
A Memory System of a Robot Cognitive Architecture
and its Implementation in ArmarX

Fabian Peller-Konrad, Rainer Kartmann, Christian R.G. Dreher,
Andre Meixner, Fabian Reister, Markus Grotz and Tamim Asfour

Karlsruhe Institute of Technology (KIT), Institute of Anthropomatics and Robotics (IAR),
High Performance Humanoid Technologies (H2T), Karlsruhe, Germany

Abstract

Cognitive agents such as humans and robots perceive their environment

through an abundance of sensors producing streams of data that need to be

processed to generate intelligent behavior. A key question of cognition-enabled

and AI-driven robotics is how to organize and manage knowledge efficiently in a

cognitive robot control architecture. We argue, that memory is a central active

component of such architectures that mediates between semantic and sensorimo-

tor representations, orchestrates the flow of data streams and events between

different processes and provides the components of a cognitive architecture with

data-driven services for the abstraction of semantics from sensorimotor data, the

parametrization of symbolic plans for execution and prediction of action effects.

Based on related work, and the experience gained in developing our ARMAR

humanoid robot systems, we identified conceptual and technical requirements of

a memory system as central component of cognitive robot control architecture

that facilitate the realization of high-level cognitive abilities such as explaining,

reasoning, prospection, simulation and augmentation. Conceptually, a memory

should be active, support multi-modal data representations, associate knowledge,

be introspective, and have an inherently episodic structure. Technically, the

memory should support a distributed design, be access-efficient and capable of

long-term data storage. We introduce the memory system for our cognitive robot

control architecture and its implementation in the robot software framework

ArmarX. We evaluate the efficiency of the memory system with respect to

transfer speeds, compression, reproduction and prediction capabilities.

Keywords: Humanoid Robotics, Memory-driven Cognitive Architecture,

Working Memory, Episodic Memory, Long-term Memory, Knowledge

Representation

Preprint submitted to Robots and Autonomous Systems March 31, 2023

1. Introduction

The human memory is one of the most astonishing and intricate systems in

nature as it receives a huge amount of sensory data and processes it in a highly

distributed way [1]. Humanoid robots face similar challenges, thus, developing

memory-based cognitive control architectures is a key challenge to endow such5

robots with intelligent behavior and seamless human-like interaction abilities with

the environment. A humanoid robot has multiple sensors producing sensor data

and actuators executing motor commands which in turn allow performing actions

as depicted in Figure 1. Several processes are needed for filtering, interpreting,

and using the data to perform tasks such as object detection, task planning and10

execution, navigation, motion generation and control, learning and interaction.

MEMORY
SYSTEM

introspective

associative

multi-modal

active

Sense

Act

𝑡

episodic

Process

Figure 1: The humanoid robot ARMAR-III [2] perceiving multi-modal data of different sensors
such as haptic, visual and audio information. This data has to be stored and processed in
an adequate memory system. To optimally support various cognitive processes and action, a
memory system must fulfill several characteristics, such as an active design, multi-modality, an
inherently episodic structure, associativity and introspectability.

How can we create humanoid robot systems with rich cognitive and senso-

rimotor capabilities that are comparable to the human’s, especially regarding

learning and development? The authors in [3, 4] describe cognition as “the

process by which an autonomous system perceives its environment, learns from15

experience, anticipates the outcome of events, acts to pursue goals, and adapts

to changing circumstances”. This definition identifies three core components for

2

robotics. A cognitive system needs (i) perception components in order to perceive

the environment, (ii) processing components in order to learn from experience,

anticipate the outcome of actions and adapt to changing circumstances, and20

(iii) action execution components in order to purposely act to achieve goals. In

addition, a robot’s cognitive architecture requires a place to hold information

acquired from perception and action execution so that the processing components

can access and process the data and eventually store the results back in this

place – the memory. We argue that a memory system (or memory in short) is25

a key element in any cognitive architecture. Such a memory should not only

connect system components and store multi-modal information on different levels

of abstraction but provide mechanisms and services for abstraction of semantics

from sensorimotor data, parametrization of symbolic plans for execution in a

given context and prediction of action effects.30

To this end, we formulate our first hypothesis: A memory system in a cog-

nitive robot control architecture mediates between i) high-level abilities, usually

represented in a symbolic manner, such as language understanding, scene under-

standing, planning, plan execution monitoring and reasoning, and ii) low-level

abilities, such as sensor data processing, sensorimotor control. This means that35

the memory system must be able to process a huge amount of data – no matter

if the data is symbolic (e. g. plans, words, relations, etc.) or sub-symbolic (e. g.

images, joint configurations, forces, etc.). It must build a bridge between sub-

symbolic (sensorimotor) representation and symbolic (semantic) representation,

tackling the signal-to-symbol-gap by e. g. learning representations of perception-40

action dependencies in form of Object-Action Complexes (OACs) as proposed

by [5].

This observation leads to our second hypothesis: Multi-modal representations

are key. The ability to store multi-modal information, the efficiency of storage and

retrieval or the ability to learn from such data require a meaningful and efficient45

multi-modal representation of knowledge. This representation must be specific

enough to differentiate between symbolic and sub-symbolic information. On the

other hand, the representation must also support generalization on sensorimotor

and symbolic level. Further, it must support associations of knowledge [1]

because the system needs an understanding of how perception and action are50

coupled and which sensations usually occur together. Such multi-modality applies

explicitly to information resulting from different cognitive processes within the

architecture.

3

Sensory Memory

Vision

Proprioception

Audition

...

Working Memory

Objects

Skills

Affordances

Grasps

Speech Plans & Tasks

Navigation

Human

...

Long-Term Memory

Semantic Memory

Multi-Modal
Episodic Memory

Procedural Memory

Prior Knowledge

Locations

Motions

Objects

Skills

Memory and Communication

Language
Understanding

Scene Understanding
Task

Planning
Plan Execution &

Monitoring

Task Execution and Control

Sensor Measurements Real-time Control

Sensor Firmware and Drivers Motor Firmware and Drivers

Hardware and Abstraction

Lo
w

 L
ev

e
l

M
id

 L
ev

e
l

H
ig

h
 L

ev
e

l

in
it

ia
liz

e

Unified data representation

Unified data representation

en
co

d
e

re
ca

ll

Figure 2: Overview of the memory system as mediator between a symbolic high level and
sub-symbolic low level. The memory system is implemented in the robot software framework
ArmarX 2

The main contributions of this paper are two-fold: (i) On a conceptual level,

we identified requirements (or characteristics) of memory systems of a cognitive55

control architecture of a humanoid robot to support our two hypotheses. These

requirements comprise the five concepts active, episodic, multi-modal, associative

and introspective, as well as the three technical requirements distributed, access-

efficient and long-term. We argue that a memory is an active element within the

architecture, i. e. it is not simply a passive storage device but it is able to process60

multi-modal, both symbolic and sub-symbolic data. The ability to inspect

information and to adapt behaviors based on such information greatly supports

2See https://armarx.humanoids.kit.edu and [6].

4

https://armarx.humanoids.kit.edu

the active role on the memory. Further, we argue that it is beneficial to manage

data episodically, no matter if it is declarative or non-declarative knowledge.

Finally, we explain that associations of how knowledge is shared within the65

system and how such knowledge is extracted from data yield great benefits for

data processing, learning and development. The technical requirements are all

related to improving the system’s overall efficiency. Further, we promote the need

for memory-driven cognitive control architectures for complex robot systems

such as humanoid robots with these core characteristics to create systems with70

advanced cognitive abilities. (ii) The above considerations served as guidelines for

the implementation of the memory system with the described core characteristics

in our robot software framework ArmarX.

We take inspiration from cognitive science [7] for the realization of the

memory system of our cognitive robot control architecture but with special75

focus on optimizing data flow and making the development and integration

of new components easier. The implementation further includes a novel way

for representation information in the memory, which allows the inspection of

information at run-time. Overall, we provide an overview of the technical

implementation of the memory system that meets the requirements of complex80

robotic systems, such as humanoid robots, including a broad evaluation of its

efficiency. We would like to emphasize that with this work we do not describe a

complete cognitive architecture, but focus on the aspect of a memory system

in such architectures. From a user perspective, we show how our new memory

system optimizes data flow, enables mediation between high- and low-level in85

operation and leverages the integrated key characteristics in multiple use cases.

The remainder of this paper is structured as follows: Section 2 gives an

overview of the memory classes known in cognitive psychology, which are often

used for the realization of memory-based cognitive architectures for technical

systems. In addition, we compare related cognitive architectures with a special90

focus on their design and implementation of the memory including a comparison

of the conceptual characteristics. The conceptual and technical concepts of

our memory system are then motivated and described in detail in Section 3.

Subsequently, we provide a technical overview of our memory system and its

implementation in ArmarX, including the working memory, the data representa-95

tion format and the long-term memory in section Section 4 A broad quantitative

evaluation of our memory system follows in Section 5. Section 6 discusses use

cases of the memory system, demonstrating the usage of its new capabilities

based on the implemented characteristics. In Section 7 the contributions of this

5

Declarative
Memory

(Conscious)

Procedural
Memory

(Unconscious)

Forgotten if not

encoded or rehearsed!

Forgetting within 15 to

25 seconds

Long-term
Memory

Sensory
Memory

Working
Memory

Lost if not attended to!

Forgetting typically

within 1 second

If we pay attention

and rehearse it,

it passes to…
Encoding & Storing

Retrieval

Sensory

Input

Visual

Auditory

Touch

...

...

...

Repetitive rehearsal (retains

Information in working memory)

Episodic
Memory

Semantic
Memory

(facts & events) (skills)

(General knowledge)(Personal recollections)

Figure 3: A taxonomy of memory classes. Multi-modal sensory information is passed from a
sensory memory over a working memory to a long-term memory. Long-term memory itself is
be subdivided into declarative memory and non-declarative (here procedural) memory.

work are summarized and planned extensions of the presented architecture are100

discussed.

2. Related Work

In this section, we briefly describe the different memory structures as moti-

vated from cognitive psychology. Second, we discuss related cognitive architec-

tures with respect to the identified core characteristics of a memory system.105

2.1. Memory

By studying amnesic patients and animals in the second half of the 20th

century, researchers found out that different areas of the brain are responsible

for different memory tasks, motivating the assumption that memory consists of

several subsystems [7]. Findings from the medical history of famous patients such110

as Henry Gustav Molaison or Clive Wearing greatly influenced the development

of cognitive psychology and theories that attempt to explain the connection

between brain function and memory [8].

Based on such theories of memory, [9] proposed the so-called Multi-Store

Model. This theoretical model of human memory introduced three types of mem-115

ory: (i) A sensory memory that processes perceptual information, (ii) a long-term

memory that holds information for a long duration, and (iii) a short-term memory

6

that holds information through repetitive rehearsal and which receives informa-

tion from the sensory memory through attention and from long-term memory

through retrieval. Newer works distinguish between short-term memory and120

working memory or question a clear distinction between different memory types

for biological systems altogether [10]. However, such taxonomies provide a basis

to structure and classify artificial memory systems into a taxonomy. Figure 3

shows a taxonomy of memory classes. Muli-modal sensory information is passed

from a sensory memory over a working memory to a long-term memory. Long-125

term memory itself is be subdivided into declarative memory and non-declarative

(here procedural) memory.

2.1.1. Sensory Memory

The sensory memory (SM) holds perceptual information for a short time

duration and thus it acts as a cache memory or repository for incoming sensory130

information. In biological systems, sensory receptors take e. g. visual, auditory

or touch information and forward it directly to the nervous system for further

processing. It is common to distinguish between different sensory memory types

for different modalities such as iconic memory for visual information, echoic

memory for auditory information, etc. [11]. The sensory memory is assumed135

to be a highly volatile storage containing raw, unanalyzed sensory data that is

derived from the senses. The data is only stored long enough to be passed to the

working memory (WM). To limit the amount of data transferred to the WM,

the data is only transferred when it is attended to, and is lost otherwise.

2.1.2. Working Memory140

Similar to the SM, the working memory (WM) holds information for a

limited time duration. However, this duration is longer and is in the order of

seconds [12, 13]. In addition, the WM can consciously be controlled by attention

mechanisms and is therefore important for reasoning, learning, problem-solving,

and other mental processes. The ability to have certain details ready, even if they145

are not yet stored in long-term memory, supports a variety of everyday mental

processes. Examples include remembering the first part of a sentence or keeping a

number in mind while solving a mathematical problem. Studies show that people

are able to keep track of several items at the same time [14]. This motivates the

assumption that the WM has a relatively small capacity of 7± 2 chunks [15],150

when not using exploits like repeating information out loud, regardless of whether

the elements are digits, letters, words, or other units. Newer research distinguish

7

between the modalities,e. g. seven chunks for digits, six for letters, and five for

words [16]. According to [17], the total amount of chunks can not be increased –

we can only increase the complexity of the referred information. The WM is not155

only exclusive to humans as animals have also shown similar abilities such as

storing and maintaining several items simultaneously in memory, remembering

their order and manipulating them [14].

The working memory is sometimes used interchangeably with short-term

memory (STM) [10], but some consider the two forms of memory to be distinct160

and argue that working memory allows for the manipulation of stored infor-

mation, whereas short-term memory refers only to the short-term storage of

information [18]. For simplicity, we do not explicitly distinguish between WM

and STM in this work.

2.1.3. Long-Term Memory165

The long-term memory (LTM) is intended for the storage of information

over a long period of time. Through the process of repetitive rehearsal and

association, memories of WM consolidate to LTM or an existing memory in the

LTM gets reinforced [9]. The WM can then retrieve the data from the LTM

when it is needed for processing. During the process of consolidation, data is170

encoded into a special representation to identify groups and for generalization.

However, memories stored in LTM are not saved in a static state. Studies showed

that memories in LTM are transformed every single time they are accessed [19].

According to [7], the LTM can be divided into two types. (i) Declarative memory,

also known as explicit memory, that contains information such as facts and events175

and is managed through conscious control, and (ii) Non-declarative memory

contains implicit knowledge, such as the ability to perform various actions or

behavioral control parameters.

Declarative Memory.180

The declarative memory can be further subdivided into two types. The

semantic memory consists of general knowledge about the internal state and

the environment such as facts, ideas and concepts. In the context of cognitive

architectures for technical systems, knowledge stored in this part of the memory

is usually assumed to be symbolic [20]. In comparison, the episodic memory185

contains episodes or autobiographical experiences occurring in an explicit spatial

and temporal context, i. e. what, where, and when something happened. There

is evidence that the knowledge of how information has changed in the past in the

8

episodic memory as well as the knowledge about facts in the semantic memory

form the basis for prediction and explanation. There is a strong coupling between190

them, as we derive new concepts from the experiences we have stored in the

episodic memory [21].

Non-Declarative Memory.

The non-declarative memory covers all information that is not consciously195

accessible. Again, this memory can be further subdivided. Priming describes

the ability to strongly accelerate the retrieval of information from long-term

memory by a related stimulus. It requires that knowledge can be associated

heterogeneously, i. e. no matter how the knowledge is represented. Priming can be

further subdivided into positive, negative, semantic, perceptual and conceptual200

priming. In classical conditioning, different stimuli are linked together. A

well-known example of classical conditioning is Pavlov’s dog [22], which showed

increased saliva production just by ringing the dinner bell. The neutral stimulus

“ringing of the bell” was thus linked with the positive stimulus “there is food”,

which triggers a physical reaction. Non-associative learning is the simplest205

form of learning as it does not require stimuli association [23]. Habituation and

sensitization are the two forms of non-associative learning. Habituation describes

the process of inhibiting a response after repeated exposures to a stimulus. The

degree to which a response is inhibited depends on the repetition rate of the

stimulus, its intensity, the duration of the stimulus, and how often the agent is210

exposed to the stimulus. On the other hand, a sensitized stimulus has increased

intensity and sensitization does not require repetitive stimuli. Even a single

stimulus may cause a reinforced response. For example, relapse of addiction can

be seen as sensitization. Even a few stimuli, e. g. from drugs or gambling, can

trigger a strong physical desire. The procedural memory is required for skilled215

behaviors and habits. There is less known about how humans store skills and

abilities except that skills are learned and refined through practical training and

that for learning a skill a large variety of areas of the brain are involved.

From the non-declarative memory, artificial systems often only explicitly

implement procedural memory [20]. However few approaches focus on how220

artificial systems can be conditioned and how this mechanism can be used in

social robots [24].

9

2.2. Artificial Cognitive Architectures

The development of artificial cognitive architectures is a longstanding and still

unsolved problem, e. g. the development of the cognitive architecture ACT-R [25]225

started in the early 1980s and is still ongoing. In general, artificial cognitive

architectures try to explain and represent the underlying processes of human

cognition, such as perception, attention, action selection, memory, learning,

reasoning, meta-cognition or prospection [26]. There is no implementation that

is able to solve all these tasks with similar performance to humans [20]. Thus,230

the proposed architectures focus on different aspects of cognition.

[20] estimate the number of artificial cognitive architectures to be around three

hundred, of which about one hundred are being actively developed. Artificial

cognitive architectures can roughly be divided into three classes [20, 27, 3, 28, 29]:

(i) Cognitivistic architectures, where knowledge is usually represented as symbols,235

(ii) emergent architectures that focus on sub-symbolic processing and self-su-

pervised learning of how knowledge is associated, and (iii) hybrid architectures

that combine both types of processing. Not every cognitive architecture is fully

integrated in the sense that it covers all the aforementioned processes of human

cognition.240

2.2.1. Cognitivistic Architectures

In cognitivistic approaches, cognition is achieved by computations performed

on internal symbolic representations. Approaches following this paradigm focus

on aspects of cognition that is constant and task independent [26]. This way

of representing information is natural, intuitive and often very performant as245

irrelevant data can be abstracted away. Symbols are ideal to represent descriptive

problem statements and actions. They can easily be enriched with probabilities

and beliefs. Thus, symbolic representations are usually chosen for complex

high-level abilities such as planning, reasoning and language understanding. On

a semantic level, they can be used to learn from experience. Cognitivistic agents250

that act in the real world require rules to derive symbols from the sub-symbolic

sensory input overcoming the Signal-to-symbol-gap [5].

EPIC [30] (Executive-Process/Interactive Control) implements such a cogni-

tivistic architecture. One goal of EPIC is to model cognitive executive processes

with a focus on detailed timing of human perceptual, cognitive, and motor activ-255

ities during multiple tasks. EPIC requires Sensory and Perceptual Processors

to derive symbolically coded changes in sensory properties. These processors

accept visual, aural and tactile inputs. The WM of EPIC is a collection of

10

modality-specific items, but also contains perceptually unrelated information

such as goals and actions, and is updated periodically. Long-term knowledge is260

encoded as production rules.

Related to EPIC, ICARUS [31] is a cognitivistic architecture that focuses on

problem-solving. In each recognize-act cycle, perceptual information is converted

into short-term beliefs using categorization and inference and stored in the WM.

Such beliefs are used to find an action sequence from the current state to a265

goal state. Again, production rules to abstract from sensory input to beliefs are

stored in the LTM, along with current goals and known actions. While EPIC

has a one-way connection from LTM to WM, and thus is not able to learn new

production rules, ICARUS is able to learn the connection between skill execution

and goal achievements in the form of new skills. Further, it is able to update270

skill constraints from failure executions.

2.2.2. Emergent Architectures

Symbolic representations can also have restrictions. Cognitivistic architec-

tures that have a fixed predefined set of production rules to generate symbols

from perception are less flexible and robust against a constantly changing envi-275

ronment [20] as new production rules are not learned during operation3.

Thus, another approach for flexible systems that are able to adapt and learn

from the interaction with the environment focuses directly on sub-symbolic

representations as emergent systems do – typically by exploiting highly parallel

models based on connectionism. Ideally, such systems evolve during operation280

to a full cognitive state. Emergent approaches are often heavily influenced

by neurology and cognitive psychology studies, especially those of infants in

which innate and learned properties and abilities are discussed and identified.

The architecture itself is usually assumed to be fixed and thus belongs to the

innate properties while ontogeny is achieved through learning from interaction285

with the environment and experience [27]. Because of the focus on learning

from interaction with the environment, emergent approaches require a physical

body [26].

Unfortunately, implementations of such systems often lack transparency. It

is difficult for programmers to implement inference rules or to bring in prior290

knowledge because this functionality is not intended by the architecture. The

3If some approach includes learning of new production rules from the sub-symbolic environ-
ment, it would rather be hybrid than cognitivistic.

11

system should learn and adapt by itself.

As an architectural approach, the Self-Aware Self-Effecting (SASE) [32]

emergent cognitive architecture is based on the idea that intelligence emerges

from the interactions and connections between simple, low-level elements, rather295

than from a central, pre-programmed control system. In SASE, the basic

building blocks of intelligence are simple, self-aware agents that can sense and

act in their environment, and that are capable of forming complex networks

of interactions and relationships. These agents, working together, are able to

generate complex and adaptive behavior, without the need for a centralized300

control system. Emergence in SASE is achieved by the combination of self-

awareness, self-effectuation, and interaction. Self-awareness allows an agent

to sense and represent its own state, and thus to adapt its behavior based

on that state. Self-effectuation allows an agent to act upon its own state,

thereby influencing its own behavior. And interaction allows agents to exchange305

information and coordinate their behavior, thereby creating the potential for

emergent phenomena, such as cooperative and competitive behavior, and the

emergence of higher-level structures and patterns.

In our previous work [33], we investigated how an episodic memory can be

modeled based on connectionism. In this approach, the memory was tasked to310

convert visual experiences into a latent representation that facilitates encoding,

recalling, and predicting sensorimotor experience using unsupervised learning

using Variational Auto-Encoders (VAE) [34]. Through the utilization of two

different decoders, the learned representation can be reconstructed and predicted

for the next frame. For memory, such a learned representation is beneficial315

as it generalizes and compresses knowledge. In [35], we extend this approach

to support multi-modal information, including visual information, the robot’s

configuration and platform pose in global coordinates, actions, plans and goal

information, object labels and locations, and recognized speech as text. Using

this multi-modal data, the system was tasked to answer user queries given in320

natural language. A deeper insight into how the memory supports this task is

given in Section 6.4.

2.2.3. Hybrid Architectures

Hybrid systems combine the best of both previous approaches. Such imple-

mentations often use symbolic representations for high-level cognitive abilities325

and sub-symbolic representations for learning and development. Today, such

cognitive architecture is the most prevalent type [20] and the most suitable for

12

the realization of robot cognitive architectures.

One of the earliest cognitive architectures that is still maintained and devel-

oped is Soar (State, Operator Apply Result) [36, 37]. The goal of the Soar project330

is to develop an artificial system that has similar cognitive capabilities as humans,

i. e. knowledge-intensive reasoning, reactive execution, hierarchical reasoning,

planning, and learning from experience, and to find out what computational

structures are required to support human-level agents.

Perceptions are converted into a scene-graph-based representation and stored335

as such in WM along with information about targeted goals. Beyond the WM,

Soar manages three different types of long-term memories: (i) A procedural

memory that contains skills as if-then-rules, (ii) a semantic memory that contains

facts and declarative information about tasks, and (iii) an episodic memory that

manages experiences consolidated from the WM in form of snapshots. Next to340

symbolic representations, Soar includes sub-symbolic processing, i. e. to generate

symbols from sub-symbolic percepts or to control symbolic processing [38]. Soar

has multiple learning mechanisms for different types of knowledge: Chunking

and reinforcement learning acquire procedural knowledge, whereas episodic and

semantic learning acquire the corresponding types of declarative knowledge.345

The ISAC (Intelligent Soft Arm Control) [39] hybrid cognitive architecture

is constructed from an integrated collection of software agents and associated

memories. The software agents encapsulate all aspects of perception, cognition

and action and operate asynchronously. Perceptual events, encoded through

a Sensory-Ego-Sphere (SES) [40] are first placed in the STM. An attentional350

network determines which events are relevant for the current situation and

forwards this information to the WM. Additionally, WM temporarily holds

information about motivation, goals, actions and internal processes if needed

for the current task and encapsulates expectations for the future simulated by

a Central Executive Agent. The LTM stores procedural, semantic and episodic355

knowledge (abstractions of SES, enriched with targeted goals, performed actions,

outcomes and valuations) in multiple layers, supporting an efficient retrieval of

memories. Associations are stored as state transitions in episodic memory.

LIDA (Learning Intelligent Decision Agent) was developed as a biologically

inspired cognitive architecture to model all aspects of cognition in form of a360

global cognitive cycle [41]. It includes a large number of cognitive modules,

some of which have short-term or long-term storage capabilities. Its cognitive

cycle is divided into three phases: a perception and understanding phase, an

attention phase, and an action and learning phase. During the perception and

13

understanding phase, sub-symbolic data from the environment is analyzed and365

translated into symbols corresponding to objects, entities or events in the Percep-

tual Associative Memory module. A Current Situational Model holds information

about an agent’s present situation enriched through recall of experiences from

the long-term memory modules by using local associations or similarity measures.

Information about the present may decay if not stored in the long-term memory.370

During the attention phase, the content of the Current Situational Model is

surveyed and the most salient information is broadcasted to all modules. During

the action and learning phase, the modules use the broadcasted information for

learning and execution, e. g. the Pocedural Memory Module instantiates behaviors

that can then be executed.375

A comprehensive system is CRAM (Cognitive Robot Abstract Machine) [42]

that fuses perceptual information, semantic knowledge taken from a suite of

knowledge bases, and execution results of simulated actions in order to carry out

vaguely defined goal-directed everyday activities. To abstract execution plans in

such tasks, CRAM uses designators (i. e. placeholders) which require runtime380

resolution. As soon as available, these placeholders are filled by knowledge from

the internal knowledge base KnowRob2 [43]. This system contains a large-scale

ontology of symbolic information used for reasoning and generalization. To

integrate non-symbolic information, computable predicates are used. Episodic

knowledge is represented as NEEMS (narrative-enabled episodic memories), a385

first-order time interval logic expression enriched with detailed episodic low-level

information, such as perceptual or procedural events and signals. Sub-symbolic

information is used through logic interface using computational predicates,

inherently grounding resulting representations and ensuring consistency with the

environment. The chosen data structure thus allows inspecting information in390

the memory in order to use it for learning, reasoning, simulating the outcome of

actions and evaluating their feasibility. Apart from gathering knowledge in the

real world, episodic knowledge can also be generated or refined by simulating

actions in an inner-world model consisting of a high-quality virtual reality system

and physics engine. Generalization and Specialization are achieved through meta-395

cognitive induction.

The predecessor memory model of our work was part of a hybrid architecture

[44, 6] implemented in ArmarX. A centralized working memory component

receives arbitrary data, i. e. symbolic and sub-symbolic information) stores it and

eventually retrieves it when needed. The working memory is initialized via prior400

knowledge, a special sort of long-term knowledge containing only information

14

provided by programmers, such as object, robot and world model, object features,

and pre-learned skills. The perception data is passed to the WM, replacing the

last instance of the same type. Thus, the WM always only holds the most recent

information. Accessing the WM is done either directly or by listening to memory405

change events. Snapshots of situations including robot pose, robot configuration

and object poses could be stored in the LTM. Skills and actions were stored in

the procedural memory in the form of symbols mapping to executable statecharts

that can be instantiated and executed if needed.

2.3. Comparison of Memory Systems in Artificial Cognitive Architectures410

In artificial cognitive architectures, memory is an essential part of the system.

Thus, almost every system described in the survey in [20] models some sort

of memory. As described above, working memory, procedural memory, and

semantic memory are commonly represented, while sensory memory and episodic

memory are explicitly modeled by only a few.415

However, existing memory systems of cognitive architectures are often crit-

icized for having the wrong focus [1], since in some artificial systems (e. g.

[30, 31, 6, 44]), the memory is only assumed to be passive storage. This means

that memory has no active state and that new information that enters the

system has no influence on how existing information is represented, processed420

or interpreted. Instead, memory should be an active part of the system that

changes during operation. The memory itself must be able to adapt to circum-

stances and respond to new data. Some architectures partially implement this

requiremen,e. g. in Soar [36] where the WM does not react to new data while the

LTM involves learning from new data. In addition, many cognitive architectures425

focus on the implementation of different types of memory without considering

the interconnection between them [30, 6, 44], associating entities of different

modalities. Sometimes, only association between homogeneous data types is

possible [39, 36]. Without the possibility to store multi-modal information and

to associate multi-modal memories, it is difficult for the system to draw common430

conclusions from knowledge obtained from different sources. Few systems hide

the ability to associate information behind neural networks that learn a connec-

tion of data sources [35]. Such associations are however useless for applications

outside the neural network, such as reasoning components. [1] also criticized the

way how information is represented in artificial memory systems. Physiologically,435

all areas of memory are the same, i. e. there is no structural difference between

WM, episodic memory or semantic memory. Hence, we believe that memory

15

should support an inherently episodic structure and that the information stored

in memory must have a unified representation. Artificial cognitive architec-

tures usually utilize specialized representations and manage modality-specific440

knowledge in modality-specific containers [30, 31, 41, 42, 39, 6, 44].

In addition to the identified requirements by [1] and closely related to an

active memory, we emphasize that introspection is another key component of

memory and data representation as it allows the system to adapt its behavior

based on the stored information, to learn and use the information for e. g. internal445

simulation, augmentation and prediction. Thus, introspection is also strongly

related to the ability to monitor the system’s internal cognitive processes. Some

cognitive architectures only focus on the perception-action coupling [31], however,

other architectures explicitly model this capability [32, 36, 42].

In summary, we believe that a memory must be active, inherently episodic450

and multi-modal, associative and introspective. Only a memory that supports

all these characteristics is able to adapt to new situations and respond to

new data, have a unified representation of knowledge and support the overall

system with data-driven services and data tracing for high-level abilities such

as reasoning, explanation, prospection, augmentation or simulation. A more455

detailed explanation of these characteristics, including technical requirements

for a memory system running on a humanoid robot system is given in Section 3.

Table 1 shows a comparison of the cognitive architectures described above.

We omitted the architecture SASE [32] as is it more an architectural approach,

not an implemented system and thus open to many possibilities. The requirement460

that the memory adapts to new data and actively changes is fulfilled in particular

by emergent and hybrid architectures. For emergent architectures, this property

therefore follows directly from their definition. Hybrid architectures usually

use the ability to process symbolic and sub-symbolic data for learning and

development, also fulfilling the active requirement. Some architectures do465

implement an episodic memory, but they do not support an inherently episodic

structure in all memory structures. On the other hand, in our previous work in

[35] we only model episodic memory omitting WM. We strongly believe that an

inherently episodic structure is required for all modalities and for all memory

structures. Multi-modality is implemented by several systems. [20] gives a470

more detailed review of which modalities are supported by which cognitive

architecture. Associations are not explicitly modeled by every system. Especially

associations between different modalities are beneficial as they allow the system

to use correlated information during operation. To the best of our knowledge,

16

Cognitive Architecture Paradigm Active Inherently Episodic Multi-modal Associative Introspective

[30] cognitivistic ✗ ✗ ✗ ✗ ✓

[31] cognitivistic ✗ ✗ ✗ ✗ ✓

[35] emergent ✓ (✓) ✓ (✓) ✗

[39] hybrid ✓ (✓) ✓ ✗ ✗

[41] hybrid ✓ (✓) ✗ ✗ ✗

[42] hybrid ✓ (✓) ✓ (✓) ✓

[6, 44] hybrid ✗ ✗ ✓ ✗ ✗

This work hybrid ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of the aforementioned cognitive architectures with respect to the identified
requirements for a memory system in robotics. (✓) indicates that a requirement is only partially
fulfilled.

even CRAM does not explicitly link related experiences with each other, but it475

does link sub-symbolic knowledge of experiences with symbolic derivations.

Finally, the ability to inspect data in the memory is naturally given for

cognitivistic architectures as data is represented as symbols. Some hybrid

architectures claim to have an introspective datatype as well, usually facilitating

meta-cognition.480

3. Requirements for a Memory System

This section explains the conceptual requirements already outlined and

identifies the technical requirements for a memory for a complex robotic system.

3.1. Conceptual Requirements

The memory system should centralize knowledge but also structure data flow485

within cognitive architectures while at the same time being efficient, scalable,

flexible and understandable. Instead of various data exchange channels between

perception, processing and execution components, general methods and interfaces

should allow standardized communication between high-level and low-level.

Figure 4 depicts required conceptual characteristics of the memory structure490

and the underlying knowledge representation. As described in Section 2.3, some

17

C
o
n
ce
p
ts

Active Multi-modal Episodic Associative Introspective Explainability Reasonability

Prospection and
Simulation

Augmentation

𝑡

Modality A

Modality B

Support

and realize

𝑡

Figure 4: Identified conceptual characteristics for a memory system as motivated in Figure 1.

memory systems of related cognitive architectures already implement those

characteristics partially.

In the context of humanoid robots, various sensors perceive the internal and

external state. When performing a task such as bimanual mobile manipula-495

tion, many processing and execution components are involved simultaneously,

including scene interpretation from a static and/or dynamic scene as well as the

control of different parts of the humanoid robot such as e. g. hands, arms and

platform. Consequently, representing multi-modal data in memory systems is

mandatory, as is the association of knowledge [1], since most data modalities500

and experiences are highly correlated. In our memory, all knowledge shares a

unified representation. This allows us to define general methods for processing

multi-modal information. Further, we allow links between entities in the memory,

thus fulfilling the requirement of associated knowledge. Those links can be es-

tablished on a data level, e. g. associating haptic experiences with the performed505

action, or on an experience level, e. g. associating the task of searching an object

with the interaction with the object.

Time-series information is hereby of particular importance. In humans, the

episodic memory is concerned with the recollection, organization and retrieval

of time-series information [45, 46], i. e. personally experienced events occurring510

at a particular time, place and context. We believe that this is also true for

semantic and procedural knowledge. Seemingly factual knowledge may depend

on the temporal context, and is only considered a fact because it changes at a

very low frequency. An intuitive example of this is how Pluto was considered

a planet for the longest time, until being reclassified as a dwarf planet in 2006.515

Therefore, all data, either produced periodically in streams or as a consequence

of certain conditions, should be considered episodic and stored accordingly.

Also motivated by the fact that physiologically there is no difference between

episodic and working memory [1], we use one unified episodic structure for all

parts of our memory, thus making it inherently episodic.520

18

As already stated, the memory system should not be seen as a simple, passive

storage device. It is an active part of an agent’s cognitive architecture [3, 1]

which is highly influenced by the current context. The context not only influences

what we store and forget but it also influences how we store information. E. g.

highly emotional situations will create much stronger memories which decay525

much slower than memories taken from a normal situation [47]. In particular,

the memory must play a key role in learning how to derive symbols from sub-

symbolic multi-modal information by allowing to learn from experience, from

interaction with the environment and by trial and error. This also means that

the information stored in the memory must be introspective, i. e. the memory530

must be able to analyze the information, adapt its behavior to the given data and

possibly discard knowledge if that knowledge is redundant or not necessary for

the current situation. In our case, for example, the memory learns predictability

from incoming data. Furthermore, the memory adapts to the amount of incoming

data.535

In order to reason about conditions of past events, explain why an agent

acted in a particular way, to predict how the information might change in the

future or even to augment existing or simulate new experiences we conclude that

our memory system has to be multi-modal, associative, episodic, active

and introspective.540

3.2. Technical Requirements

Complex humanoid robotic systems further pose several technical challenges

regarding the implementation of a memory system of their cognitive architecture.

In this section, we highlight these challenges, identify the resulting technical

requirements, and derive necessary paradigms. The requirements summarized545

in Figure 5 provide answers to the questions of (i) where to run the memory

system, (ii) how to improve the efficiency of access, and (iii) how to deal with

space limitations.

3.2.1. Where to Run the Memory

Complex robotic systems such as humanoid robots are data-intensive systems550

that use several special-purpose computers connected to each other via common

interface (usually Ethernet) to process sensory data and control the action

execution. To reduce the throughput and response times, in particular in the

case of visual task, a cognitive memory architecture must be designed in a

distributed manner, with memories located directly on the machine where555

19

Te
ch
n
ic
al

Distributed Access-efficient Long-term

Memory Direct access

Information broadcast

Figure 5: Technical characteristics of a memory system as part of a robot cognitive control
architecture.

the data is produced. This makes extending the system at run-time easier,

as additional memories can be enabled/added on demand, or disabled to save

resources when not needed anymore.

3.2.2. How to Improve Efficiency of Access

Another possibility to reduce the throughput is to adapt to the production560

frequency of the data source. In general, we can distinguish between periodically

produced and event-driven generated data, i. e. the data is either produced

periodically in streams, or as a consequence of certain conditions, thus being

event-driven. For systems with limited communication bandwidth, it is desirable

to avoid unnecessary requests to the memory, for example, if no new data is565

yet available. This is especially true for event-driven data sources, where data

may be produced at irregular intervals. For this reason, the memory is able

should be able to inform clients when new data is available. Clients can then

decide whether to request the memory specifically or to wait for the next update,

making the memory access-efficient.570

3.2.3. Assessing What to Store

Humanoid robots are equipped with a variety of sensors that generate large

amounts of data, potentially at high frequencies. A memory architecture thus

needs to be able to handle such large data volumes, providing long-term

capabilities due to limited main storage. Since the storage system of a humanoid575

robot cannot be large and fast enough to simply store everything, the data

must be assessed and reduced according to their importance. This can be done

by primarily storing data that was produced at or near significant points in

time, e. g. keypoints, identified by higher-level cognitive processes, and/or using

dimensionality reduction approaches to construct meaningful latent spaces.580

20

Depending on the use case, specific models can also be used to aggregate

data into a dedicated representation. Finally, the system must also be able to

assess and delete data that has already been stored if it is outdated, irrelevant,

or proves to be incorrect. Overall, in terms of assessment, we need to store data

that allows better execution of the robots actions, analysis and reasoning on585

recorded episodes, and the prediction of future states of the robot itself or its

environment.

Note that this requirement is strongly linked to long-term memory and

forgetting in biological systems. However, since we look at memory from an

engineering perspective, we evaluate this property to be technical. If a system590

with unbound memory and unbound computational resources were available,

then long-term storage and forgetting may not be necessary. The conceptual

requirements of a memory motivated in 1 apply to long-term memory as well.

With this, we conclude that, in addition to the motivated conceptual requirements,

our memory system needs to be distributed, access-efficient, and long-595

term.

4. The Memory System

In the following, we describe how we integrated the identified requirements

in a memory system for our cognitive control architecture shown in Figure 2.

Hereby, we rely on a multi-modal data representation to support introspection600

and fulfill key requirements of a suitable knowledge representation for robot

cognitive architectures [48]. Similar to its predecessor described in [6, 44], our

novel memory framework consists of:

1. Sensory Memory (SM) where data is held for a very short duration until

it may be passed to the working memory.605

2. Working Memory (WM) that holds the current state of the world and the

robot’s internal state in a volatile storage. It can be updated by the SM

through perceptual processes or by cognitive processes, e. g. recalling an

episode from the Long-term Memory or prior knowledge.

3. Long-Term Memory (LTM), which complements the WM, provides persis-610

tent storage capabilities and encodes the information into a more graduated

representation.

21

4. Prior Knowledge (PK) contains information that is provided by the pro-

grammer and thus already known to the robot. During startup, the WM

is initialized with this known data such as robot, objects and environment615

models, pre-defined motion trajectories, etc.

First, we will describe the working memory, which is the part most clients are

directly interacting with. Afterwards, we present the long-term memory and its

learning capabilities and which adopts the working memory’s principle structure

but provides a more permanent storage than the working memory.620

From a simplified perspective, the memory system can be viewed on three

levels of detail: (i) The distributed memory system, which is a collection of

memory servers running in their own processes, (ii) a single memory server,

which stores data in episodically structured segments, and (iii) a single data

instance, which holds data in a general, interpretable format.625

4.1. Distributed Memory System

The ArmarX memory system is a distributed system implemented through

several memory servers. Each memory server is a separate ArmarX component,

i. e. a process communicating with and providing interfaces to other components

via a middleware. All memory servers offer a common interface for, among others,630

reading and writing data. A concrete memory server may provide specialized

interfaces for its respective modalities (e. g. objects). However, we want to

emphasize that all memory servers have the same structure. All memory servers

are able to hold arbitrary data – no matter if it’s symbolic or sub-symbolic

information. Thus, the memory servers are not modality specific. All memory635

servers register themselves in the Memory Name System (MNS) on startup. The

MNS is a central registry, which allows memory clients to get access to the

memory server handling a specific modality given a human-readable ID of the

modality (e. g. “Object/Instance”). This is similar to and inspired by the Domain

Name System (DNS) of the internet, which resolves human-readable URLs to640

machine-readable IP addresses. Memory servers can be added at any time and

distributed to several computers, distributing the load and reducing the network

traffic and response times by running memory servers close to related hardware

and memory clients such as a camera and our visual perception pipeline, greatly

supporting the system’s scalability.645

As shown in Figure 6, the distributed memory system can be visualized as a

cloud of memory servers, running in separate processes on different machines, each

22

Memory Name System

Human Memory

• Human instances and poses

• Human profilesL
T

M

...

L
T

M

Robot State Memory

• Robot description

• Robot configuration

• Robot localization

• Motor values

L
T

M

Vision Memory

• RGB Images

• Depth Images

• LIDAR results

• Camera calibration

L
T

M

Object Memory

• Object instances and poses

• Object classesL
T

M

System State Memory

• CPU Usage

• RAM Usage

• Active processes

L
T

M

Grasp Memory

• Previously known grasps

• Calculated grasp candidates L
T

M

Skills Memory

• Known skills

• Skill execution requests

• Skill results

L
T

M

L
T

M

L
T

M

L
T

M

L
T

M

L
T

M

L
T

M

L
T

M
Figure 6: The distributed memory system with some of the memory servers running in ArmarX.
Each memory is running in a separate process and may run on a different machines. All
memories are connected through the MNS. Each memory server manages its own LTM.

one extending the system with new modalities. The robots’ full memory is formed

by the union of all distributed memory servers. Each memory server manages its

own working memory and a corresponding persistent storage. Working memory650

and long-term memory of a single memory server share the same structure, i. e.

hierarchical segments with a temporal structure with data in a general and

introspective format. The working memory part is limited in space while the

long-term memory part is not. The working memory can be accessed by clients

to read and write data in a hierarchical structure. By querying the memory655

servers using temporal cues, the user can get access to the stored information.

The memory servers accept precise queries to return data for a precise point in

time as well as broad queries to return approximate information. Further, the

working memory can notify clients as soon as they receive new information thus

fulfilling the requirement of access-efficiency. The memory servers are used to660

distribute and structure the data – usually, each memory server holds information

related to a specific modality, sensor or functionality to make the system more

understandable for users. E. g. the Object memory holds all information related

23

Level Description Example Key

Memory Collection of semanti-
cally related modalities

Data related to Grasp
planning and execution

Grasp

Core
Segment

Homogeneous container
of a specific modality.

Grasp affordances Affordance

Provider
Segment

Sub-segment contain-
ing data of a single
provider

Results of a grasp plan-
ner

MyGraspPlanner

Entity Physical thing or con-
cept evolving over time

Grasp affordances of a
specific object

blue-cup

Entity
Snapshot

State of entity at a spe-
cific point in time

Grasp affordances at
time t

2022-02-18
13:06:56.492182

Entity
Instance

One data instance at a
point in time

Second grasp affor-
dance

1

Table 2: Levels of the working memory data structure.

to objects such as object class information (name, parent classes, meshes) or

concrete object instances (instance name, pose).665

To free up space in the WM, information may be moved to the LTM. The

decision is based on the holding duration, space limitations or internal statistics

whereby associations are considered as well. If entity A has not been queried

recently, but is associated to entity B that is accessed very frequently, A will not

be moved to the LTM. Another alternative is to make that decision depending on670

the system state. A special System State memory server can be used to watch the

CPU and RAM usage and to change the behavior, e. g. to reduce or increase the

maximum size of all memory servers running on this machine. Both, the working

memory and the long-term memory hold the stored information episodically, i. e.

they hold a dictionary mapping from timestamps to data instances. Additional675

meta-information such as the name of the provider or the time it took to transfer

it to the memory can be used to analyze the data.

The memory servers implement the aforementioned concepts of a distributed

memory system and the inherently required episodic and associative structure.

Currently, our working memory holds data in plain text. There is no encoding680

as most components require precise information about how the robot is moving

or where objects are located.

24

blue-cup

bottle

sponge

O
b
je
ct

Class PriorKnowledge

Instance
PriorKnowledge

ObjectLocalizer

MNS

𝑡

Distributed
Memory

Memory
Server

Core
Segments

Provider
Segments

Entities Snapshots Instances Data

…

Metadata

Data

Figure 7: Hierarchical memory structure. The distributed memory system comprises several
memory servers which are registered in the memory name system (MNS). A memory server has
a name (e. g. Object) and multiple core segments (e. g. Class, Instance) specifying the stored
modalities. Each core segment can have multiple provider segments (e. g. PriorKnowledge,
ObjectLocalizer). A provider segments stores entities (e. g. blue-cup, bottle), which represent
timelines of a thing or concept evolving over time. Each observation or update of an entity
creates a snapshot at a specific point in time. Each snapshot can store multiple instances,
which finally contain the payload data.

4.2. Hierarchical Data Structure

The general working memory data structure comprises multiple levels listed

in Table 2 and illustrated in Figure 7, starting at a memory server down to a685

single data instance.

Data structures of level Memory as described in Table 2 is a semantic collec-

tion of one or many modalities, such as objects, actions, skills, images, locations,

relations, the robot itself, and so on. This memory is usually represented by

a single memory server and is identified by a memory name, e. g. Object or690

Navigation.

Segments are homogeneous containers of specific modalities, for example,

object classes, object instances, grasp affordances, grasp actions, images, point

clouds etc. The data structure contains two levels of segments: core segments

and provider segments. Core segments are usually defined statically by the695

containing memory and determine a core data type shared by all data in this

segment. Incoming data not fulfilling this data type will be reinterpreted as such

type if possible. Provider segments are created by clients writing to the memory,

i. e. providing data, at run-time. They serve three purposes: (1) They identify

the source of the data, (2) they create a separate namespace for the provider700

to avoid conflicting names on the next level, and (3) providers are allowed to

extend the core segment’s data type, such as pixel-wise labels in addition to

bounding boxes in image segmentation, allowing some specialization while still

being compatible with the general representation.

25

The elements of a provider segment are entities. An entity is a physical thing705

or concept that exists and evolves over time. Examples are images captured by

a camera or object instances reported by an object pose estimation component.

Entities are identified by names inside their parent provider segment. As entities

are supposed to evolve over time, we represent an entity as a timeline or history

states over time. Therefore, entities and thus the whole memory are inherently710

episodic, fulfilling the aforementioned requirement of an inherently episodic

memory. These discrete states are called entity snapshots. A snapshot can

represent a new sensory observation, the result of a cognitive process, or in

general an update to the knowledge of the robot. Finally, each snapshot contains

a list of an arbitrary (and potentially varying) number of entity instances. In715

practice, some modalities often only have one instance per snapshot, such as

object instances and the robot’s state, but others usually store multiple instances,

e. g. two images of a stereo camera or multiple extracted grasp affordances of an

object instance.

All elements of the hierarchical memory structure have keys, which are unique720

inside their parent container. The keys of memories, core segments, provider

segments, and entities, are textual names. The keys of entity snapshots are time

stamps, while a single instance has an integer index. This way, all elements on

all levels can be identified by a unique memory ID, which is the path through the

hierarchy down to the respective element. For example, the entity instance in725

Table 2 is identified by Grasp/Affordance/MyGraspPlanner/blue-cup/2022-02-

18 13:06:56.492182/1, while the mere entity is identified by Grasp/Affordance/

MyGraspPlanner/blue-cup, and the ID Grasp/Affordance refers to the core

segment for grasp affordances.

These memory IDs allow to create associations and cross-references between730

instances of different modalities, fulfilling the requirement of an associative

memory. Ideally, the output of a processing steps references the respective input.

Thus, complete traces of data through the processing pipeline are stored in the

memory, which could enable a cognitive agent to reason about the whole process

leading to, for example, a failed grasp attempt. Additionally, these traces help735

programmers to debug and improve processing pipelines.

4.3. Reading and Writing: Queries, Commits and Updates

Among others, memory servers offer interfaces for reading data from and

writing data to the working memory. Writing is done via commits. A commit

is a bundle of entity updates which are written to the working memory . Each740

26

1. Commit
Server 𝑆1Client 𝐶1 Client 𝐶2

2. Update

3. Query
Server 𝑆2

4. Commit

Figure 8: Event-driven pipeline scheme. (1) Client C1 writes data to server S1 via a commit.
(2) Server S1 broadcasts an update notification, which is received by client C2. (3) Client C2

performs a query to S1 to read the updated data. (4) Client C2 processes the data and commits
the result to another server S2.

entity update adds or updates one snapshot to an entity. Therefore, to create

an entity update a client must specify (1) the entity’s ID, (2) the snapshot’s

timestamp, and (3) the data of each instance at this point in time.

Each time a memory server receives a commit, it updates its internal data

structure and broadcasts a notification message to listening clients. This message745

contains the IDs of the memory snapshots that have been updated by the commit.

When a client receives a notification, it can decide whether it needs to react

to the updates; in this case, it can read the updated data from the server and

process it. These update notifications allow building data processing pipelines

in an event-driven manner as can be seen in Figure 8.750

To read from a memory server, a client performs a query. The structure

of a query follows the memory data structure: For each level of the hierarchy,

it specifies which elements should be part of the query result based on their

keys. For each of the name-keyed levels (memory, segments and entity), the

client can request all entries, a single entry with a specific name, or all elements755

whose name matches a given regex. For the entity snapshot level, there are many

options based on time stamps and logical indices. Commonly used snapshot

queries include the single latest snapshot (the current state), the snapshot at a

specific point in time, the snapshots in a time window (e. g. in the last 10 s), and

the latest n snapshots.760

Multiple queries at the same level can be combined to create a conjunction,

e. g. to request data from two specified core segments. In this case, each core

segment query has its own sub-queries for the lower levels. As a result, queries

have the same tree-like structure as the memory data structure, and can be

flexibly combined to create complex queries.765

27

4.4. Interpretable Data Format

The ability to inspect and analyze data is by default not supported by the

used programming language C++. C++ is standard in the context of robotics

frameworks in terms of performance. Therefore, we introduce the ArmarX

Interpretable Data Format (IDF), a special format that allows memory servers770

to use a common introspectable data representation. In its very essence, this

data format implements a recursive variant formulation with special extensions

that are frequently used in robotics (such as matrices, orientations, images or

point clouds) and minor optimizations for network transfer. All data in the

robot’s full memory is a composition of basic data-objects (int, long, float, double,775

bool, string and multi-dimensional byte array) and recursive data-objects (list

and dict). These objects can be inspected at run-time, are performant, are

transferable over the network, and offer a strong interface via standard C++

classes.

Segments of our memory can be annotated with static type information .780

That is a mirrored representation consisting of basic type-objects (i. e. int, long,

float, double, bool, string, time), special type-objects which get encoded into

multi-dimensional byte arrays (i. e. matrix, orientation, image, point cloud) or

container type-objects (i. e. list, tuple, dictionary, object, pair). Type annotations

do not contain data and only provide additive information for the underlying785

data objects. Thus, the relation of data-objects and type-objects is not bijective.

Type annotations are optional. Even if some segment has no knowledge about

the detailed type, it knows which members are present, their name and it can

inspect the data. This property is useful when implementing type-agnostic

procedures which are applied to all data objects in the memory, no matter what790

they represent.

Users can specify the static type information through XML. Our system uses

code generation as an abstraction mechanism to separate the type description

from the implementation. Given the type information in XML, IDF automatically

generates so called business objects for a particular implementation language. It795

also generates common interfaces to cast IDF data objects to its corresponding

business object and vice versa. These business objects are handier to use for

clients as the auto-generated C++ classes allow programmers to make use of all

programming language features, static type checking and code completion.

Separating type and data makes data objects interchangeable. Even if a data800

object only fulfills a part of some type, it can be casted to the corresponding

business object. Unmatched members stay uninitialized.

28

Another benefit of using code generation mechanisms is that our system

is able to generate similar code in different languages while maintaining the

network transfer ability of our middleware. Thus, memory servers and memory805

clients are not required to be implemented in the same language. Currently, IDF

supports C++ and Python as target implementation languages.

4.5. Long-term Memory and Deep Episodic Memory

While the working memory parts of memory servers represent a volatile

in-place memory that is limited in space, the long-term memory part can hold810

a large amount of data for a longer period. The exact hold time depends,

for example, on the access frequency and importance of the data and on the

parameterization of the memory server. In our implementation, the long-term

memory will be stored on the hard drive of the machine on which the memory

server is running. This reduces the network traffic and increases the response815

times of the system as data is not transferred via the network to a central storage.

To be space-efficient, the long-term memory converts memory instances into a

compressed but still generative and predictable format. Further, the long-term

memory is able to filter incoming and to forget already stored information.

The full pipeline to filter, store and encode data is shown in Figure 9. In an820

online phase, data is filtered based on their frequency or using fast similarity

measures compared to other entities of the same type. Remaining data gets

compressed using standard compression methods (e. g. JPEG [49] or MPEG-

4 [50] for images and videos, ZIP [51] for arbitrary snapshots) in order to reduce

the final file size. Which online compression technique is suitable depends on the825

parameterization of the memory server. Users can choose to not filter incoming

information and to only use lossless compression, which allows the long-term

memory to be used as a general tool for data recording.

In an offline phase, i. e. when the robot is inactive, the memory further com-

presses and abstracts the episodic information using machine learning techniques830

into a deep episodic memory. We utilize Auto-Encoders (AE) to convert the

snapshots into a generalized but still predictable format, similar to [33, 35]. The

ability to encode information evolves and improves over time as more training

data is available.

Currently, the encoding works for data types that do not contain strings or835

lists with a varying number of elements as they can not be converted into a

well-defined input format for machine learning. Our framework automatically

extracts those kinds of information and stores them separately, while the rest

29

Long-term Memory

Fast Online Compression Phase

Filters
Temporal, Equality

Special Encoders
Binary, PNG

Data Storage
Filesystem, SQL,

NoSQL

Compression
Binary, Entropy-

based, ...

Offline Compression Phase

Visual
Robot
State

Human Grasp Object Skill Location
System
State

...

Robot State
Encoder

Grasp Encoder

...

Data Analyzation

Data Storage
Filesystem, SQL,

NoSQL

Visual Encoder

Figure 9: The full pipeline to filter, store and compress data in the long-term memory part of
the memory servers.

of the information is passed to the AE. This representation does not affect the

efficiency of existence checks of snapshots. If a client queries a snapshot that has840

already been moved to the LTM and converted into its latent representation,

the memory can still access corresponding meta-data. If the memory finds

a matching snapshot, it will decode the information, convert it back to IDF

and finally return it to the WM. The WM can then forward the result to the

client. Thus, at run-time, each long-term memory part of the memory servers845

manages its data in two representations: (1) recent information, that is filtered

and compressed using the online methods and (2) older information, that has

already been brought into a latent representation.

We additionally implemented methods to use the information in the LTM

for the generation of new knowledge. Internal simulation is a powerful technique850

to refine the models used for generalization and prediction in our deep episodic

memory. Using a high-quality simulation engine [52], we are able to render past

experiences in new scenes or even to simulate the interaction with new objects as

shown in Figure 10. This technique is only used to simulate visual data, but we

plan to use it for physical interactions as well. The simulated data is finally used855

30

Figure 10: Techniques to visually augment experiences using a photo-realistic simulation
engine. (a) shows the original scene. (b) shows the same scene but with a different colored
object. (c) shows the same scene with a replaced object.

along with real data to train the auto-encoders of the deep episodic memory.

In summary, both the WM and the LTM are active parts of the memory

system. The WM can adapt its behavior to the current computer load and refines

its models to predict information and the LTM actively searches for suitable

data representations in order to compress, reproduce, generalize and predict860

them.

5. Technical Evaluation

We evaluated the new memory system empirically. Since all components

communicate with and through the WM we begin by evaluating the WM. The

WM must support large data transfers while providing a high availability for865

querying information. Second, we evaluate the LTM. Other than the WM, the

LTM must be able to store lots of data which, sooner or later, requires the LTM

to compress or even forget information.

All measurements were performed on computers equipped with an AMD

Ryzen 9 5900X with 12 cores, 64GB RAM and a NVIDIA GeForce RTX 3060870

running Ubuntu 20.04. We define three different data objects with an increasing

complexity taken from real-use implementations in ArmarX. First, a simple

object only containing a single long value (8 bytes of information). Second, a

moderate object containing a long, a string (with a fixed length of five chars) and

a memory link. In sum, this moderate data object has 33 bytes of information.875

Finally, a complex object containing memory links, nested objects, an image

with resolution 128 × 128 × 3 and several maps with fixed size. In total, this

object contains 49.225 bytes of information.

For each test, we calculated the means and variances over 1000 samples.

Further, we performed each test either with one single data entry or with a batch880

of 20, 50 or 100 entries.

31

Data Producer

Accessing Network Stack

Full Commit & Query

Data Storage & LookupConversion to and from IDF

Data Receiver
Memory

Figure 11: Overview of data transfer to and from the memory from arbitrary components. We
evaluated our memory by measuring the times required to commit to and query data from the
memory.

0,00

20,00

40,00

60,00

80,00

100,00

120,00

0 20 40 60 80 100

Memory Lookup

1,00

10,00

100,00

1000,00

10000,00

0 20 40 60 80 100

ti
m

e
in

 μ
s

batch size

Convertion from IDF

1,00

10,00

100,00

1000,00

10000,00

0 20 40 60 80 100

Full Query

Simple Moderate Complex

1,00

10,00

100,00

1000,00

10000,00

0 20 40 60 80 100

ti
m

e
in

 μ
s

batch size

Conversion into IDF

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

0 20 40 60 80 100

Data Storage

1,00

10,00

100,00

1000,00

10000,00

0 20 40 60 80 100 120

Full Commit

Simple Moderate Complex

Figure 12: Measured times to send a single or multiple instances to the memory including the
time to convert the auto-generated business objects to IDF. We calculated the mean values
over 1000 individual samples per data type and per batch size. Note that the first two charts
have a logarithmic scale on the y-axis.

5.1. Evaluation of the WM

We measure the time a producer needs to convert business objects and send

IDF data-objects to the memory and how long a consumer needs to receive

and convert the information back after being notified by the memory. Since885

all components run in different processes and maybe on different machines, the

chosen middleware ZeroC Ice [53] requires time to serialize the information,

access the network stack, transfer the information to the remote machine and

finally deserialize the information. We treat the middleware as a black box

system, thus, we have no influence on the times required for each of those steps.890

Because our memory is written independent of the chosen middleware, it could

also be replaced by e. g. ROS, which has lower mean latency values for the

transmission of data [54]. We will compare the measured results against direct

peer-to-peer connections and publish/subscribe channels.

Figure 11 provides an overview of how the measured times affect the overall895

data flow to and from memory. The times to commit information to the memory

32

are shown in Figure 12. The diagram “Full Commit” depicts the times needed

to commit IDF data-objects to the memory, including the network overhead.

The diagram “Data Storage” however only shows the time needed to insert the

received information into the memory structure.900

With increasing complexity the times required to convert or commit large

batches of objects increase linearly with their data size. However, when trans-

ferring small amounts of data over the network we observe minimum costs for

accessing the network stack. Even a transfer of small objects takes at least 100µs.
We can also observe, that the times to convert and transfer batches of moderate905

data are closer to the ones of complex data although its data size is closer to

the simple type. One has to keep in mind that the biggest part of the complex

type comes from an image (49.152B) which will be converted into a single IDF

NDArray which can be converted and transferred much more efficiently. Apart

from the image, the complex type is approximately two times bigger than the910

moderate type, which can also be observed when comparing the transfer duration

of both experiments.

The time to convert a business object to its IDF representation not only

depends on the data size – it also depends on the amount of members and on

the batch size. This is why the conversion of a moderate type is approximately915

15 times slower than the simple one. The moderate and complex objects almost

have a similar number of members. The times to arrange information in the

memory only depend on the data size. In our experiments, we used a single

memory server with already 1000 entries to ensure that all insertion times are

comparable. Further, a memory with already existing entries is closer to real-use920

scenarios. While we can observe a small static overhead to access the memory

structure and to insert commits of experiments, the measured times for the

batched experiments prove the aforementioned dependency on the data size.

Once the memory receives new data, it will broadcast a notification to all

subscribers. The subscribers may then query the information to receive the new925

data. The times required to query information are shown in Figure 13. The

chart “Full Query” shows the times it takes to query and receive data from

a memory server without converting the data from IDF to its business object

representation and “Memory Lookup” shows the time needed to search for a

specific entry in the memory.930

Similar to committing information via the network we observe that querying

information depends on the data size and the batch size while there is a static

overhead for accessing the network stack. We find out that the time required to

33

0,00

20,00

40,00

60,00

80,00

100,00

120,00

0 20 40 60 80 100

Memory Lookup

1,00

10,00

100,00

1000,00

10000,00

0 20 40 60 80 100

ti
m

e
in

 μ
s

batch size

Convertion from IDF

1,00

10,00

100,00

1000,00

10000,00

0 20 40 60 80 100

Full Query

Simple Moderate Complex

1,00

10,00

100,00

1000,00

10000,00

0 20 40 60 80 100

ti
m

e
in

 μ
s

batch size

Conversion into IDF

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

0 20 40 60 80 100

Data Storage

1,00

10,00

100,00

1000,00

10000,00

0 20 40 60 80 100 120

Full Commit

Simple Moderate Complex

Figure 13: Measured times to query a single or multiple instances from the memory including
the time to convert the transferred data in IDF to the auto-generated classes. Again, we
calculated the mean values over 1000 individual samples per data type and per batch size.
Similar to 12, the first and the second chart have a logarithmic scale on the y-axis.

1,00

10,00

100,00

1000,00

10000,00

100000,00

0 10 20 30 40 50 60 70 80 90 100

ti
m

e
in

 μ
s

batch size

Simple (Memory)

Moderate (Memory)

Complex (Memory)

Simple (P2P)

Moderate (P2P)

Complex (P2P)

Simple (PS)

Moderate (PS)

Comples (PS)

Figure 14: Averaged age of data as difference of timestamps between data reception and
production, either using the memory, peer-to-peer (P2P) connections or publish/subscribe
(PS) channels provided by the middleware ZeroC Ice.

search for instances in the memory is almost similar over all experiments with

the same batch size because the memory only returns references to the stored935

information. During a query, the data is automatically converted back to its

business object representation. Similar to the opposite conversion we find a

similar dependency on the number of members and the data size.

To conclude the results of our first experiment, we compared the full times

from producing information to receiving that information in the consumer940

component with direct peer-to-peer (P2P) connections and publish/subscribe

(PS) channels managed through a centralized service as shown in Figure 14. P2P

times can be seen as a theoretical lower bound for sending data in a distributed

system. A PS service is more comparable to the memory as it receives data from

producer components and forwards it to an arbitrary number of subscribers.945

However, it lacks the ability to access a history of data or to actively request

data.

34

The memory performs worse of the three, but it offers important features for

a cognitive system, such as being able to query information from the past or to

provide general data-driven services to clients. Further, this evaluation should be950

seen as a worst-case scenario. Usually, producer, memory and consumer processes

are not implemented as independent processes or running on different machines.

Producers often implement a memory server, so that data does not have to be

transferred over the network. The times measured here can therefore be halved

in many cases and by a well-chosen distribution of components. Nonetheless,955

even latency times measured here for moderate data types allow data to be

retrieved from the memory at a maximum frequency of over 160Hz, which is

enough for state-of-the-art model predictive control algorithms such as in [55].

For the few components in our software framework that require accessing the

data more frequently, such as self-collision checks and the emergency stop, side960

channels (P2P and PS channels) are still possible and valid.

5.2. Evaluation of the Deep Episodic Memory

In the long-term memory, it is important to find models with a good com-

pression rate, generalization ability and prediction ability which we will briefly

evaluate in this section. For this evaluation, we recorded five experiments on965

the real humanoid robot ARMAR-III. Similar to [35], the recordings include

stereo camera RGB images (with a resolution of 640× 480 pixels at a frequency

of 20Hz), the robots pose and configuration including the positions and veloci-

ties of 43DoF, action information, plans, object instances and their locations.

The robot was instructed to perform simple pick-and-place tasks in a kitchen970

environment.

If unfiltered, the LTM receives 35.665MB of data per second. Images are the

largest part of the data. The online compression used for the recordings reduced

the amount of required disk space to 0.213MB/s (reduction by 99.4%). First, the

input data was downsampled to a maximum frequency of 5Hz. Further, images975

were compressed using PNG compression and all data was converted into a

binary format using ZIP compression. Offline compression using Auto Encoders

further reduced the required disk size to 0.003 83MB/s (which represents an

additional reduction by 98.2%).

For the quantitative evaluation of the network, a leave-one-out cross-validation980

was performed to obtain 5 folds of training and testing sets. To compare the

results to our previous work [33], we will concentrate on visual information and

calculate the PSNR [56] as shown in Table 3 for the prediction and for the

35

Original:

Our model:

Reconstruction Prediction

Figure 15: Reconstruction and predictions of the next few frames returned by our deep episodic
memory. The first original image is encoded into a latent space. A decoder model reconstructs
the image or predicts the next frames.

reconstruction. Because our deep episodic memory automatically instantiates

one AE per entity, other modalities can be reconstructed and predicted in985

the same way. The results show, that our multimodal model outperforms the

previous work in terms of reconstruction and prediction although the original

work was pre-trained using large datasets. Still, the performance to predict

frames decreases with increasing horizon. This is natural, as the uncertainty

increases. Examples of reconstructed and predicted visual experiences are shown990

in 15.

With this work, we want to briefly introduce the intermediate results of our

research regarding representation learning in the robot’s long-term memory. We

are still working on a final and all-encompassing evaluation of the presented

system with many different modalities and real application examples.995

Iteration Reconstruction
Prediction

of next frame
Prediction

of over next frame

1 46.828 591 2 33.675 896 98 28.308 418 52
2 48.637 354 92 32.267 090 11 34.612 041 75
3 44.220 407 39 32.056 580 62 30.045 160 65
4 52.723 655 49 35.525 423 89 30.982 891 46
5 48.212 150 29 33.116 856 94 28.998 586 07

Table 3: PSNR values (averaged) of the test set during a leave-one-out-cross-validation of the
generalization network used to compress visual information in the long-term memory. The
generalized latent representation offers the possibility of reproduction, production and finding
of similar instances as described in [33].

36

6. Case studies

In this section, we will showcase different use cases of varying complexity,

showing how different components are supported by the memory system and

how processing pipelines can structure their data flow to make the best use of

it. The following examples should be seen as different views on one and the1000

same robot’s cognitive architecture, e. g. there is only one Robot State memory

managing information related to the robot pose and configuration which can be

used by any other component.

In our architecture, executable robot skills and behaviors are managed

through a Skill memory. It connects executable codelets with memory. In the1005

following, we describe this memory-driven skill framework using the example

of how a high-level speech command is being stored and processed within the

memory architecture resulting in the desired robot’s low-level behavior. Here,

we focus on two different aspects (1) high-level symbolic skill representation and

(2) sub-symbolic skill execution. The former will explain how arbitrary skills can1010

be registered to the memory. The latter will explain how the memory system

listens to certain conditions to instantiate and execute skills.

6.1. Skill Representation

Skill Memory
Natural

Language
Understanding

Human:
<< Go to the table >>

Skill Provider

Skill
<<Go to X>>

Skill
<< … >>

execute register skills

request
execution

Figure 16: The connection of executable skills to the memory system. Skills can be triggered
by e. g. speech.

Skill Providers register information related to executable codelets, so called

skills, to the skill memory as shown in Figure 16. Skills that are available1015

during start-up are taken from the prior knowledge (PK) of the robots’ memory.

However, skills can be added, removed, enabled or disabled at any time. An

instance of a skill in the memory incorporates a symbolic description that itself

37

links to executable code. There can be a variety of skill providers which register

skills in this memory. Skill providers thus group corresponding and related skills.1020

Depending on the definition of the skill, it can be parameterized both using

symbolic (e. g. ”Go to the table”) and sub-symbolic data (e. g. ”Go to position

(10,10)”). A skill may be linked to conditions that trigger its execution. The

simplest condition may be that the execution of a skill is directly requested.

However, one can also map complex conditions, such as in response to a certain1025

events such as a recognized object in the case of grasping. Once all conditions

of a skill are fulfilled, the memory covers the instantiation and execution of the

executable codelet of the skill. An event that the skill is executed is stored in

the skill memory. The result of the execution (e. g. whether it was successful,

stopped or unsuccessful) is stored in the memory as well. Intermediate results1030

are usually associated with the execution of the skill. In the following, we will

further describe how a skill internally uses the memory for its operation using

the examples of navigation, object localization and knowledge verbalization.

6.2. Navigation

Robot navigation is realized through navigation skills. Once the user requests1035

the robot to ”Go to the table” such a navigation skill gets executed. It will

access the navigator service as depicted in Figure 17. This service resolves

the Cartesian position of the location, plans a collision-free path, executes the

movement and reacts to dynamic changes in the environment. Once the planning

phase ends, the result will be stored in a specific Navigation memory. During1040

planning, accessed data can be multi-modal such as named locations and cost

maps needed for path planning, as well as the robot’s global pose. In addition,

components such as the cost map provider ensure that the navigation memory

actively updates itself, as a change to the object memory can trigger an update to

the distance cost map. The planning result is associated with the corresponding1045

skill execution request. This association may be used for question answering

(e. g. ”Why did you move to the table”) or for debugging purposes. Afterwards,

the navigator service continues with the execution phase. The skill waits for the

robot to reach the desired location but can also react to unforeseen events such

as the robot getting trapped due to surrounding humans.1050

As for any memory server, clients subscribe to receive updates on memory

segments. Thus, other components can also listen to the Navigation/Events core

segment and react to events such as the robot starting to move or there is a

planning failure.

38

Object Memory

Object Instances

Costmap
Provider

Navigation Memory

Events Costmaps

LocationsNavigator
Skill

<<Go to X>>

Control Memoy

lookup

store event

notify

obtain localization

Robot Unit

act sense

Robot State Memory

store
state

go to

execute

store control config

Robot Poses

Figure 17: Initial planning phase during the navigation skill execution.

All information in the memory system is fully introspective for the system1055

but also for the user. As an example, the state of the memory system after the

initial planning phase is shown in Figure 18. On the left, the GUI shows the

content of the navigation memory as a tree view. Each entity instance can be

investigated as shown on the right. In this example, the view shows the robot’s

platform location associated with the table. On the bottom right, the content of1060

the memory is visualized in 3D.

Figure 18: The memory GUI and the 3D visualization.

39

6.3. Object Detection and Localization

Another important ability of a robot is to detect and localize known or

unknown objects in its environment. In this example, we consider the task of

6D localization of known, textured objects based on RGB or RGB-D images.1065

Consider the processing pipeline in Figure 19. A camera driver component reads

data from a hardware camera. In each frame, it commits the RGB and depth

images to two separate segments in the Vision memory. If enabled by the user

(e. g. by running an object localization skill) an object localization component

listens to updates of the Vision/RGB and Vision/RGB-D segments to get notified1070

about new images. When notified, it queries the latest images from both segments.

In addition, it uses multi-modal related prior object information such as 3D

models, likely positions or pre-extracted visual features from the Object/Class

segment which itself is initialized from the prior knowledge. The localization

component then applies its internal method to detect objects and estimate their1075

poses. Finally, it commits the new observations to the Object/Instance segment,

which holds the current state of objects in the scene. Object poses are associated

with the images they are calculated from. Additionally, they are linked to the

current robot pose. The latter allows for analyzing how the object was placed

relative to the robot and how the robot interacted with the object retrospectively.1080

For efficiency, camera drivers and the vision memory are running on a separate

machine, equipped with special-purpose hardware for computer vision. Prior

knowledge is equally available on all machines.

Some 6D localization components benefit from an initial guess e. g. regarding

the pose of a moving object. Our memory supports those components by1085

providing methods to predict information. This functionality is not limited to

object poses – if a memory server only contains data of similar type it can predict

the numeric elements. Prediction is realized on two levels: (i) fast methods only

using information stored in the WM with updates each time new data enters the

WM, and (ii) more complex systems using the information stored in the LTM as1090

described in 4.5. Requesting a prediction from the memory is done by querying

a future timestamp. Depending on the memory server’s configuration and the

amount of received data, the memory decides to either use the fast methods of

(i) or more complex systems of (ii) to generate a prediction. Refining the models

based on an evaluation of how good this estimation has been is not part of this1095

work.

40

Object Memory

Object
Localizer

Skill
<<Search Object X>>

store instance

query
pose prediction

request
localization

Object
Instances

Object
Classes

Prior
Knowledge

initialize

obtain robot pose
Robot State Memory

Robot Poses

Vision Memory

RGB
Images

RGB-D
Images

Camera
Driver

store frame

notify & query

Computer 1

Computer 2

Figure 19: Integrating an object localization component into the distributed memory system.

6.4. Verbalization of Episodic Knowledge

Verbalization of episodic knowledge is fundamental for natural human-robot

interaction. This ability requires the robot to understand the user’s query,

access its memory and finally generate a response. In our previous work [35] we1100

presented a system that is able to answer user questions about the past, such as

”Where have you seen the red cup?” or ”What did you yesterday?” by using

the knowledge stored in the robots deep episodic memory. Further, the robot is

able to verbalize important events such as successes or failures of actions, e. g.

”I tried to put the milk in the fridge but I failed to open the door”.1105

Technically, a special verbalization skill listens to the Speech memory server.

This memory server contains recognized spoken text as simple strings. Every

time a spoken text is recognized and this update is broadcasted by the memory,

the verbalization skill queries the latest recognized text and interprets this text

as a verbalization command. Thus, we assume that the skill has been activated1110

so that the robot is in verbalization mode.

The user query is passed into a neural network which internally applies

attention [57] on the latent instances stored in the robot’s deep episodic memory.

Plain text knowledge of the WM is used for verbalization. The latent repre-

sentations are learned unsupervised and beforehand as described in section 4.5.1115

As the robot should be able to verbalize symbolic and sub-symbolic knowledge

our verbalization component requires access to multi-modal data sources. In

our experiments, we granted access to executed plans and skills , object infor-

mation , robot configuration and positions and visual information. A decoder

network finally converts the latent representation of the user query and the latent1120

41

representations of the attended episodes into a response from the robot. The

generated response is again stored in a separate segment of the speech memory

of the robot. The deep episodic memory depends on its content, as its weights

may be updated with each new instance which gets consolidated from WM to

LTM. Thus, this part of our memory cannot be seen as a simple passive storage1125

device, fulfilling the requirement of an active memory. Further, learning from

data instances requires an understanding of the data. This would not be possible

without the aforementioned introspectability of our data representation.

7. Conclusion and Future Work

In this work, we identified several characteristics of a memory system for a1130

robot cognitive control architecture and revealed details about the functionality

and representation of structures in the memory. We also described the imple-

mentation of the memory system in our robot software framework ArmarX. Our

new memory system fulfills these requirements in the following way:

• It is an active memory. The working memory (WM) adapts its behavior1135

based on the current computational load and learns from incoming data and

the long-term memory (LTM) adapts its ability to predict and generalize

to the given data.

• It is multi-modal. The memory has no constraints against the input data.

Everything can be stored and encoded, no matter if it is symbolic or1140

sub-symbolic information.

• It is inherently episodic. All information is stored episodically all over the

memory – even semantic information.

• It supports an associative structure. Entities can be linked to other

entities of the same or even of different modalities supporting reasoning1145

and explainability. We believe, that the knowledge of how information is

connected is as important as the information itself.

• The proposed data representation is introspective. This allows the memory

to investigate the data and to use it for learning and development, to check

constraints and to ensure consistency or even to change information for1150

simulation or augmentation.

42

• Due to the fact that our robots have several special-purpose computers,

our memory follows a distributed design approach. All subsystems of

the memory (memory servers) may run on different machines leading to

reduced network traffic and increased response times. A special centralized1155

component, the Memory Name Service, manages the connections to all

memory servers.

• Programmers can choose to either listen to memory updates or to actively

poll the memory. Both access types have benefits and drawbacks which

depend on the production frequency of data sources. Enabling the memory1160

to support both access types makes the memory more access-efficient.

• Finally, as robot systems are not online all the time and they have limited

storage, the memory must be able to efficiently store information in the

long-term.

We showed how the data is structured in distributed memory servers, how1165

the data can be accessed and passed to client components. Each memory server

contains a long-term memory back end, which allows the memory server to

store knowledge persistently. Whether and when data is moved to the LTM

is determined by internal statistics, or by the user. The LTM has the task of

storing the data as efficiently as possible. For this purpose, it makes use of1170

various compression methods. In an offline compression step, data is converted

into a generalized format that allows the prediction and comparison (in terms

of distance measuring) of snapshots using machine learning. An introspective

yet efficient data representation allows inspecting data instances and eases

communication with the memory through code generation.1175

The performed evaluation shows that this memory implementation increases

transfer times of data from producer to consumer components in comparison to

peer-to-peer transfer due to the new features. Nonetheless, due to optimizations

in knowledge representation of large data types, even those increased times are

acceptable for robotic applications.1180

Further, we presented three use cases explaining how the implementation

of these requirements influences the way we develop and evaluate our software.

Nonetheless, the system is by far not complete as the development of a novel

cognitive architecture (from which the memory is the key element) usually

requires years. So far the memory accepts only a temporal structure and temporal1185

requests, however, human episodic memory manages knowledge spatially and

43

contextually [58]. Allowing spatio-temporal and contextual access to information

will allow more efficient retrieval of data. Regarding the efficient management of

data, our LTM currently only provides rudimentary tools to filter incoming data

and remove existing instances. As a design choice, the WM data is not filtered1190

or encoded at all. During our experiments, we did not reach the limits of storage

capacity but we believe that we need a wider range of filter and removal algorithms

to manage the data in the LTM more efficiently, especially when considering

lifelong learning and 24/7 operating modes. Thus, we are also working on

extending the internal statistics (e.g., using saliency models) to provide a larger1195

groundwork for filtering and forgetting algorithms. Moreover, it is currently not

possible to incrementally refine the models found for learning representations

in the LTM. We either generate a new model only for the experiences of the

current work cycle or we remove the models we have, concatenate the decoded

experiences and train a new model with this dataset extended by the current1200

work cycle. The latter approach is less space-consuming but also carries the

decoding error into the next model. Incremental approaches are desirable.

Last but not least, there is a lack of methods to evaluate and learn from the

stored data. In particular, it would be interesting to compare the memories of

several robots and make them available to each other (comparable to what is1205

done in [59]). Shared memories, with other robots or with humans, also open

up questions about security and privacy which should already be addressed at

memory level. For this reason, we recently started working towards privacy-aware

memory systems and cognitive architecture [60].

The planned work mentioned above represents only a small subset of the1210

further development of the memory system of our cognitive architecture. We

believe that the architecture we have chosen, based on the identified requirements

of a memory system, is general and at the same time specific enough to support

the development of cognition-enabled and AI-driven robotic applications on

complex robot systems such as humanoid robots.1215

8. Acknowledgements

The research leading to these results has received funding from the Baden-

Württemberg Ministry of Science, Research and the Arts (MWK) as part of

the state’s ”digital@bw” digitization strategy in the context of the Real-World

Lab ”Robotics AI” and from the European Union’s Horizon 2020 research and1220

innovation programme under the grant agreement No 730994 (TERRINet).

44

References

[1] R. Wood, P. Baxter, T. Belpaeme, A review of long-term memory in

natural and synthetic systems, Adaptive Behavior 20 (2012). doi:10.1177/

1059712311421219.1225

[2] T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum,

N. Vahrenkamp, R. Dillmann, ARMAR-III: An Integrated Humanoid Plat-

form for Sensory-Motor Control, in: Proceedings of the IEEE-RAS Interna-

tional Conference on Humanoid Robots (HUMANOIDS), 2006, pp. 169–175.

doi:10.1109/ICHR.2006.321380.1230

[3] D. Vernon, Artificial Cognitive Systems: A Primer, MIT Press, 2014.

[4] D. Vernon, Cognitive System, in: Computer Vision: A Reference Guide,

2014, pp. 100–106.

[5] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,

A. Ude, T. Asfour, D. Kraft, D. Omrčen, A. Agostini, R. Dillmann, Ob-1235

ject–Action Complexes: Grounded abstractions of sensory–motor pro-

cesses, Robotics and Autonomous Systems 59 (2011) 740–757. doi:

10.1016/j.robot.2011.05.009.

[6] N. Vahrenkamp, M. Wächter, M. Kröhnert, K. Welke, T. Asfour, The

robot software framework ArmarX, it - Information Technology 57 (2015).1240

doi:10.1515/itit-2014-1066.

[7] L. R. Squire, Memory systems of the brain: A brief history and current

perspective, Neurobiology of Learning and Memory 82 (2004). doi:10.

1016/j.nlm.2004.06.005.

[8] A. J. McComas, Clive Wearing and Henry Molaison Reconsidered, in:1245

Aranzio’s Seahorse and the Search for Memory and Consciousness, Ox-

ford University Press, 2022, Ch. 38, pp. 261–266. doi:10.1093/oso/

9780192868244.003.0040.

[9] R. C. Atkinson, R. M. Shiffrin, Human memory: A proposed system and its

control processes., The Psychology of learning and motivation: Advances in1250

research and theory 2 (1968) pp. 89–105.

45

https://doi.org/10.1177/1059712311421219
https://doi.org/10.1177/1059712311421219
https://doi.org/10.1177/1059712311421219
https://doi.org/10.1109/ICHR.2006.321380
https://doi.org/10.1016/j.robot.2011.05.009
https://doi.org/10.1016/j.robot.2011.05.009
https://doi.org/10.1016/j.robot.2011.05.009
https://doi.org/10.1515/itit-2014-1066
https://doi.org/10.1016/j.nlm.2004.06.005
https://doi.org/10.1016/j.nlm.2004.06.005
https://doi.org/10.1016/j.nlm.2004.06.005
https://doi.org/10.1093/oso/9780192868244.003.0040
https://doi.org/10.1093/oso/9780192868244.003.0040
https://doi.org/10.1093/oso/9780192868244.003.0040

[10] B. Aben, S. Stapert, A. Blokland, About the distinction between working

memory and short-term memory, Frontiers in Psychology 3 (2012). doi:

10.3389/fpsyg.2012.00301.

[11] C. Wan, P. Cai, M. Wang, Y. Qian, W. Huang, X. Chen, Artificial Sensory1255

Memory, Advanced Materials 32 (2020).

[12] N. Cowan, T. Alloway, The development of working memory, in: The

development of memory in childhood, Psychology Press, 1997, Ch. 7, pp.

163–199.

[13] N. Cowan, The magical number 4 in short-term memory: A reconsideration1260

of mental storage capacity, Behavioral and Brain Sciences 24 (2001) pp.

87–114. doi:10.1017/S0140525X01003922.

[14] O. Barak, M. Tsodyks, Working models of working memory, Current Opinion

in Neurobiology 25 (2014) 20–24. doi:10.1016/j.conb.2013.10.008.

[15] G. A. Miller, The magical number seven, plus or minus two: Some limits1265

on our capacity for processing information, The Psychological Review 63

(1956) pp. 81–97. doi:10.1037/h0043158.

[16] E. Service, The Effect of Word Length on Immediate Serial Recall Depends

on Phonological Complexity, Not Articulatory Duration, The Quarterly

Journal of Experimental Psychology 51 (1998) 283–304. doi:10.1080/1270

713755759.

[17] F. R. Gobet, Some shortcomings of long-term working memory, British

journal of psychology 91 (2000) pp. 551–70.

[18] A. D. Baddeley, G. Hitch, Working memory, in: Psychology of learning and

motivation, Vol. 8, Academic Press, 1974, pp. 47–89.1275

[19] J. C. Taylor, A dynamic model of memory for research on human information

processing, Instructional Science 12 (1983) pp. 367–374.

[20] I. Kotseruba, J. K. Tsotsos, 40 years of cognitive architectures: core cognitive

abilities and practical applications, Artificial Intelligence Review (2018).

doi:10.1007/s10462-018-9646-y.1280

[21] K. S. Graham, J. S. Simons, K. H. Pratt, K. Patterson, J. R. Hodges,

Insights from semantic dementia on the relationship between episodic and

46

https://doi.org/10.3389/fpsyg.2012.00301
https://doi.org/10.3389/fpsyg.2012.00301
https://doi.org/10.3389/fpsyg.2012.00301
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1016/j.conb.2013.10.008
https://doi.org/10.1037/h0043158
https://doi.org/10.1080/713755759
https://doi.org/10.1080/713755759
https://doi.org/10.1080/713755759
https://doi.org/10.1007/s10462-018-9646-y

semantic memory, Neuropsychologia 38 (2000) pp. 313–324. doi:10.1016/

S0028-3932(99)00073-1.

[22] D. Coon, J. Mitterer, T. Martini, Introduction to Psychology: Gateways to1285

Mind and Behavior, Cengage Learning, 2018.

[23] A. Ioannou, X. Anastassiou-Hadjicharalambous, Non-associative Learn-

ing, in: Encyclopedia of Evolutionary Psychological Science, Springer

International Publishing, Cham, 2018, p. 5419–5432. doi:10.1007/

978-3-319-16999-6_1027-1.1290

[24] R. Novianto, M.-A. Williams, P. Gärdenfors, G. Wightwick, Classical Con-

ditioning in Social Robots, in: International Conference on Social Robotics,

2014, pp. 279–289. doi:10.1007/978-3-319-11973-1_29.

[25] J. Anderson, D. Bothell, M. Byrne, S. Douglass, C. Lebiere, Y. Qin, An

integrated theory of the mind, Psychological Review 111 (2004) pp. 1036–1295

1060. doi:10.1037/0033-295X.111.4.1036.

[26] D. Vernon, Cognitive Architectures, in: Cognitive Robotics, MIT Press,

2022, Ch. 10, pp. 191–212. doi:10.7551/mitpress/13780.003.0015.

[27] D. Vernon, C. Von Hofsten, L. Fadiga, A Roadmap for Cognitive Develop-

ment in Humanoid Robots, Vol. 11, Springer Science & Business Media,1300

2011.

[28] R. Sun, Desiderata for cognitive architectures, Philosophical Psychology 17

(2004). doi:10.1080/0951508042000286721.

[29] W. Duch, R. J. Oentaryo, M. Pasquier, Cognitive architectures: Where

do we go from here?, in: Artificial General Intelligence, Vol. 171, 2008, pp.1305

122–136.

[30] D. E. Kieras, D. E. Meyer, An Overview of the EPIC Architecture for

Cognition and Performance With Application to Human-Computer In-

teraction, Human–Computer Interaction 12 (1997) pp. 391–438. doi:

10.1207/s15327051hci1204_4.1310

[31] P. Langley, D. Choi, A Unified Cognitive Architecture for Physical Agents,

in: Proceedings of the National Conference on Artificial Intelligence, Vol. 21,

Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,

2006, pp. 1469–1474.

47

https://doi.org/10.1016/S0028-3932(99)00073-1
https://doi.org/10.1016/S0028-3932(99)00073-1
https://doi.org/10.1016/S0028-3932(99)00073-1
https://doi.org/10.1007/978-3-319-16999-6_1027-1
https://doi.org/10.1007/978-3-319-16999-6_1027-1
https://doi.org/10.1007/978-3-319-16999-6_1027-1
https://doi.org/10.1007/978-3-319-11973-1_29
https://doi.org/10.1037/0033-295X.111.4.1036
https://doi.org/10.7551/mitpress/13780.003.0015
https://doi.org/10.1080/0951508042000286721
https://doi.org/10.1207/s15327051hci1204_4
https://doi.org/10.1207/s15327051hci1204_4
https://doi.org/10.1207/s15327051hci1204_4

[32] J. Weng, A Theory for Mentally Developing Robots, in: Proceedings 2nd1315

International Conference on Development and Learning, IEEE, 2002, pp.

131–140. doi:10.1109/DEVLRN.2002.1011821.

[33] J. Rothfuss, F. Ferreira, E. E. Aksoy, Y. Zhou, T. Asfour, Deep Episodic

Memory: Encoding, Recalling, and Predicting Episodic Experiences for

Robot Action Execution, IEEE Robotics and Automation Letters 3 (2018)1320

pp. 4007–4014. doi:10.1109/LRA.2018.2860057.

[34] D. P. Kingma, M. Welling, Auto-Encoding Variational Bayes (2013). doi:

10.48550/ARXIV.1312.6114.

[35] L. Bärmann, F. Peller-Konrad, S. Constantin, T. Asfour, A. Waibel, Deep

Episodic Memory for Verbalization of Robot Experience, IEEE Robotics1325

and Automation Letters 6 (2021) pp. 5808–5815. doi:10.1109/LRA.2021.

3085166.

[36] J. E. Laird, A. Newell, P. S. Rosenbloom, SOAR: An Architecture for General

Intelligence, Artificial Intelligence 33 (1987). doi:10.1016/0004-3702(87)

90050-6.1330

[37] J. E. Laird, The Soar Cognitive Architecture, The MIT Press, 2012.

[38] J. E. Laird, Extending the Soar Cognitive Architecture, Frontiers in Artificial

Intelligence and Applications 171 (2008) pp. 224–235.

[39] K. Kawamura, S. M. Gordon, P. Ratanaswasd, E. Erdemir, J. F. Hall,

Implementation of Cognitive Control for a Humanoid Robot, Interna-1335

tional Journal of Humanoid Robotics 5 (2008) pp. 547–586. doi:10.1142/

S0219843608001558.

[40] R. A. Peters, K. E. Hambuchen, K. Kawamura, D. M. Wilkes, The Sensory

Ego-Sphere as a Short-Term Memory for Humanoids, in: Proceedings of the

IEEE-RAS International Conference on Humanoid Robots (HUMANOIDS),1340

2001, pp. 451–459.

[41] S. Franklin, T. Madl, S. D’mello, J. Snaider, LIDA: A Systems-level Ar-

chitecture for Cognition, Emotion, and Learning, IEEE Transactions on

Autonomous Mental Development 6 (2013) pp. 19–41. doi:10.1109/TAMD.

2013.2277589.1345

48

https://doi.org/10.1109/DEVLRN.2002.1011821
https://doi.org/10.1109/LRA.2018.2860057
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.1109/LRA.2021.3085166
https://doi.org/10.1109/LRA.2021.3085166
https://doi.org/10.1109/LRA.2021.3085166
https://doi.org/10.1016/0004-3702(87)90050-6
https://doi.org/10.1016/0004-3702(87)90050-6
https://doi.org/10.1016/0004-3702(87)90050-6
https://doi.org/10.1142/S0219843608001558
https://doi.org/10.1142/S0219843608001558
https://doi.org/10.1142/S0219843608001558
https://doi.org/10.1109/TAMD.2013.2277589
https://doi.org/10.1109/TAMD.2013.2277589
https://doi.org/10.1109/TAMD.2013.2277589

[42] M. Beetz, L. Mösenlechner, M. Tenorth, CRAM—A Cognitive Robot Ab-

stract Machine for everyday manipulation in human environments, in:

IEEE/RSJ International Conference on Intelligent Robots and Systems,

IEEE, 2010, pp. 1012–1017. doi:10.1109/IROS.2010.5650146.

[43] M. Beetz, D. Beßler, A. Haidu, M. Pomarlan, A. K. Bozcuoğlu, G. Bartels,1350

Know Rob 2.0 — A 2nd Generation Knowledge Processing Framework

for Cognition-Enabled Robotic Agents, in: IEEE International Conference

on Robotics and Automation (ICRA), IEEE, 2018, pp. 512–519. doi:

10.1109/ICRA.2018.8460964.

[44] M. Wächter, E. Ovchinnikova, V. Wittenbeck, P. Kaiser, S. Szedmak,1355

W. Mustafa, D. Kraft, N. Krüger, J. Piater, T. Asfour, Integrating multi-

purpose natural language understanding, robot’s memory, and symbolic

planning for task execution in humanoid robots, Robotics and Autonomous

Systems 99 (2018) pp. 148–165. doi:https://doi.org/10.1016/j.robot.

2017.10.012.1360

[45] E. Tulving, Episodic and semantic memory, in: Organization of Memory,

Academic Press, 1972, pp. 381–403.

[46] E. Tulving, Précis of Elements of episodic memory, Behavioral and Brain

Sciences 7 (1984) pp. 223–238. doi:10.1017/S0140525X0004440X.

[47] A. V. Samsonovich, Emotional biologically inspired cognitive architecture,1365

Biologically Inspired Cognitive Architectures 6 (2013) pp. 109–125. doi:

10.1016/j.bica.2013.07.009.

[48] D. Paulius, Y. Sun, A Survey of Knowledge Representation in Service

Robotics, Robotics and Autonomous Systems 118 (2019). doi:10.1016/j.

robot.2019.03.005.1370

[49] M. Al-Ani, F. Awad, The JPEG image compression algorithm, International

Journal of Advances in Engineering & Technology 6 (2013) pp. 1055–1062.

[50] F. C. Pereira, F. M. B. Pereira, F. C. Pereira, F. Pereira, T. Ebrahimi, The

MPEG-4 book, Prentice Hall Professional, 2002.

[51] D. Huffman, A Method for the Construction of Minimum-Redundancy1375

Codes, Resonance 11 (2006) pp. 91–99. doi:10.1007/BF02837279.

49

https://doi.org/10.1109/IROS.2010.5650146
https://doi.org/10.1109/ICRA.2018.8460964
https://doi.org/10.1109/ICRA.2018.8460964
https://doi.org/10.1109/ICRA.2018.8460964
https://doi.org/https://doi.org/10.1016/j.robot.2017.10.012
https://doi.org/https://doi.org/10.1016/j.robot.2017.10.012
https://doi.org/https://doi.org/10.1016/j.robot.2017.10.012
https://doi.org/10.1017/S0140525X0004440X
https://doi.org/10.1016/j.bica.2013.07.009
https://doi.org/10.1016/j.bica.2013.07.009
https://doi.org/10.1016/j.bica.2013.07.009
https://doi.org/10.1016/j.robot.2019.03.005
https://doi.org/10.1016/j.robot.2019.03.005
https://doi.org/10.1016/j.robot.2019.03.005
https://doi.org/10.1007/BF02837279

[52] Blender Online Community, Blender - a 3D modelling and rendering package

(2022).

[53] M. Henning, A New Approach to Object-Oriented Middleware, IEEE Inter-

net Computing 8 (2004) pp. 66–75. doi:10.1109/MIC.2004.1260706.1380

[54] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, W. Woodall, Robot

Operating System 2: Design, architecture, and uses in the wild, Science

Robotics 7 (2022). doi:10.1126/scirobotics.abm6074.

[55] M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox,

F. Ramos, B. Boots, STORM: An Integrated Framework for Fast Joint-1385

Space Model-Predictive Control for Reactive Manipulation, in: Conference

on Robot Learning, PMLR, 2022, pp. 750–759. doi:10.48550/arXiv.2104.

13542.

[56] M. Mathieu, C. Couprie, Y. LeCun, Deep multi-scale video prediction

beyond mean square error, arXiv preprint (2015). doi:10.48550/arXiv.1390

1511.05440.

[57] L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Siddhant,

A. Barua, C. Raffel, mT5: A massively multilingual pre-trained text-to-text

transformer, arXiv preprint (2020). doi:10.48550/arXiv.2010.11934.

[58] E. Dere, M. D. S. Silva, J. P. Huston, Higher Order Memories for Objects1395

Encountered in Different Spatio-temporal Contexts in Mice: Evidence for

Episodic Memory, Reviews in the Neurosciences 15 (2004) pp. 231–240.

doi:10.1515/REVNEURO.2004.15.4.231.

[59] M. Waibel, M. Beetz, J. Civera, R. d’Andrea, J. Elfring, D. Galvez-Lopez,

K. Häussermann, R. Janssen, J. Montiel, A. Perzylo, et al., RoboEarth,1400

IEEE Robotics & Automation Magazine 18 (2011) pp. 69–82. doi:10.

1109/MRA.2011.941632.

[60] S. Bayreuther, F. Jacob, M. Grotz, R. Kartmann, F. Peller-Konrad, F. Paus,

H. Hartenstein, T. Asfour, Combining Task Planning and Activity-Centric

Access Control for Assistive Humanoid Robots, in: Symposium on Access1405

Control Models and Technologies (SACMAT), 2022, pp. 185–194. doi:

10.1145/3532105.3535018.

50

https://doi.org/10.1109/MIC.2004.1260706
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.48550/arXiv.2104.13542
https://doi.org/10.48550/arXiv.2104.13542
https://doi.org/10.48550/arXiv.2104.13542
https://doi.org/10.48550/arXiv.1511.05440
https://doi.org/10.48550/arXiv.1511.05440
https://doi.org/10.48550/arXiv.1511.05440
https://doi.org/10.48550/arXiv.2010.11934
https://doi.org/10.1515/REVNEURO.2004.15.4.231
https://doi.org/10.1109/MRA.2011.941632
https://doi.org/10.1109/MRA.2011.941632
https://doi.org/10.1109/MRA.2011.941632
https://doi.org/10.1145/3532105.3535018
https://doi.org/10.1145/3532105.3535018
https://doi.org/10.1145/3532105.3535018

	Introduction
	Related Work
	Memory
	Sensory Memory
	Working Memory
	Long-Term Memory

	Artificial Cognitive Architectures
	Cognitivistic Architectures
	Emergent Architectures
	Hybrid Architectures

	Comparison of Memory Systems in Artificial Cognitive Architectures

	Requirements for a Memory System
	Conceptual Requirements
	Technical Requirements
	Where to Run the Memory
	How to Improve Efficiency of Access
	Assessing What to Store

	The Memory System
	Distributed Memory System
	Hierarchical Data Structure
	Reading and Writing: Queries, Commits and Updates
	Interpretable Data Format
	Long-term Memory and Deep Episodic Memory

	Technical Evaluation
	Evaluation of the WM
	Evaluation of the Deep Episodic Memory

	Case studies
	Skill Representation
	Navigation
	Object Detection and Localization
	Verbalization of Episodic Knowledge

	Conclusion and Future Work
	Acknowledgements

