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Abstract— Robotic coverage path planning describes the
problem of determining a configuration space trajectory for
successively covering a specified workspace target area with
the robot’s end-effector. Performing coverage path planning
for mobile robots further requires solving the problem of robot
placement, i.e. determining of suitable robot base positions
to perform the task. Finding an optimal solution is hard as
both problems cannot be solved independently. Combined robot
placement and coverage planning is particularly interesting
if repositioning of the robot is costly or if simultaneous
repositioning and end-effector motion is not desired.

In this paper, we present a general approach for com-
bined robot placement and coverage path planning that takes
constraints like collision avoidance and static stability into
account. In contrast to related approaches, we focus on mobile
manipulation tasks that require a fixed placement for executing
coverage trajectory segments. The approach is evaluated in
two scenarios that exemplify the broad range of possible
applications: The coverage of a building facade using a robotic
manlift and the coverage of an industrial conveyer belt for
maintenance tasks using the humanoid robot ARMAR-III.

I. INTRODUCTION

Coverage path planning in robotics is a well-understood
problem with applications especially concentrated in the
areas of industrial and agricultural robotics. Prominent ex-
amples include spray-painting robots in industrial assembly
lines [1] or the coverage of agricultural fields using mobile
robots [2] or drones [3]. Traditional methods can find solu-
tions for such problems in two principle cases: 1) if the robot
is statically mounted at a fixed position, e.g. in the case of
an industrial spray-painting robot, or 2) if a mobile robot can
freely move during its coverage task, e.g. in the case of a
mobile agricultural robot.

In this work we investigate a third case, in which a freely
movable mobile robot is employed under the assumptions
that 1) repositioning of the robot produces high operational
costs and 2) the coverage task is interrupted during the
repositioning process. There is a wide variety of possible
scenarios that expose the above characteristics, e.g. the cov-
erage of a building facade using a mounted robotic manlift
(see Fig. 2). A less obvious example is the cleaning of a large
surface using a mobile robot with sophisticated kinematics,
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Fig. 1: ARMAR-III covering a portion of an industrial
conveyer belt in simulation. Multiple placement poses and
the coverage trajectories for the right hand are visualized.
The trajectory is shown as a magenta line connecting the
yellow guard points.

e.g. a humanoid robot. Fig. 1 displays such a scenario using
the humanoid robot ARMAR-III [4] cleaning a conveyer
belt. Precise end-effector operation during locomotion is a
challenging field of research in humanoid robotics, justifying
the need for temporarily fixed robot placements in this
example.

The approach proposed in this work aims at solving the
problem of coverage path planning in combination with
the problem of robot placement, which are usually studied
separately. The combined problem of robot placement and
coverage planning in a 3D workspace can be stated as fol-
lows: Given the kinematic properties of the robot, a structural
description of the environment and the target surface, find a
list S of partial solutions, each containing a robot pose pi and
a trajectory ti which covers a portion of the target surface:

S = [(p1, t1), . . . , (pn, tn)] (1)

In a valid solution, the combination of all partial solutions
from S cover the whole target surface. An optimal solution to
the combined problem minimizes two fundamental metrics:
1) the number of partial solutions with distinct robot poses
and 2) the total cost of the coverage trajectories. Metric 1)
determines how often the robot needs to be repositioned
while metric 2) depends on the definition of path cost.
Reasonable definitions include the path length, execution
time or energy consumption. The movement cost between
partial solutions is a potential third metric which will not be
considered in this work.



Fig. 2: The simulation result for a manlift covering a build-
ing’s facade. The basket at the end of the kinematic chain
follows the magenta trajectory during the coverage task. The
yellow boxes indicate guard points.

The combined problem can be trivially solved using tra-
ditional coverage algorithms by extending the configuration
space with the robot pose. This approach is viable if the robot
can change its pose with little cost and the coverage task
can be executed during locomotion. In this work however,
we assume significant cost for robot repositioning, e.g. in the
case of a robotic manlift, and the infeasibility of the coverage
operation during locomotion.

The remainder of this work is structured as follows. In Sec-
tion II we discuss related work regarding robot placement,
coverage path planning and mobile manipulation. Section III
describes our approach to solving the combined problem
and Section IV presents the experimental results for the
two chosen evaluation scenarios, manlifts and the humanoid
platform ARMAR-III in simulation. We conclude the paper
in Section V.

II. RELATED WORK

In Section II-A we discusses different approaches to find
suitable poses which allow the robot to reach a certain
part of the workspace. Subsequently, in Section II-B we
present related work considering the problem of planning
trajectories which cover 3D surfaces with the robot’s end-
effector. Section II-C discusses related approaches for mobile
manipulation.

A. Robot Placement

In order to determine whether a robot pose is suitable
for execution of a given task it is necessary to have a
representation of the workspace. Often a discrete model of
the reachable space is used to capture the robot’s capabilities.
Guan and Yokoi present a method which uses randomized

sampling to approximate the reachable space of a humanoid
robot [5]. The workspace is represented using discrete cubes.
Zacharias et al. introduce information about the directional
structure of the workspace [6]. They sample points on
spheres which are embedded in discrete workspace cubes.
If an inverse kinematics solver finds a solution to a sampled
point, it is marked as reachable. The structure of reachable
points on the spheres is used to fit shape primitives in order to
visualize and understand the directional nature of the robot’s
workspace. This model was used to find positions for mobile
manipulators which allowed the execution of task specific
3D trajectories with high probability [7]. Vahrenkamp et al.
try to find robot base poses by inverting the reachability
representation and calculating the intersection with a 2D
ground plane [8]. Their approach was evaluated in simulation
for grasping and door opening tasks on a humanoid platform.
The same approach was used by [9] to select stances for
grasping tasks. They focused on foot placement for the
bipedal robot NAO. Associating robot base poses with the
probability of successfully executing a manipulation task was
termed action-related places (ARPlace) in [10]. The authors
evaluate discrete base poses by applying a predictive model
which was learned from experience. The presented approach
is able to handle uncertainties in robot pose and environment
estimation by incorporating those into the probability model.

B. Coverage Path Planning

Coverage path planning is employed in different domains,
e.g. spray-painting automobile parts [1], coverage of agri-
cultural fields [2] and inspection of structures on the ocean
floor [11]. It has been an area of active research for the
past years. One of the most relevant surveys by Choset
and Pignon presents approaches in which the robot covers
its 2D workspace [12]. A later survey by Galceran and
Carreras includes references to 3D surface coverage [13]. We
will be focusing on coverage path planning for 2D surfaces
embedded in a 3D workspace.

Most approaches divide the coverage planning problem
into two subproblems. The first step is to determine a set
of viewpoints which cover the whole target surface. This
subproblem is also known as the art gallery problem [14] in
which the minimal set of guards should be determined who
can view the entire gallery. Then these viewpoints need to
be connected via a closed walk. This second step resembles
the traveling salesman problem (TSP) [15]. In this problem
a salesman searches for the shortest route between cities
which travels through every city and both starts and ends in
his hometown. Since both subproblems in general are NP-
hard, a common approach is to use randomized sampling to
find suitable solutions in an acceptable time (e.g. [16], [3]).
The authors in [17] term the first subproblem as coverage
sampling problem (CSP) and the second one as multi-goal
path planning (MPP).

In [18] a lazy method for MPP is presented. Their ap-
proach is based on the assumption that path planning between
individual goals dominates the runtime cost compared to the
computation of approximate solutions to the TSP. They use



a lower bound estimation of the path length between goals
as an heuristic to calculate candidate TSP solutions and only
employ the complete path planner for edges in candidate
solutions.

Another promising approach solves the coverage path
planning as a whole. Random Inspection Tree Algorithm
(RITA) is a randomized algorithm which iteratively improves
the coverage path [19]. It is probabilistically complete and
asymptotically optimal but requires more computation time
than the divide-and-conquer strategies.

C. Mobile Manipulation

In [20], the goal is to maximize the manipulability of
the manipulator during locomotion. This is achieved by
a planning and control algorithm which was designed for
mobile platforms. Motion planning for mobile manipulators
can be implemented by separating the degrees of freedom
into two groups. The first group is responsible for moving
the mobile base whereas the second group moves the end-
effector. The authors in [21] use this approach and present
methods for generating motions which follow given end-
effector paths.

Many constraints need to be considered while generating
motions for mobile manipulation. Brock et al. combine in
[22] obstacle avoidance and task-oriented motion using the
elastic strip framework. Elastic roadmaps [23] are able to
cope with a dynamically changing environment by encoding
connectivity information of the workspace. Compared to
configuration space planners this reduces the complexity of
the problem and therefore allows for frequent updates to the
data structures.

III. APPROACH

Our proposed algorithm tries to find a suitable solution to
the combined problem of robot placement and coverage path
planning by employing a divide-and-conquer strategy and
making use of heuristics to keep the computation affordable.
We first describe our developed algorithm in Section III-A.
In Section III-B and III-C, we present our heuristic planning
approaches to the reachability and the coverage problem.

A. Algorithm

Let C be the configuration space of the robot, pglobal ∈
SE(3) its global pose, qtransport ∈ C a safe transport
configuration in which the robot can change pglobal freely,
and peef : SE(3) × C → SE(3) a function mapping the
robot’s pose and configuration to the corresponding end-
effector pose. It is assumed that the pglobal is independent of
the configuration. We further assume that the environment is
known and is represented as a triangular mesh in 3D space.
The part of the environment which should be covered by the
end-effector will be called target surface Starget ⊂ R3. Only
a specific subset G ⊂ SE(3) contains possible solutions
to the robot placement subproblem, e. g. a humanoid robot
can usually only be placed on the ground. In this paper we
constrain G further by requiring it to be a finite set.

The goal is to determine a list S of partial solutions. A
partial solution (p, t) consists of a global pose p ∈ G and
an end-effector trajectory t which covers a part of the target
surface. The trajectory t can be described as a curve ct :
[0, 1] → Q where ct(0) = ct(1) = qtransport. A point on
the target surface x ∈ Starget is covered by a partial solution
if the end-effector comes sufficiently close to the point while
following the corresponding trajectory t:

covered(x,p, t) = ∃u∈[0,1]‖xeef(p, ct(u))− x‖ < δ,

where xeef(p, q) ∈ R3 is the positional part of the end-
effector pose peef(p, q) and δ is an application dependent
distance threshold. We only consider positional errors since
coverage task usually require a specific end-effector orien-
tation, e.g. inspecting a pipe with a mounted camera or
cleaning a table. These constraints need to be enforced by the
coverage planner during trajectory generation. The quality of
a solution is determined by the number of partial solutions
as well as the total cost for the end-effector paths. In this
work, we define the path cost as the distance traveled by the
end-effector in workspace coordinates.

Algorithm 1 shows the high-level logic of the proposed
approach. In the first step we uniformly sample points from
the target surface. The set of target points T ⊂ Starget will
be used to estimate the progress of the coverage planning.
We also keep track of all the points which have already been
covered by partial solutions using the set Tcov,all ⊆ T . Next,
we associate with each pose p ∈ G the set of probably
reachable target points using a precomputed reachability
map RM . This relation is stored in R : SE(3) → P(T ).
After this initialization phase the main loop of the algorithm
continues until either all target points have been covered or R
is empty. During the loop we determine the pose pmax which
potentially covers the biggest subset of the remaining target
points. Then the coverage planner tries to find a trajectory
t which covers as many points in R(pmax) as possible.
The actually covered points are denoted by Tcov. External
and internal constraints like collision avoidance and stability
requirements are taken into account by the coverage planner.
The chosen pose pmax and the covered points Tcov need to
be removed from R. This achieved by updating every entry
(p′, T ′) ∈ R to exclude the covered points (p′, T ′\Tcov) and
removing the entry if there are no reachable points left. An
update to the set of covered target points Tcov,all is made by
adding the points in Tcov. As the last step of the loop (pmax, t)
is added to the list of partial solutions. Finally, after the loop
has finished, we determine the achieved coverage rate c.

Note that the problem of choosing appropriate placement
poses is similar to the set cover problem [24]. Let F be
the finite family {R(p) | p ∈ G} of finite sets. Then a
solution to the set cover problem is the subset F ′ ⊆ F so
that

⋃
S∈F ′ S =

⋃
S∈F S ⊆ T . Our proposed algorithm

resembles the greedy approach to this problem since we
always choose the entry with the maximal cardinality. This
may lead to suboptimal solutions but is necessary since we
can only determine the set of actually covered target points
after the time-consuming coverage planning.



Algorithm 1: Combined position and coverage planning
Input: Starget: Target surface

G: Possible placement poses
RM : Precomputed reachability map

Output: S: List of partial solutions
c: Degree of coverage

T = samplePointsOnSurface(Starget);
Tcov,all = ∅;
R = determineReachability(G, T, RM);
S = [ ];
while (T\Tcov,all) 6= ∅ ∧R 6= ∅ do

pmax = arg maxp∈G(‖R(p)‖);
(t, Tcov) = planCoverage(pmax, R(pmax));
G = G\{pmax};
R = {(p′, T ′) ∈ G× P(T ) | T ′ = R(p′)\Tcov};
R = {(p′, T ′) ∈ R | ‖T ′‖ > 0};
Tcov,all = Tcov,all ∪ Tcov;
S = append(S, (pmax, t));

end
c = ‖Tcov,all‖/‖T‖;
return (S, c);

(a) ARMAR-III

(b) Manlift TU285

Fig. 3: 2D cut of a reachability map for (a) the right arm of
ARMAR-III using the joints in the right arm and the hip yaw
and (b) the manlift RUTHMANN STEIGER R© TU285. The
color of the blocks indicates the manipulability measure with
which the end-effector reached the corresponding workspace
voxel. Blue means low and red means high manipulability.

B. Reachability Planning

We determine how much of the target surface can be
reached from all possible placement poses G with sufficient
manipulability. This requires a model of the robot’s reachable
workspace which can be generated offline. The algorithm
used to build the reachability map uses randomized sampling
over the configuration space as described in [8] and [9].
Fig. 3 shows a part of the reachability maps for the humanoid
robot ARMAR-III and a manlift.

The heuristic for determining the reachability is depicted
in algorithm 2. It takes a discrete set of possible placement
poses G which need to be defined according to task-specific
requirements. The set of target points T approximates the
surface to be covered. A precomputed reachability map RM
is also required as an input to this algorithm. The heuristic

Algorithm 2: Heuristic for determining the reachability
Input: G: Placement poses

T : Target points to be covered
RM : Precomputed reachability map

Output: R: Reachability relation
R = {(p, ∅) | p ∈ G};
forall (p,x) ∈ G× T do

v = RM.getVoxelAt(p−1 · x);
if v.quality > λ then

R = (R\{p, R(p)}) ∪ {p, R(p) ∪ {x}};
end

end
R = {(p, R(p)) | ‖R(p)‖ > 0};
return R;

Algorithm 3: Coverage planning
Input: p: Placement pose

T : Set of target points to cover
qtransport: Transport configuration

Output: t: Coverage trajectory
Tcov: Set of points which are covered by t

Sselected = selectGuards(p, T );
(G,Sconnected) = constructGraph(p, qtransport, Sselected);
t = approximateTSP(G);
Tcov =

⋃
g∈Sconnected

coveredPoints(g);
return (t, Tcov);

iterates over all pairs of poses and target points (p,x) ∈ G×
T . We check whether x is potentially reachable from the pose
p. This check is implemented by querying the voxel which
encodes the manipulability for the current target point. If the
value exceeds a given threshold λ we mark the combination
of pose and target point as reachable by updating the entry in
the relation R. Finally, poses with no reachable target points
are removed from R.

C. Coverage Planning

The coverage planner uses the methods presented [16] in
which the problem is subdivided into the coverage sampling
problem and the multi-goal path planning. Algorithm 3
shows the overall approach. Using a placement pose p, a
set of target points T and a transport configuration qtransport
it computes a trajectory t which covers the subset Tcov ⊆ T
with the robot’s end-effector.

First the guard points Sselected which cover a subset of T
are sampled. A guard point g consists of a configuration
q ∈ C and a set of points coveredPoints(g) ⊆ T which are
covered by the end-effector in this configuration. The guards
are sampled in workspace coordinates close to the target
points and are checked for collisions and stability. In order to
determine a configuration which reaches the sampled point
inverse kinematics are employed. In the next step we try to
construct a complete graph between the configurations of the
guard points and the transport configuration using a BiRRT



Algorithm 4: Selection of guards
Input: p: Placement pose

T : Set of target points to cover
Output: Sguards: Set of guard points
Sguards = ∅;
Tcov = ∅;
f = 0;
while (T\Tcov) 6= ∅ ∧ f < fmax do

xsample = sample(T\Tcov);
Spot = sampleGuardsNear(xsample,p, nguards);
if Spot 6= ∅ then

gbest = arg maxg∈Spot
(‖coveredPoints(g)‖);

Sguards = Sguards ∪ {gbest};
Tcov = Tcov ∪ coveredPoints(gbest);
f = 0;

else
f = f + 1;

end
end
return Sguards;

motion planner [25]. During this step collision avoidance
and stability are ensured. Also the resulting paths are post
processed with a probabilistic path shortening algorithm
[26] and the final path length in workspace coordinates is
calculated. It may not be possible to connect some guard
points to the graph G due to constraints. Therefore the
subset of connected guard points Sconnected ⊆ Sselected is also
computed. An approximate solution to the traveling salesman
problem on the graph G is calculated by building a minimum
spanning tree and doing a pre-order walk on this tree. The
cost of the resulting route is at most twice the cost of the
optimal solution [16]. This step could be improved by using
the Concorde library [27]. Finally, the set of covered points
Tcov is the union of the points covered by the connected
guards Sconnected.

The method for guard selection is shown in Algorithm 4.
The main loop tries to find guards until the requested target
points T are fully covered or the guard sampling failed
multiple times (threshold fmax). Each iteration a random
point xsample is chosen from the remaining target points and
potential guards Spot are sampled near this point. The guard
sampling generates nguards potential guards in proximity of
xsample using inverse kinematics. From these potential candi-
dates the best guard gbest is chosen according to the number
of covered target points and added to the result set Sguards. If
no inverse kinematic solution could be generated the failure
counter f is increased. Instead of random sampling a more
regularized approach can yield faster results if the target
surfaces are mostly flat.

IV. RESULTS

We present results of our approach for manlifts and
for the humanoid robot ARMAR-III in simulation. Both
scenarios were implemented using the Simox toolbox [28]

(a) (b)

Fig. 4: (a) A photo of the manlift RUTHMANN STEIGER
R© TU285 in action; (b) the simplified model of the same

manlift consisting mainly of kinematics and basic geometry
for collision detection.

and evaluated on a mobile Intel quad-core processor running
at 2.6 GHz. For the manlift we chose a simple scenario to
explain how the different steps of our approach work. The
ARMAR-III scenario will be more complex and the analysis
of the results more in-depth.

A. Manlifts

We tested the proposed algorithm for a simplified model
of the manlift RUTHMANN STEIGER R© TU2851. In Fig. 4
a photo of a real manlift and the corresponding simplified
model are illustrated. This model consists of five revolute
joints and one prismatic joint which in combination allow
the basket at the end-effector to cover a horizontal range of
approximately 20 meters and a height of 28 meters depending
on the carried load. One of the revolute joints is constrained
by the fact that the basket at the end-effector has to be kept
parallel to the ground to guarantee safe transportation.

Fig. 5 shows the different stages of the proposed approach.
The task for the manlift is to cover four separate surfaces on
the building. Two target areas on the front side of the building
are highlighted in blue (see Fig. 5a, the other two target
surfaces are symmetrical on the backside). The green squares
in Fig. 5a and Fig. 5b represent the discrete placement poses
which are used by the algorithm to determine the reachable
target points. The resulting reachability information is shown
in Fig. 5c. Each pose is represented as a color-coded arrow
which represents the position and orientation of the robot.
The color blue indicates a very low count and red a high
count of reachable target points. A closer look a the individ-
ual arrows is illustrated in Fig. 5d. Once the highest rated
placement pose is picked, a coverage path for the reachable
target points is planned (see Algorithm 1). The first step is to
sample guard points which are highlighted as yellow boxes in
Fig. 5e. The resulting end-effector trajectory of the coverage
path is displayed as a magenta curve in Fig. 5f. Since this

1www.ruthmann.de/main.php?target=tu285_steiger&lang=en
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(a) Front view of the building (b) Top view of the building (c) Initial reachability data (d) Closer look at (c)

(e) First set of guard points (f) First coverage path (g) Updated reachability data (h) Second coverage path

Fig. 5: Different steps of the combined algorithm for robot placement and coverage planning are shown in simulation for
the task of a manlift which covers target surfaces on a building.

path only covers the target surfaces on the front side, the
algorithm proceeds to search for a second partial solution.
The reachability information is updated by removing the
already covered target points (see Fig. 5g). Guard points
and a coverage path are computed for the back side of the
building and shown in Fig. 5h. Hence, the algorithm is able
to solve the given coverage task with two partial solutions.

An overview of the properties of this concrete solution
is shown in Table I. Although both sides of the building
are symmetrical the randomized sampling approach leads to
different results. Since the first partial solution needs ten
guard points less than the second one, the path through
all guard points is considerably shorter for the first partial
solution. To tackle this problem a pruning step for the
guard points could be introduced as previously done by [29].
Table II shows the runtime of different parts of the algorithm.
The most time consuming subtask is the graph construction
because it uses a motion planner to find paths between all
the guard points while ensuring collision-free and stable
trajectories. The subtask which takes the second most time is
the coverage sampling. In order to find suitable guard points
the corresponding robot configuration needs to computed
using inverse kinematics. The reachability calculation and the
TSP approximation for the final route can be computed much
faster because complex constraints need not be considered in
these phases.

B. ARMAR-III

The second scenario we evaluated uses the humanoid
platform ARMAR-III to clean an industrial conveyer belt
with its right hand. The kinematic chain consists of eight

Name Guard point count Path length

Partial solution #1 12 70,2 m

Partial solution #2 22 131,0 m

Total solution 34 201,2 m

TABLE I: Properties of the partial solution and the total
solution are listed for the manlift scenario. It displays the
number of guard points which were sampled and the path
length in workspace coordinates.

Name Reachability
calculation

Guard
sampling

Trajectory
planning

TSP approx-
imation

Partial
#1

- 6,6 s 35,0 s 0.07 s

Partial
#2

- 12,5 s 63,1 s 0.15 s

Total 0.62 s 19,1 s 98,1 s 0.22 s

TABLE II: This table shows the runtime of the different parts
in the manlift scenario. Reachability calculation is done only
once therefore no times are reported for the partial solutions.

revolute joints starting at the hip and ending at the end-
effector. In contrast to the manlift scenario the area to
be covered is much larger than the reachable workspace
of the robot. Therefore more placement poses need to be
determined in order to complete the task. Fig. 6 shows the
scenario, the initial reachability information, the complete
solution and coverage trajectories for some partial solutions.

In this scenario we defined 5400 discrete placement poses
around the conveyer belt and sampled the target surface



(a) Industrial conveyer belt with green placement poses (b) Initial reachability indicators before the first partial solution

(c) Chosen placement poses and their covered target points (d) Coverage trajectories for some partial solutions

Fig. 6: (a) The task for the robot is to cover the two conveyer belts by using the green placement poses. (b) The initial
reachability information is used to determine the pose for the first partial solution. (c) The total solutions showing placement
poses and the corresponding covered target points in the same color. (d) The partial solutions contain collision free coverage
trajectories for the right arm of the robot.

Metric Average Standard deviation

Partial solutions 25.8 2.1

Guard points 164.3 3.9

Path length 51.6 m 2.3 m

Achieved coverage 96.7 % 0.6 %

Total runtime 362.5 s 52.5 s

Reachability calculation (runtime) 0.45 s 0.05 s

Guard sampling (runtime) 23.2 s 11.1 s

Trajectory planning (runtime) 330.5 s 43.3 s

TSP approximation (runtime) 0.06 s 0.02 s

TABLE III: Average metrics of 50 runs of the proposed
algorithm for the ARMAR-III robot in simulation. Solution
and runtime properties are shown.

with 1200 points. We simulated our approach 50 times and
computed different metrics for the solutions. Table III shows
the important quality and runtime metrics of the computed
solutions. It can be seen that the quality metrics (number
of partial solutions, total path length and achieved coverage)
do not vary much between different runs demonstrating the
ability to reproduce consistent results despite the use of
randomized approaches. Similar to the manlift scenario most
of the runtime is spent during the trajectory planning between
guard points. By using the lazy method for mutli-goal path
planning in [18] the number of computed trajectories and
therefore the total runtime could be improved.

We further evaluated the relation between the number of
partial solutions and the achieved coverage. Fig. 7 shows
that the rate at which the coverage percentage increases
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Fig. 7: Relation between the number of partial solutions and
the achieved coverage. This graph shows the average cover-
age and the respective standard deviation over 50 simulated
runs.

decreases when more partial solutions are added. This is
expected behavior since our approach chooses placement
poses using a greedy method. Fig. 8 plots the coverage
against the runtime of the algorithm. Although the runtime
varies between different runs it can be seen that there is a
linear correlation between these two variables. Since partial
solutions with higher indices cover less target points the
coverage planning is simpler and therefore faster compared
to earlier partial solutions. This effect compensates for the
fact that more partial solutions are needed to cover the same
amount of target points in a later timeframe.
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Fig. 8: Relation between the runtime and the achieved
coverage. For 20 runs the runtime and coverage after every
partial solution has been plotted as blue points. The red
regression line shows the linear relation between the two
values.

V. CONCLUSION

In this work we presented an approach for solving the
combined problem of robot placement and coverage plan-
ning. The use of heuristics for the subproblems of finding
appropriate placement poses and computing a coverage tra-
jectory allowed efficient computation of suitable solutions.
We evaluated the algorithm in simulation on a humanoid
robot cleaning an industrial conveyer belt and on a manlift
covering a building’s facade demonstrating the broad area of
possible applications. Further scenarios may include spray-
painting car parts with a mobile robot, inspection of buildings
and cleaning kitchen tables.

Currently we consider the number of placement poses and
the trajectory costs as optimization criteria. But the travel
cost between placements has not been considered yet. One
possible extension would be to define a cost function which
balances base and end-effector motion.
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