
Predicting Pushing Action Effects on Spatial Object Relations
by Learning Internal Prediction Models

Fabian Paus, Teng Huang and Tamim Asfour

Abstract— Understanding the effects of actions is essential
for planning and executing robot tasks. By imagining possible
action consequences, a robot can choose specific action param-
eters to achieve desired goal states. We present an approach
for parametrizing pushing actions based on learning internal
prediction models. These pushing actions must fulfill constraints
given by a high-level planner, e. g., after the push the brown
box must be to the right of the orange box. In this work, we
represent the perceived scenes as object-centric graphs and
learn an internal model, which predicts object pose changes
due to pushing actions. We train this internal model on a
large synthetic data set, which was generated in simulation,
and record a smaller data set on the real robot for evaluation.
For a given scene and goal state, the robot generates a set of
possible pushing action candidates by sampling the parameter
space and then evaluating the candidates by internal simulation,
i. e., by comparing the predicted effect resulting from the
internal model with the desired effect provided by the high-level
planner. In the evaluation, we show that our model achieves
high prediction accuracy in scenes with a varying number of
objects and, in contrast to state-of-the-art approaches, is able
to generalize to scenes with more objects than seen during
training. In experiments on the humanoid robot ARMAR-6,
we validate the transfer from simulation and show that the
learned internal model can be used to manipulate scenes into
desired states effectively.

I. INTRODUCTION

Predicting how things might be, not only now, but also
in the future are a fundamental part of human cognitive
abilities which allow us to choose how to act [1]. A cognitive
system, which uses an internal model to reason about action
consequences in the world and learns from experience, should
also be able to explain why and what it is doing [2]. To this
end, simulations have been used in combination with logic-
based reasoning to acquire common sense knowledge [3].

A robot interacting with the world needs the ability to
reason about the effects of its actions [4]. Humans can predict
the effects of actions based on low-level motor control as well
as high-level reasoning [5], [6]. When comparing physics
engines with intuitive physics models based on probabilistic
simulations of interactions between objects and their relations,
humans tend to give results more consistent with the latter
[7]. Taking inspiration from this idea, we want to enable a
robot to predict action effects based on objects and the spatial

The research leading to these results has received funding from the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
Project Number 146371743 TRR 89 Invasive Computing and from the
European Unions Horizon 2020 Research and Innovation programme under
grant agreement No. 731761 (IMAGINE).

The authors are with the Institute for Anthropomatics and Robotics,
Karlsruhe Institute of Technology, Karlsruhe, Germany. {paus,
asfour}@kit.edu

Fig. 1. The humanoid robot ARMAR-6 has the goal of moving the
large brown screw box behind the small orange box. The robot samples
the parameter space of possible pushes and evaluates them according to the
learned internal prediction model. We choose push parameters, which are
predicted to produce the desired outcome. On the monitor, the red arrow
indicates the chosen push to be executed and the red box shows the predicted
pose of the brown box after the push.

relations between them. This results in two challenges. First,
a scene can contain an arbitrary number of objects. Second,
training a prediction model requires many samples, which are
hard to obtain on a real robot. We address the first challenge
by learning a model which is invariant to the number of
objects and their order. By using a physics simulation, we
address the second challenge.

In this paper, we focus on non-prehensile manipulation, in
particular, pushing actions. Section II discusses related work
on the topic of prediction for pushing actions and compares
them to our approach. In section III, we first explain the
data generation in simulation and then present our approach
for learning an internal prediction model. The training data
for learning push effects is generated by executing pushes in
randomized scenes using the physics simulation MuJoCo [24].
Each scene is represented as an attributed directed graph, in
which nodes store object properties and edges contain relative
spatial information between object pairs. To formulate an
optimization problem on these scene graphs, we use graph
networks [25], which provide machine learning building
blocks with graphs as input and output. The evaluation in
section IV shows a high prediction accuracy of our internal
model in simulation and on real data. We demonstrate that
the learned model enables goal-oriented manipulation for
table-top scenes in section V by conducting experiments on
the humanoid robot ARMAR-6 [26]. The paper concludes in
section VI with a discussion of the results.



TABLE I
COMPARISON OF THE RELATED WORK WITH OUR APPROACH

Reference Method Explicit Object Count Dim. Input Output

Mason, 1986 [8] Model-based Yes Single 3D Push velocity Direction of rotation

Lynch et al., 1992 [9] Model-based Yes Single 2D Push velocity Object velocity

Hogan and Rodriguez, 2016 [10] Model-based Yes Single 2D End-effector motion Object velocity

Zhou et al, 2018. [11] Hybrid Yes Single 2D End-effector motion Object velocity

Kloss et al., 2017 [12] Hybrid Yes Single 2D Depth image and action vector Object pose

Omrcen et al., 2009 [13] Data-driven Yes Single 2D Mask Object velocity

Kopicki et al., 2011 [14] Data-driven Yes Single 3D Mask Relative pose change

Elliott et al., 2016 [15] Data-driven Yes Single 2D Object pose and action vector New object pose

Byravan et al., 2017 [16], [17] Data-driven Yes Fixed 3D Point cloud and action vector Point cloud

Finn et al., 2016 [18] Data-driven Yes Fixed 2D* Image Image

Janner et al., 2019 [19] Data-driven Yes Multiple 2D* Image Image

Li et al., 2018 [20] Data-driven No Single 2D Masks and action vector Similarity score

Eitel et al., 2017 [21] Data-driven No Multiple 2D* Image and action vector Success probability

Agrawal et al., 2016 [22] Data-driven No Multiple 2D* Images Action vector

Zeng et al., 2018 [23] Data-driven No Multiple 3D Height map Dense expected reward

Our Approach Data-driven Yes Multiple 3D Object Poses Object Poses

Figure 1 shows the humanoid robot ARMAR-6 in front
of a table with multiple objects. The robot has the task of
bringing the large brown screw box to the left of the small
orange screw box. The image shows the robot executing one
of the pushes required to reach the goal state.

The main contributions of this paper are as follows:
1) A data-driven method for push effect prediction with

high prediction accuracy while being faster than execut-
ing a physics simulation. In contrast to state-of-the-art
approaches, our method is neither limited to planar
object movement nor a fixed number of objects.

2) We show that the push effect prediction enables
goal-oriented manipulation tasks due to the efficient
evaluation of many possible pushes and their effects.

II. RELATED WORK

Non-prehensile manipulation is an active research area
[27]. Prediction of push effects has many applications
including singulation of objects ([21], [23]), rearrangement of
scenes ([22], [20]), pre-grasp manipulation ([13], [28]), and
object segmentation ([29]). We have compiled a comparison
overview (see Table I) illustrating the differences between
related approaches regarding the following aspects:
• Method: Model-based approaches use an analytical

physics model to describe and predict object interactions
and motions. In contrast, data-driven approaches learn a
model from training data and do not rely on an explicit
physics model. If major parts of an approach require a
physics model, but other parts are learned, we call it a
hybrid method.

• Explicit: An explicit prediction model produces the state
after action execution as an output, whereas an implicit

approach learns an internal prediction model, which does
not produce human-interpretable results.

• Object Count: Many approaches are designed to predict
the motion of a single object. If the approach can handle
more than one object but still limits the number of
objects it can handle a priori, either by design or during
training time, we categorize the object count as fixed. If
the maximum amount of objects is not inherently limited,
we say that such an approach can handle multiple objects.

• Dim.: We call an approach 2D if it constrains objects to
planar motion. If an approach explicitly models non-
planar motions, we categorize it as 3D. Note, that
this does not require the approach to model full 6D
transformations. Some approaches only process 2D
images, which are nonetheless able to handle specific
non-planar cases. We label such approaches 2D*.

• Input and Output: Common representations for the
input and output of an approach include images (color
and/or depth), object segmentation masks (short: mask),
object poses and pose changes. We use the term action
vector to refer to the encoding for parametrizing an
action, e. g. , start point, direction, and length of a push.

A. Model-based and Hybrid Methods

Early work on analytical models for pushing has been
done, predicting the object motion based on frictional forces
[8], [9]. Current model-based approaches [11], [10], [30] are
focused on planar pushing and predict object motion based
on end-effector motion. In this work, we do not expect the
physical properties required to build analytical models to be
accurately known.

Hybrid approaches incorporate learning for different parts



of a physics model. In [11], the authors learn parameters of
an even-degree homogeneous polynomial as a friction model.
Another approach trains a convolutional neural network to
estimate object poses from depth images [12]. An analytical
model then uses this object position to predict the effect of a
pushing action. Both model-based and hybrid methods are
mostly limited to planar object motions, while we consider
also non-planar object motions.

B. Data-driven Methods

Early data-driven approaches predict the motion of a single
object using binary segmentation masks of the target object
as input [13], [14]. Models can support a finite but fixed
amount of objects, e. g. , by training a model which uses
a constant amount of image masks [16], [18]. By working
only on images, the inherent limitations of a fixed number
of objects can be circumvented [19], [21], [22]. While these
approaches are able to learn efficient models for predicting
effects on images, including non-planar object interactions,
they are still limited to the perceived 2D image plane. Zeng
et al. use a height map with color information as input and
can, therefore, incorporate depth as well [23]. Our approach
considers scenes with multiple objects and does not limit
the number of involved objects inherently. In contrast to
the related work, we do not use images or height maps as
scene representation. Instead, we represent a scene as a graph,
whose nodes contain object properties.

Recent works have applied implicit models effectively to
determine action parameters using start and goal state as
input. Discriminative approaches rate the fitness of a specific
action vector to transform a given start state into the desired
goal state. An action then can be chosen by sampling and
maximizing this score [20], [21], [23]. Contrary, a regression
approach predicts the action vector itself given start and
goal state [22]. While these approaches have been proven
to achieve their goals successfully, they lack explainability.
An explicit model has the advantage that a human can
interpret the model’s prediction. We believe that the ability
to explain why the robot took a certain action is crucial for
reasoning about action effects and failure analysis. Therefore,
our approach uses an explicit prediction model.

Janner et al. learn an object-centric physics model [19].
Their work is similar to ours, in that they train their model
using a physics simulation. They take as input a rendered
2D image of blocks, where one block is suspended in the air.
Then, they predict how the image will look after the block
has fallen. One difference is the representation of input and
output since they use images and we use object properties
directly. Furthermore, they only consider falling blocks, and
no action by a robot is involved. In their experiment, the robot
lets a block fall onto other blocks, mimicking the simulations.
Instead, our approach considers where and how the robot
pushes into the scene.

III. PUSH EFFECT PREDICTION

Given a scene as a set of objectsO, the goal of our approach
is to predict pose changes for these objects caused by a

Fig. 2. Examples of randomized scenes in simulation. Each row represents
a push executed in a generated scene. The first column shows the initial
scene state and the sampled push direction as a white arrow. The second
column shows the scene during the execution of the push action. In the third
column, the final scene state after the push is shown.

pushing action. We represent an object o = (t, R, s) ∈ O as
a tuple consisting of global position t ∈ R3, global rotation
R ∈ R3×3, and oriented bounding box size s ∈ R3. A
pushing action a = (d, e) ∈ A is composed of a direction
d ∈ R3 and an endpoint e ∈ R3 which specifies where the
end-effector stops after executing the action. The goal is to
learn a prediction model M which, given an initial scene
Obefore and a push action a ∈ A, outputs the scene Oafter after
executing the push.

Oafter = M(Obefore, a)

We approach the problem by generating randomized
scenes and executing random pushes in simulation. After
preprocessing the training data to a local representation, we
employ graph networks [25] as a learning model.

A. Generating Training Data in Simulation

The MuJoCo physics simulator [24] is used to execute
pushes in simulation. Figure 2 shows examples of generated
scenes and pushes. The following parameters have been ran-
domized during scene generation using a uniform distribution
over all possible values:
• Object count: Scenes contain one to five objects
• Object position: The center point of each object is chosen

inside a rectangular region with size 1m× 1m.
• Object rotation: Only the rotation around the z-axis is

randomized to ensure that the objects can stand upright.
• Object size: Width, height, and depth of the boxes can

be in the interval [0.05m, 0.20m].
Push parameters were chosen by first selecting a target

object. Then, a local offset is sampled around the target’s
center point, taking into account the size of the object. The
endpoint of the push is chosen to be the target’s center
point shifted by the local offset. This way, we ensure that
most pushes are executed close to objects where relevant
interactions are happening. Then, the push direction is
sampled, allowing only pushes parallel to the ground.



𝑢
𝑣1

𝑣2

𝑣3

𝑢’
𝑣1′

𝑣2′

𝑣3′

Encoder:
Independent Graph 

Network block

𝐺𝑖𝑛

Core:
Full Graph 

Network Block

× 10

Decoder:
Independent graph 

network block

𝐺𝑜𝑢𝑡

Φ𝑣 Φ𝑒 Φ𝑢

Σ
ρΦ𝑣 Φ𝑒 Φ𝑢

Σ
Sum

Function

Φ𝑣 Φ𝑢Φ𝑒

M
L

P

2
5

6
 N

eu
ro

n
s

1
2
8
 N

eu
ro

n
s

9
6
 N

eu
ro

n
s

3 Layers

M
L

P

6
4

 N
eu

ro
n
s

6
4
 N

eu
ro

n
s

2 Layers

Fig. 3. The architecture of the prediction model is an encode-process-decode graph network. The input graph Gin is encoded into a latent space using a
graph independent block, i. e. , nodes, edges and global attributes are transformed individually. We execute a full graph network block ten times as the core
processing step of our model. The latent representation is then transformed into the output graph Gout using a graph independent block as a decoder.

During data generation, we first load the model of the
ARMAR-6 hand. As a second step, we generate a random
scene as described above. In this scene, we execute 200
random pushes, after which we proceed with the next scene.
The object poses before and after the push, as well as the
push parameters, are saved to train the prediction model.

B. Preprocessing the Training Data

Since object poses and push directions depend on an
arbitrarily chosen global coordinate system, we first transform
the scene data to a local representation. First, the push
endpoint e ∈ R3 becomes the origin of the new local
coordinate frame. Second, we rotate the scene so that the
push direction d ∈ R3 is aligned with the positive x-axis of
the local coordinate system while keeping the z-axis pointing
upwards. Since the local origin is the push endpoint and the
local x-axis is the push direction, no explicit push parameters
are needed during training.

To use a graph network model [25], the input and output
data need to be represented as a directed attributed multi-
graph G = (V,E,u), where V is a set of vertices, E a set of
edges, and u a global feature vector. After transforming the
scene to the local coordinate system, we encode the object
features as a stacked vector of position t ∈ R3, orientation
R ∈ R3×3, and size s ∈ R3, resulting in a node feature vector
v ∈ R15. We found that representing the orientation as a
redundant 3× 3 matrix gives better results when compared
to quaternions or Euler angles. Additionally, we create edges
between each node pair using the relative position difference
as the feature vector f ∈ R3. A global feature vector u is
not needed, as discussed above.

C. Learning a Prediction Model using Graph Networks

We chose an encode-process-decode structure for the graph
network (see Figure 3). First, the input graph Gin is encoded
where nodes, edges, and globals are expanded into a latent
representation. The process step consists of a full graph
network block which processes the latent representation 10

times. The process block uses Multi-layer perceptrons (MLPs)
with batch normalization as update functions:
• Node update Φv: 3-layer MLP with sizes [256, 192, 96]
• Edge update Φe: 2-layer MLP with sizes [128, 96]
• Global update Φu: 2-layer MLP with sizes [64, 64]

We choose element-wise sum for all aggregation functions
ρe→v, ρv→u, and ρe→u. The encoder and decoder both
use a graph independent block with two-layer MLPs of
size [64, 64] for all update functions. All the MLPs contain
parameters, which need to be optimized during training. We
summarize them into the model parameter vector θ to define
a parametrized prediction model Mθ. As the loss function
L, we use the mean squared error over the node attributes
v ∈ R15, excluding the bounding box size s, since it cannot
change during a push, and edge attributes f ∈ R3 from the
predicted and ground truth scene.

The goal is to find a model parameter vector θ which
minimizes the loss over all input and ground-truth output
graphs, Gin and GGT : arg minθ L(Mθ(Gin), GGT )

The dataset of 2,000,000 simulated pushes is split into
training (70%), validation (20%), and test set (10%). During
training, the model is optimized based on the training set
using a batch size of 256. We use the Adam optimizer with a
learning rate of 0.001. The layer sizes have been determined
by a hyperparameter search using the validation set.

IV. EVALUATION

First, we evaluate the performance of our approach
quantitatively by looking at the position and orientation
accuracy, combinatorial generalization, and computation time
in simulation. Then, we presents results for evaluation
experiments on the real robot.

A. Results in Simulation

We evaluate the accuracy of our learned model in simu-
lation by comparing position and orientation errors in the
training, validation, and test set. Table III shows the average
position and orientation errors (Mean) as well as the standard



B
ef

o
re

A
ft

er

Fig. 4. Scenes from the data set recorded on the real robot. The top row contains images from the robot’s cameras right before the push action begins.
The bottom row shows images after the push has been executed. Each row shows a scene with an increasing number of objects.

TABLE II
DATA SETS: POSITION AND ORIENTATION CHANGES

Position Change in [cm] Orientation Change in [◦]
Mean Stddev. Mean Stddev.

Simulation 8.45 15.92 18.61 34.69

Real 7.90 11.67 19.18 31.30

TABLE III
POSITION AND ORIENTATION ERROR OF THE LEARNED MODEL

Position Error in [cm] Orientation Error in [◦]
Mean Stddev. Mean Stddev.

Training 0.83 0.57 4.21 6.54

Validation 0.86 0.61 5.35 7.77

Test 0.87 0.60 5.24 7.60

Real 1.84 2.66 14.82 23.83

deviation (Stddev.). The mean position and orientation
changes in the data set are included in table II. Our model
achieves an average position error of less than one centimeter
and an orientation error of around 5◦.

Furthermore, we investigated the ability of our model to
cope with an unseen number of objects, i. e. , combinatorial
generalization. We trained a model only on scenes containing
2− 3 objects and tested the prediction errors in scenes with
1, 4 and 5 objects. In Table IV, we can see that scenes with
fewer objects are no problem. Also, scenes with 4 or 5 objects
only incur a minor increase in position and orientation error.
The whole data set was used for this evaluation.

Regarding the runtime, we compare our approximate model
with the full physics simulation. Executing a single push in
MuJoCo takes on average 2.27s (with rendering disabled).
Processing a batch of 1000 scenes with our prediction model
takes around 1.16s. We conclude that our model is much faster
than using the full physics simulation. All measurements were
done on an Intel Core i7-5820K CPU with 3.30GHz. This
runtime efficiency enables us to test many possible pushes and
find push parameters which achieve a certain manipulation

TABLE IV
PERFORMANCE ON AN UNSEEN NUMBER OF OBJECTS

Number of Position Error in [cm] Orientation Error in [◦]
Objects Mean Stddev. Mean Stddev.

2− 3 0.79 0.48 4.17 5.90

1 0.76 0.45 4.02 5.87

4 0.91 0.75 7.03 8.05

5 0.98 0.81 7.61 8.46

goal efficiently.

B. Results on the Robot
In order to evaluate the performance of our model on

real data, we execute 185 pushes in 20 different scenes on
the robot ARMAR-6. The involved objects were taken from
the KIT and YCB object sets [31], [32]. For ground truth
data generation, we localize the involved objects before and
after execution and store their poses and the push parameters
accordingly. Table II contains the variance in position and
orientation changes for the real data set as well the simulation
data set. The recorded scenes contain between one and five
objects. Figure 4 shows camera images from the recorded
data set.

Table III compares the results for our model, trained in
simulation, and applied on the real data set to the simulation
results. For the position, we still achieve a small prediction
error less than two centimeters. However, the orientation
prediction is considerably worse than in simulation indicating
the need for further work on the transfer to the real world.

Instead of modeling the complete physics involved, our
goal was to build an internal model based on intuitive physics.
Although there are some cases, in which the prediction model
makes minor mistakes, it is still able to predict plausible
outcomes of the push actions. Thus, we will demonstrate
that this push prediction system can be used on a robot to
estimate action effects in the next section.

V. EXPERIMENT

We tested our push effect prediction in a goal-oriented
manipulation task. The robot ARMAR-6 has the task to move



Initial Scene Pushing the Sponge away 

from the Small Box

Pushing the Large Box 

behind the Small Box

Pushing the Large Box to 

the right of the Small Box

Goal Scene

Fig. 5. ARMAR-6 has the goal of bringing the large brown box to the right of the small red box. The leftmost image shows the initial scene state while
the rightmost image shows the final scene state after executing three pushes. Execution of each push is shown in the middle images. The robot chooses the
right arm for the first push the left arm for the two following pushes. The monitor shows the world state and the predicted push effects as transparent boxes.

the large brown screw box to the right of the small orange
screw box. In order to fulfill this task, the robot first pushes
the sponge away, so that there is a free space next to the small
box. Then the large box is moved to the left of the small box
in two pushes. The robot derives this high-level plan from the
goal description, but still needs the concrete push parameters
(direction and endpoint) for each action. We sample from
the possible push parameters and run our internal prediction
model, to predict how the push will affect the current scene.
The robot chooses one of the sampled push parameters which
produces the desired effect without affecting other objects.
Figure 5 shows the different steps during the execution of
the experiment. We recommend watching the video of the
full experiment attached to this paper and available online
(https://youtu.be/_eEQnEUJrYY).

A. Integration into the Software Architecture

Our internal prediction model needs object poses and
bounding boxes. Therefore, we localize objects in a scene
based on 6D pose estimation for known objects [33] or by
fitting geometric primitives to unknown objects [34]. Object
poses along with the robot pose are tracked in the working
memory of the robot. In the first step, our method transforms
the input objects into the local coordinate system and builds
a graph from them as described in subsection III-B. The next
step uses the internal model to predict an output graph, from
which the local object poses after the push can be extracted.
The orientation matrices produced by the network are not
necessarily valid. Therefore, we find the nearest orthogonal
matrix by using singular value decomposition.

To achieve a certain goal scene configuration, we sample
push parameters by generating push endpoints in the vicinity
of the target object’s center. The direction is chosen as a
random rotation around the global z-axis. We sample 200
push parameters and evaluate for which of the pushes the
internal model predicts the desired scene state. Once the push
parameters have been chosen, the robot needs to execute the
specified push.

B. Push Execution

The humanoid robot ARMAR-6 has two 8-DoF arms
which we use for push execution. We will use a cartesian
controller, which utilizes the two-dimensional nullspace to
avoid joint limits. Given the push parameters as endpoint
e ∈ R3 and direction d ∈ R3, we want to select which

0

0.05

0.1

0.15

0.2

0.25

0.3

−1.5 −1 −0.5 0 0.5 1 1.5

M
in

.D
is

ta
nc

e
to

Jo
in

t
L

im
its

[r
ad

]

Hand Rotation around z-Axis [rad]

Trajectory Optimization

Left Arm
Right Arm

Fig. 6. Trajectory optimization for both arms showing the minimal distance
to joint limits for varying hand orientations.

arm to use and calculate a cartesian push trajectory. The
trajectory begins at a defined initial pose, goes through a start
point 10cm before the object, pushes along the direction
d until the endpoint e is reached and the reverses the
trajectory until it arrives at the initial pose again. Since not
all trajectories are executable with arbitrary hand orientation,
we generate trajectories with hand rotations around the z-axis
in the interval [−π2 ,

π
2 ]. Now, we can evaluate the minimal

distance ∆qmin to the joint limits for each generated trajectory
t ∈ T and each arm side ∈ {left, right}: ∆qmin(t, side) =
minDistanceToLimits(t, side). We choose the trajectory t∗

and the arm side∗ which maximize ∆qmin:

t∗, side∗ = arg maxt∈T,side∈{left,right}(∆qmin(t, side))

Finally, the chosen trajectory t∗ will be executed by the
cartesian controller for the arm side∗. Figure 6 shows an
example optimization, where a trajectory with the left arm
and a rotation of around −1.396rad ≈ −80◦ will be selected.

VI. CONCLUSION

In this work, we presented an approach to predict push
action effects in the form of object pose changes in the scene.
Our approach achieves efficient and plausible predictions
enabling internal simulation for goal-oriented manipulation
tasks. Furthermore, with the use of graph networks, we learn
a model that achieves combinatorial generalization, i. e. , it
does not rely on a fixed number of objects or their order.

https://youtu.be/_eEQnEUJrYY


REFERENCES

[1] A. Berthoz, The brain’s sense of movement, vol. 10. Harvard University
Press, 2000.

[2] R. J. Brachman, “Systems that know what they’re doing,” IEEE
Intelligent Systems, vol. 17, no. 6, pp. 67–71, 2002.

[3] B. Johnston and M.-A. Williams, “Comirit: Commonsense reasoning
by integrating simulation and logic,” Frontiers in Artificial Intelligence
and Applications, vol. 171, p. 200, 2008.

[4] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,
A. Ude, T. Asfour, D. Kraft, D. Omrčen, A. Agostini, and R. Dillmann,
“Object-action complexes: Grounded abstractions of sensorimotor
processes,” Robotics and Autonomous Systems, vol. 59, pp. 740–757,
2011.

[5] J. Moore and P. Haggard, “Awareness of action: Inference and
prediction,” Consciousness and Cognition, vol. 17, no. 1, pp. 136
– 144, 2008.

[6] A. Sato, “Both motor prediction and conceptual congruency between
preview and action-effect contribute to explicit judgment of agency,”
Cognition, vol. 110, no. 1, pp. 74 – 83, 2009.

[7] P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum, “Simulation as an
engine of physical scene understanding,” Proceedings of the National
Academy of Sciences, vol. 110, no. 45, pp. 18327–18332, 2013.

[8] M. T. Mason, “Mechanics and planning of manipulator pushing
operations,” The International Journal of Robotics Research, vol. 5,
no. 3, pp. 53–71, 1986.

[9] K. M. Lynch, H. Maekawa, and K. Tanie, “Manipulation and active
sensing by pushing using tactile feedback.,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 1, 1992.

[10] F. R. Hogan and A. Rodriguez, “Feedback control of the pusher-slider
system: A story of hybrid and underactuated contact dynamics,” arXiv
preprint arXiv:1611.08268, 2016.

[11] J. Zhou, M. T. Mason, R. Paolini, and D. Bagnell, “A convex
polynomial model for planar sliding mechanics: theory, application,
and experimental validation,” The International Journal of Robotics
Research, vol. 37, no. 2-3, pp. 249–265, 2018.

[12] A. Kloss, S. Schaal, and J. Bohg, “Combining learned and analytical
models for predicting action effects,” CoRR, vol. abs/1710.04102, 2017.

[13] D. Omrčen, C. Böge, T. Asfour, A. Ude, and R. Dillmann, “Autonomous
acquisition of pushing actions to support object grasping with a
humanoid robot,” in IEEE-RAS International Conference on Humanoid
Robots (Humanoids), (Paris, France), pp. 277–283, 2009.

[14] M. Kopicki, S. Zurek, R. Stolkin, T. Mörwald, and J. Wyatt, “Learning
to predict how rigid objects behave under simple manipulation,” in
IEEE International Conference on Robotics and Automation (ICRA),
pp. 5722–5729, 2011.

[15] S. Elliott, M. Valente, and M. Cakmak, “Making Objects Graspable in
Confined Environments through Push and Pull Manipulation with a
Tool,” in IEEE International Conference on Robotics and Automation
(ICRA), pp. 4851–4858, May 2016.

[16] A. Byravan and D. Fox, “SE3-nets: Learning rigid body motion using
deep neural networks,” in IEEE International Conference on Robotics
and Automation (ICRA), pp. 173–180, 2017.

[17] A. Byravan, F. Leeb, F. Meier, and D. Fox, “SE3-pose-nets: Structured
deep dynamics models for visuomotor planning and control,” CoRR,
vol. abs/1710.00489, 2017.

[18] C. Finn, I. Goodfellow, and S. Levine, “Unsupervised learning for
physical interaction through video prediction,” in Advances in neural
information processing systems, pp. 64–72, 2016.

[19] M. Janner, S. Levine, W. T. Freeman, J. B. Tenenbaum, C. Finn,
and J. Wu, “Reasoning about physical interactions with object-centric
models,” in International Conference on Learning Representations,
pp. 1–12, 2019.

[20] J. Li, W. Sun Lee, and D. Hsu, “Push-net: Deep planar pushing for
objects with unknown physical properties,” in Robotics: Science and
Systems XIV, pp. 1–9, Robotics: Science and Systems Foundation,
2018.

[21] A. Eitel, N. Hauff, and W. Burgard, “Learning to singulate objects
using a push proposal network,” in International Syposium on Robotics
Research (ISRR), (Puerto Varas, Chile), pp. 1–15, 2017.

[22] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning
to Poke by Poking: Experiential Learning of Intuitive Physics,” in
Advances in Neural Information Processing Systems 29, pp. 5074–
5082, 2016.

[23] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning Synergies Between Pushing and Grasping with Self-
Supervised Deep Reinforcement Learning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 4238–4245,
2018.

[24] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 5026–5033, 2012.

[25] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F.
Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner, Ç. Gülçehre, F. Song, A. J. Ballard, J. Gilmer, G. E.
Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess,
D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu,
“Relational inductive biases, deep learning, and graph networks,” CoRR,
vol. abs/1806.01261, 2018.

[26] T. Asfour, M. Wächter, L. Kaul, S. Rader, P. Weiner, S. Ottenhaus,
R. Grimm, Y. Zhou, M. Grotz, and F. Paus, “Armar-6: A high-
performance humanoid for human-robot collaboration in real world
scenarios,” IEEE Robotics & Automation Magazine, vol. 26, no. 4,
pp. 108–121, 2019.

[27] F. Ruggiero, V. Lippiello, and B. Siciliano, “Nonprehensile Dynamic
Manipulation: A Survey,” IEEE Robotics and Automation Letters (RA-
L), vol. 3, no. 3, pp. 1711–1718, 2018.

[28] D. Kappler, L. Y. Chang, N. S. Pollard, T. Asfour, and R. Dillmann,
“Templates for pre-grasp sliding interactions,” Robotics and Autonomous
Systems, vol. 60, pp. 411–423, Mar. 2012.

[29] H. Van Hoof, O. Kroemer, H. B. Amor, and J. Peters, “Maximally
informative interaction learning for scene exploration,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 5152–5158, IEEE, 2012.

[30] K.-T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez, “More than a million
ways to be pushed. a high-fidelity experimental dataset of planar
pushing,” in 2016 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pp. 30–37, IEEE, 2016.

[31] A. Kasper, Z. Xue, and R. Dillmann, “The KIT object models database:
An object model database for object recognition, localization and
manipulation in service robotics,” The International Journal of Robotics
Research, vol. 31, no. 8, pp. 927–934, 2012.

[32] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The YCB object and model set: Towards common benchmarks
for manipulation research,” in International Conference on Advanced
Robotics (ICAR), pp. 510–517, 2015.

[33] P. Azad, T. Asfour, and R. Dillmann, “Accurate shape-based 6-dof
pose estimation of single-colored objects,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 2690–2695,
Oct 2009.

[34] R. Kartmann, F. Paus, M. Grotz, and T. Asfour, “Extraction of physically
plausible support relations to predict and validate manipulation action
effects,” IEEE Robotics and Automation Letters (RA-L), vol. 3, no. 4,
pp. 3991–3998, 2018.


	Introduction
	Related Work
	Model-based and Hybrid Methods
	Data-driven Methods

	Push Effect Prediction
	Generating Training Data in Simulation
	Preprocessing the Training Data
	Learning a Prediction Model using Graph Networks

	Evaluation
	Results in Simulation
	Results on the Robot

	Experiment
	Integration into the Software Architecture
	Push Execution

	Conclusion
	References

