in a continuous fashion. In this step, a set of SIFT features,
extracted from the real-time images, is compared with the
training data set using a nearest neighbor (NN) search. The
computation of the nearest neighbor for the purpose of feature
matching is the most time-consuming part of the complete
recognition and localization algorithm. This algorithm per-
forms a heuristic search and only visits a fixed number of
leaves resulting in an actual nearest neighbor, or a data point
close to it.

For the NN-search algorithm, the number of kd-tree leaves
visited during the search process determines the overall quality
of the search process. Visiting more leaf nodes during the
search leads to a higher execution time. The search duration
per SIFT feature can be calculated from Fig. 7. The values
were captured by running the NN-search application on a
single PE using a library of input images covering various
situations encountered by the robot.

From this graph it is clear that the search interval varies
linearly with the number of leaf nodes visited during the
search. Moreover, the relation between quality (i.e. the number
of features recognized) and leaf nodes is shown in Fig. 8.
The quality of detection falls rapidly when the number of leaf
nodes is reduced below 20 and increases almost linearly in the
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Fig. 8. Search quality vs. leaf nodes visited for NN-search

At a further higher leaf count, the quality does not improve
significantly as all the possible features are already recognized.
In the conventional algorithm used on CPUs, the number
of leaf nodes visited is set statically such that the search
process delivers results with sufficient quality for the specific
application scenario. Using the results from this evaluation, the
overall search duration can be predicted based on the object
to be recognized, the number of features to be processed and
the number of PEs available for NN-search. The first two
parameters are decided by the application scenario while the
PE count is decided by the runtime system based on the current
load situation. Hence, the resources allocated to the application
may vary from time to time, leading to highly unpredictable
search durations and frame drops.

We try to address these issues using a resource-aware model
for KD-Tree search [13]. The main idea and novelty of the
resource-aware algorithm is that the workload is calculated and
distributed taking into account the available resources (PEs)
on the many-core processor. The amount of PEs requested
by the algorithm is based on the number of SIFT features to
be processed, the size of the kd-tree and the available search
interval. The number of SIFT features varies from frame to
frame based on the nature and number of objects present in
the frame, the nature of the background, etc. The size of the
kd-tree is decided by the texture pattern on the object to be
recognized and tracked. The search interval or the frame rate is
decided by the context where the NN-search is employed. For
example, if the robot wants to track a fast-moving object, the
frame rate has to be increased or the execution time has to be
reduced. Equation 4 represents this relation and can be used to

compute the number of PEs (Npe) required to perform the NN-
search on any frame within the specified interval Tsearch. Nfp

is the number of SIFT features to be processed and Tfp is the
search duration per SIFT feature, a function of the number of
leaf nodes visited, as described in Fig. 7. The initial resource
estimate is based on the default leaf count (Nleaf best), a
statically defined value based on the application scenario.

Npe ≥
Nfp × Tfp(Nleaf best)

Tsearch
(4)

Note that the function Tfp(Nleaf best) is different for every
object to be recognized and tracked by the robot, as this is
dependent on the number of features forming the kd-tree, the
shape of the tree, etc. Using this model, the application raises
a request to allocate PEs (Npe), which is then processed by
the operating system. Considering the current system load,
the OS makes a final decision on the number of PEs to be
allocated to the NN-search algorithm. The PE count may vary
from zero (if the system is too heavily loaded and no further
resources can be allocated at that point in time) to the total
number of PEs requested (provided that there exists a sufficient
number of idle PEs in the system and the current power mode
offers sufficient power budget to enable the selected PEs). This
means that under numerous circumstances the application may
end up with fewer PEs and has to adapt itself to the limited
resources offered by the runtime system. This is achieved
by recalculating the number of leaf nodes (Nleaf adap) to
be visited during the NN-search such that the condition in
Equation 5 is satisfied.

Tfp(Nleaf adap) ≤
Npe × Tsearch × η(Npe)

Nfp
(5)

The algorithm can use the new leaf count for the entire
search process on the current image. It should be noted that
the resource-allocation process operates once for every frame.
Upon completion, the application releases the resources and
waits for the next frame to arrive.

A set of 100 different scenes was used for evaluation, where
each frame contains the object to be recognized and localized
along with few other objects and changing backgrounds. The
position of the objects and their distance from the robot were
varied from frame to frame to cover different possible sce-
narios. Evaluations were conducted on the FPGA-based HW
prototype, as described in Fig. 5. Fig. 9 shows a comparison
between the resource-aware and the conventional NN-search,
with the number of features recognized (quality of detection)
on the y-axis and the frame number on the x-axis.

In order to maintain equality in the evaluation process, the
number of PEs allocated to the applications was equalized.
It is clear from Fig. 9 that the resource-aware NN-search
algorithm outperforms the conventional algorithm using the
same amount of resources, as the resource-aware model is
capable of adapting the search algorithm based on the available
resources compared to the conventional algorithm with fixed
thresholds. However, the resource-aware algorithm results in
the same number of matched features as the conventional



algorithm in some frames. This is because there were a
sufficient number of idle PEs and the runtime system allocated
sufficient resources to meet the computing requirements of the
conventional algorithm and hence the conventional algorithm
did not drop any SIFT feature. On the contrary, when a frame
contains large number of SIFT features and the processing sys-
tem is heavily loaded by other applications, the conventional
algorithm dropped too many SIFT features, thereby resulting
in a low overall detection rate (matched features).
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Fig. 9. Comparison between resource-aware and conventional NN-search

V. CONCLUSION

This paper presented the benefits of the resource-aware
programming model named Invasive Computing for robotic
vision applications. Resource-aware Harris Corner detector
and SIFT feature matching based on KD-Trees were presented,
together with techniques on how to estimate the resources
required for the computation based on the scene, the resolution
of the input image and the user-specified time interval. The
applications with resource-aware extension are aware of the
availability of resources on the many-core processor and can
adapt the workload if sufficient resources are not available.
The enhanced corner detector and KD-tree search algorithms
can generate results within the specified search interval and
avoid frame drops. Our experiments show that incorporating
resource awareness into the conventional vision algorithms
can significantly improve their quality. A detailed evaluation
was conducted on an FPGA-based hardware prototype to
ensure the validity of the results. The resource allocation and
release happens once per frame and the additional overhead in
execution time is negligible when compared to the time taken
by the algorithms to process millions of pixels or thousands
of SIFT features in every frame.
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