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Abstract— In this paper, we present a novel approach for
learning bimanual manipulation actions from human demon-
stration by extracting spatial constraints between affordance
regions, termed affordance constraints, of the objects involved.
Affordance regions are defined as object parts that provide
interaction possibilities to an agent. For example, the bottom of a
bottle affords the object to be placed on a surface, while its spout
affords the contained liquid to be poured. We propose a novel
approach to learn changes of affordance constraints in human
demonstration to construct spatial bimanual action models
representing object interactions. To exploit the information
encoded in these spatial bimanual action models, we formulate an
optimization problem to determine optimal object configurations
across multiple execution keypoints while taking into account
the initial scene, the learned affordance constraints, and the
robot’s kinematics. We evaluate the approach in simulation
with two example tasks (pouring drinks and rolling dough) and
compare three different definitions of affordance constraints: (i)
component-wise distances between affordance regions in Carte-
sian space, (ii) component-wise distances between affordance
regions in cylindrical space, and (iii) degrees of satisfaction of
manually defined symbolic spatial affordance constraints.

I. INTRODUCTION

Humanoid robots are expected to become increasingly
autonomous to assist people in their daily activities. To do
this, they must be able to acquire new skills and to perform
tasks such as pouring a drink or preparing meals. The ability
to learn from demonstration is crucial for robots, as it enables
them to acquire knowledge through natural interactions with
humans without the need for experts [1].

In this work, we present a method to learn bimanual mani-
pulation actions from human demonstration by extracting and
reproducing spatial constraints between affordance regions,
so-called affordance constraints, of the objects involved. We
define an affordance region as a specific object part that
supports a particular action, inspired by the affordance concept
introduced by Gibson [2]. According to this, a bottle may
have several affordance regions: The bottom affords placing
the bottle on a surface, its spout affords pouring a contained
liquid, and the side of a bottle affords grasping the bottle.
Specifically, we learn changes of affordance constraints in
human demonstration and store this information in so-called
Spatial Bimanual Action Models (SBAMs) to capture the
interactions between the objects involved as depicted in Fig. 1.
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Fig. 1. We learn the spatial constraints between affordance regions
(affordance constraints) from human demonstrations to obtain spatial
bimanual action models. For execution on a robot, these are used to maximize
the similarity between the learned affordance constraints and those present
in the current scene subject to the robot’s kinematics.

We consider three different types of affordance constraints:
(i) component-wise distances between affordance regions
in Cartesian space (Cartesian affordance constraints), (ii)
component-wise distances between affordance regions in
cylindrical space (cylindrical affordance constraints), and
(iii) degrees of satisfaction of manually defined symbolic
spatial constraints (symbolic spatial affordance constraints).
Additionally, we show how to leverage the information in such
an SBAM for the execution of the bimanual manipulation
action on a humanoid robot. This is done by formulating an
optimization problem that maximizes the similarity between
the affordance constraints observed in the demonstrations
and those present in the current scene. We evaluate the
effectiveness of our approach using previously unseen scenes,
different objects, three different definitions of affordance
constraints, as well as three different humanoid robots in
simulation: ARMAR-6, ARMAR-7, and a bimanual Franka
Emika Panda setup.

To summarize, our contributions are three-fold: (i) a Spatial
Bimanual Action Model that is learned from bimanual human
demonstrations and encodes spatial constraints between pairs
of affordance regions in a bimanual manipulation task,
(ii) formulation of an optimization problem for finding
optimal scene arrangements for the execution of the bimanual
manipulation task while incorporating constraints extracted
from the initial scene state, the robot’s kinematics, and
the learned SBAM, as well as (iii) a comparison of three
definitions of affordance constraints: Cartesian, cylindrical,
and symbolic spatial affordance constraints.



II. RELATED WORK

We discuss related work concerning the use of spatial
constraints to describe actions (Section II-A), action models
that incorporate either spatial or temporal constraints learned
from demonstrations (Section II-B), and approaches for
incorporating affordance constraints (Section II-C).

A. Spatial Constraints

A vital part in Programming by Demonstrations (PbD)
is learning the task constraints needed for a successful
task execution. While many representations focus on spatial
constraints only in 2D [3], [4] we believe that complex
manipulation tasks require the consideration of constraints
in 3D space. Ziaeetabar et al. [3] presented an approach for
human action recognition by tracking a set of pre-defined
symbolic spatial relations between objects approximated by
bounding boxes. In our work, instead of considering binary
relations between objects, quantify the degree of satisfaction
of spatial constraints between objects’ affordance regions.
O’Keeffe’s idea of using probabilistic models to ground
semantic constraints [4] was extended to the third dimension
by Kartmann et al. [5], representing each spatial constraint by
a joint probability function. In this work, we evaluate their
performance against the less semantically enriched Cartesian
and cylindrical representations.

B. Learning Action Models from Demonstrations

As expressed by Billard et al. [1], user friendlyinterfaces for
teaching in PbD include visual perception [6]–[8] and kines-
thetic teaching [9]–[11]. Since then, also verbal interfaces [12]
as well as combinations of these [13] were tested. The
kinesthetic approach taken by Ureche et al. [9] learns changes
of action constraints over time, enabling a robot to execute
the action even in novel scenarios. Gao et al. [6] propose
Bi-KVIL, an approach visual imitation learning of bimanual
tasks. The approach extracts geometric constraints between
keypoints on the object’s surface from video and use their
constraints to generalize to new tasks. Drawing inspiration
from how humans learn through conversation, Nicolescu
et al. [12] introduced a system designed to construct a task
model based on verbal instructions. The approach is based on
synthesizing a symbolic and hierarchical task representation
from a single dialogue between the robot and the human
by joining spatial information with boolean operators. An
example of a multi-model teaching interface was given by
Kartmann and Asfour [13]. They revealed how a robot can
learn spatial constraints iteratively from visual demonstrations
given verbal cues.

With the rise of pre-trained neural networks like GPT-
4 [14], [15], several works investigated ways to use such
networks as the instructor. DALL-E-Bot [16] queries DALL-
E for an image to create human-like arrangements of objects
in the real world. Kwonot et al. [17] show that these networks
can be used for more than high-level planning, where GPT-4
was tasked to create an end effector trajectory. These works
focus on unimanual actions such as pick-and-place tasks
while relying on a probabilistic neuronal network. Akbulut

et al. [18] has shown that neural networks (NNs) can be
used to learn complex movements from a few demonstrations.
Using the approach, a bimanual robot could successfully tie
a knot. While NNs have been shown to learn generalized
trajectories, we have chosen an optimization-based approach
that is independent of pre-trained models and also requires
only a few demonstrations.

C. Affordance Representations

Affordance regions provide the task model with symbolic
abstractions of object properties, as well as subsymbolical
groundings in the object’s structure. Several works explore
methods to find affordance regions in visual data. Often,
the problem is approached by finding the corresponding
affordances in images [19]–[21] or in point clouds [22],
[23]. For example, ToolEENet [24] finds the 6D pose of
an affordance region relative to the object. Koppula and
Saxena [8] extract affordance regions and their changes
over time from videos and use them in their proposed
conditional random fields model. The work focused on
human action recognition and anticipation to trigger assistive
robot behavior rather than learning task models from human
demonstration for the reproduction of the task by a robot.
While the concept of affordances receives increasing attention
in the robotics community [25], few works have explored
the potential of learning spatial and temporal constraints in
complex manipulation actions by exploiting knowledge about
affordance region pairs in human demonstrations.

III. SPATIAL BIMANUAL ACTION MODEL

This section describes our approach to learning and
reproducing bimanual manipulation actions from human
demonstrations by exploiting spatial constraints between
affordance regions, i. e. affordance constraints, of the objects
involved in the task. In this context, a bimanual action
is characterized by two distinct actions, each performed
by one hand. We propose three different definitions of
such affordance constraints (Section III-A) and described
how changes of affordance constraints over time can be
segmented (Section III-B), a necessary step for generalization.
The core of our approach is the Spatial Bimanual Action
Model (SBAM) that learns the object motion during the
demonstration by generalizing observed affordance constraints
based on multiple demonstrations (Section III-C). We propose
an optimization problem to reproduce the bimanual action
based on the SBAM in a human-like manner, given the current
scene and a specified humanoid robot kinematic (Section III-
D). Fig. 2 shows a graphical overview of the entire process
of learning and executing such an SBAM.

A. Definition of Affordance Constraints

For a robot to effectively perform a bimanual manipulation
action based on a small set of demonstrations, it needs
to identify the spatial constraints between objects involved
in the action. To do so, we assign affordance regions to
parts of objects and track affordance constraints throughout
the demonstration of the bimanual manipulation action.
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Fig. 2. A simplified visual overview of the Spatial Bimanual Action Model.

Affordance constraints are spatial constraints between a pair
of affordance regions of objects involved in the action. We
approximate affordance regions of objects with an ellipse
relative to the object frame (see Figure 1). For example, a
pour from affordance region of a milk carton is approximated
by an ellipse in the spout.

The affordance constraints we compare are a different way
to subsymbolically represent the vector connecting the centers
of two affordance regions A0 = (A0,x, A0,y, A0,z)⊤ and
A1 = (A1,x, A1,y, A1,z)⊤. We selected three representations,
which we believe are beneficial for the reproduction of the
bimanual action: (i) Cartesian affordance constraints, (ii)
cylindrical affordance constraints, and (iii) symbolic spatial
affordance constraints.

1) Cartesian Affordance Constraint (CaAC): CaACs are
calculated as Cartesian distances x=A0,x−A1,x, y=A0,y−
A1,y , and z=A0,z−A1,z between the two affordance regions.
Their key advantages are clarity and mathematical simplicity.
Cartesian coordinates provide an intuitive way to represent
spatial constraints and allow straightforward interpretation
of vector differences without ambiguity. Furthermore, they
simplify mathematical operations and make calculations
easier.

2) Cylindrical Affordance Constraint (CyAC): Cylindrical
Affordance Constraints (CyACs) represent the vector between
the two affordance regions in cylindrical coordinates with
radius ρ, azimuth ϕ, and elevation z as

ρ =

√
(A0,x −A1,x)2 + (A0,y −A1,y)2

ϕ = arctan2(A0,y −A1,y, A0,x −A1,x)
z = A0,z −A1,z.

This representation has the advantage of generalizing rota-
tional symmetry around the z-axis and enables combining
approaching movements from multiple different directions, as
shown in our previous work [5]. However, since the azimuth
ϕ is defined as an angle within the interval [−π, π], it allows
for discontinuities, which adds complexity to the process of
learning generalized trajectories.

3) Symbolic Spatial Affordance Constraint (SSAC): SSACs
represent the vector between the two affordance regions
with a set of symbolic spatial constraints, similar to our
earlier work [13] which describes spatial relations between
object centers. How well the vector from A1 to A0 satisfies
the spatial constraint sc is thus given by vsc = Pϕsc

(ϕ) ⋅
Pρsc

(ρ)⋅Pzsc
(z), where Pρsc

(ρ) is the probability density at

the radius ρ for the spatial constraint sc, while Pϕsc
(ϕ) and

Pzsc
(z) are the the probability density at the azimuth ϕ and

elevation z, respectively. We assume that ρsc ∼N (µρ,σ
2
ρ),

ϕsc∼M(µϕ,κϕ), and zsc ∼N (µz,σ
2
z), where N (⋅) denotes

a Gaussian distribution, while M(⋅) denotes a von Mises
distribution, which is a circular distribution defined on the
interval [−π, π], wrapping around periodically. The concrete
spatial constraints are given by choosing the mean (µρ, µϕ,
µz) and variances (σ2

ρ, κϕ, σ
2
z ). An example is shown in

Figure 6.

B. Segmenting Changes of Affordance Constraints Over Time

We observe affordance constraints over the course of an
action and we are specifically interested in the changes of
affordance constraints over time. They can be seen as a
trajectory in the “affordance space”. Segmenting the observed
changes means finding keypoint candidates, i. e. points in
time associated with important events. At each candidate
keypoint the robot may be required to assume a specific joint
configuration in order to best satisfy the learned affordance
constraints. Later we will present an approach to derive
keypoints from the set of keypoint candidates. We conduct
a segmentation based on partial linear approximation. We
start by finding a segmentation point, such that the area Ae

between the original data and the linear approximation, given
by lines between the segmentation points, is minimal (see
“n = 2” in Figure 3). The same is applied recursively until Ae

falls beneath a predetermined threshold ϵ. This threshold is
relative to the amplitude of the values of the spatial constraint,
ensuring that important information is preserved even when
operating at different scales across various spatial constraints.
This is important when working with cylindrical data, as
the elevation and radius are at a different magnitude from
the azimuth that only ranges from [−π, π]. Once all the
segments are found, a final pass with a heuristic is performed.
Therefore, each pair of consecutive segments is checked to
see if the area between the original data and a single segment
is smaller than ϵ. If this is the case, the segmentation point
is removed, else we find the segmentation point connecting
the two consecutive segments, such that Ae is minimal. (see
“final” in Figure 3).
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Fig. 3. An exemplary segmentation on synthetic data.
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Fig. 4. Segmenting changes of affordance constraints over time allow for
generalization. Alongside the mean value, we also compute the standard
deviation at the end of each segment. The colored areas show the confidence
intervals given the standard deviation and mean value.

C. Learning Spatial Bimanual Action Models

To combine affordance constraints from multiple demon-
strations, generalized changes of affordance constraints over
time (GCACOT) are needed. These are derived by generaliz-
ing the segmented affordance constraints from each individual
demonstration in an incremental way. A GCACOT consists
of a set of keypoints. Each keypoint is described by the
mean value, standard deviation, and its point in time. For the
incremental update, the corresponding keypoint candidates
have to be matched between demonstrations. However, the
number of segments may vary from one demonstration
to another. To determine the most probable corresponding
keypoint candidates, a method similar to dynamic time
warping [26] is employed (see Fig 4). Given a new matched
keypoint candidate that occurs at time t1, we update the time
t0 of the keypoint in the GCACOT as t′0 =

1
n
t1+

n−1
n

t0 where
t
′
0 is the updated time of the keypoint in the GCACOT and
n − 1 is the amount of previously analyzed demonstrations.
The mean value at the keypoint is then updated the same
way, while the standard deviation v̂0 is updated by v̂

′
0 =√

1
n−1

((v1 − v̄0)2 + (n − 2)v̂20) with v̂
′
0 being the updated

standard deviation of the keypoint in the GCACOT, v̄0 being
the mean value of the keypoint in the GCACOT, and v1 being
the value of the keypoint in the new demonstration.

These GCACOTs are of interest because the standard
deviation at any given time indicates how important it is to
satisfy that constraint, while the mean simultaneously provides
the desired target values. The lower the standard deviation is,
the more important it is to fulfill the corresponding constraint.
Note that the same methodology applies to all three kinds
of affordance constraints used in this work. In the following,
we will show how this representation is used to formulate
an optimization problem for the execution of the bimanual
action on a robot.

D. Executing Learned Bimanual Manipulation Actions

We assume that a bimanual manipulation action can be
represented as a sequence of specific object configurations at
certain keypoints in time. To find these keypoints, a histogram
of all keypoint candidates from all GCACOTs (presented
in Section III-C) is created. The keypoints are determined
by searching for clusters of keypoint candidates from all
GCACOTs in a smaller time window. This is achieved by
applying a Butterworth filter to the histogram data and a peak
detection (see Fig 5). For the execution of a learned bimanual
manipulation action through an SBAM, we formulate an
optimization problem to find optimal object placements at
the identified keypoints. Optimal object placements are those
that satisfy the learned affordance constraints between the
objects involved.
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Fig. 5. The cumulative number of keypoint candidates that fall in the time
window of the corresponding bin. Butterworth filter and a peak detection
are used to determine the optimal keypoints.

We define the objective function of our optimization
problem from three terms as follows:

argmin
θ∈Θlim

ts(θ) + th(θ) + td(θ) (1)

The first term, ts, is the similarity term that brings the
objects into the desired configuration by satisfying the
objects’ respective affordance region constraints. The second
term, th, is the human-likeness term that favors human-like
configurations during the optimization. The third term, td, is
a damping term that reduces unnecessary object movements
during optimization. As can be seen, we optimize the robot’s
configuration θ ∈ Θ so that the resulting poses of the objects
in its hands satisfy the observed affordance constraints in
the SBAM as close as possible at each identified keypoint.
Thus, we use the robot’s kinematics to naturally constrain
the optimization problem to yield object poses that are
reachable by the robot. These three terms will be defined in
the following in more detail.

The current affordance constraints are calculated by first
finding an initial grasp for the manipulated objects. Given
the current robot configuration θ and the grasp poses we
calculate the pose of the grasped objects in the global frame,
which in turn allows computing the position of the affordance
regions in the global frame. Meanwhile, the desired affordance
constraints are given by the SBAM. Let wi,j,k =

1
1+v̂i,j,k

be
the weight of the spatial constraint k between affordance
regions i and j with v̂i,j,k denoting the corresponding standard



deviation. An affordance constraint that is similar across all
demonstrations will have a low standard deviation and thus
a high weight as it is chosen to be inversely proportional to
the standard deviation. Such a weighting serves as a measure
of importance to favor affordance constraint segments in the
optimization that have been observed similarly many times
and to disregard those that were observed by coincidence.
We define the similarity term as:

ts(θ) = ∑
i,j

(sk,i,j(θ))
1/2

,

where k ∈ {ca, cy, sc} defines the used type of affordance
constraint, and i and j correspond to affordance regions,
while sk,i,j(θ) is the weighted similarity.

For each type of spatial constraint, a different way of
calculating the weighted similarity is used. For the CaACs,
we chose to calculate the weighted similarity as

sca=w
2
x(x1−x2)2+w

2
y(y1−y2)2+w

2
z(z1−z2)2

=(wxx1−wxx2)2+(wyy1−wyy2)2+(wzz1−wzz2)2,
with current (x1, y1, z1) and target CaACs (x2, y2, z2) and
the corresponding weights (wx, wy, wz).

The usage of the same metric is unsuitable for CyAC as
a slight change in azimuth does not have the same impact
as the same change for elevation or radius, in contrast to
CaACs. For this reason, we chose to calculate the similarity
scy between the weighted current (wρρ1, wϕϕ1, wzz1) and
weighted target CyACs (wρρ2, wϕϕ2, wzz2) by transforming
them into Cartesian coordinates:

scy = (cos(wϕϕ1)wρρ1 − cos(wϕϕ2)wρρ2)2

+ (sin(wϕϕ1)wρρ1 − sin(wϕϕ2)wρρ2)2

+ (wzz1 − wzz2)2.
This similarity is closely related to the Cartesian similarity,
where wxx1 corresponds to cos(wϕϕ1)wρρ1. In order to
mitigate numerical precision issues, we opted to use the
logarithm of the SSAC to compute the similarity, as it keeps
the values in a manageable range. Thus,the similarity ssc
between the current (vsc1,1, . . . , vscn,1) and target SSACs
(vsc1,2, . . . , vscn,2) is thus given by

ssc =
n

∑
i=1

(wi (log(vsci,1) − log(vsci,2)))
2

.

To generate more human-like executions, we added the
human-likeness term th(θ) using the SOAq criterion pre-
sented in our previous work [27].

In addition, a damping term td(θ) = ∑o∈M w
′
0k0(θ) is

defined, with M as the set of all currently manipulated objects,
w

′
0 a cumulative weight and k0 the deviation between the

current position and the position at the previous keypoint
for the manipulated object o. When the deviation between
the pose of the objects is large in the demonstrations, the
weight of the connected affordance constraints is lower. Thus,
the optimizer ignores the similarity between the current and
the desired values of these affordance constraints, increasing

the probability of unnecessary object movement. This is
counteracted by the norm of the difference between the current
position of the object o and the position at the previous
keypoint to the additional terms ko. As a weight, we define
w

′
o to be proportional to the time delta and the standard

deviation of all pairs of affordance regions, where at least
one is part of the object o, such that the auxiliary terms are
weighted less when the similarity is more important.

In this work, we employed the gradient-free Nelder–Mead
method [28] to find the pose of the end effectors. Additionally,
we used a non-linear optimization-based inverse kinematics
solver with the human-likeness criterion SOAq described
in [27] to find a human-like posture to reach both end effector
poses at each keypoint. The trajectories are then computed
by interpolating the joint values linearly.

Overall, we generate optimal and human-like robot poses
for each keypoint. They are optimal in the sense that the
affordance regions of objects manipulated by the robot in the
given configuration best satisfy the affordance constraints,
independent of the constraint set.

IV. EXPERIMENTS AND EVALUATION

To evaluate our proposed spatial bimanual action model
(SBAM) we show in Section IV-A qualitative results of the
generated robot behavior using two bimanual actions of the
KIT Bimanual Manipulation Dataset [29]: pouring drink and
rolling dough. In Section IV-B, we perform a quantitative
cross-validation resulting from the SBAMs.

A. Qualitative Evaluation

To demonstrate the performance of a learned SBAM we
refer to the video attachment, in which individual clips are
referenced by the symbol n⃝ for the n-th clip.

The first three executions (cf. 1⃝– 3⃝) show ARMAR-6
executing pouring drink with an apple juice and a large
cup. The SBAMs were learned from 11 demonstrations (8
demonstrations of pouring apple juice into a large cup and 3
of pouring milk into a small cup), using three distinct types
of affordance constraints: 1⃝ Cartesian affordance constraints
(CaACs), 2⃝ cylindrical affordance constraints (CyACs), and
3⃝ symbolic spatial affordance constraints (SSACs).

For the SSACs, we define the spatial constraints as in
our previous work [13] and parameterize them as shown in
Table I.

TABLE I
DEFINITION OF SSACS USED IN OUR EVALUATIONS

constraint µρ σ
2
ρ µϕ κϕ µz σ

2
z

above 0 250 0 10
−5 250 100

below 0 250 0 10
−5 -250 100

close 0 100 0 10
−5 0 250

far away 500 100 0 10
−5 0 250

in front 0 250 3
2
π 5 0 250

behind 0 250 1
2
π 5 0 250

left 0 250 π 5 0 250
right 0 250 0 5 0 250

For all three constraints, our approach was able to generate
human-like joint configurations, so that the spout of the bottle
is above the cup while the bottle is being rotated. Several
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demonstrations exhibited abrupt movements at the end of the
action. This can be attributed to a higher observed variance
in the GCACOT towards the end of the action when the
affordance constraints relevant for the bimanual action will
relax, allowing the optimizer for more movement. While
1⃝– 3⃝ used the same combination of objects as 8 of the
demonstrations, 4⃝ and 5⃝ show new combinations of the
objects with different robots, displaying the versatility and
generalizability of the approach. 4⃝ uses the same SBAM
as 2⃝, applied to ARMAR-7 pouring milk into a large cup.
Similarly, 5⃝ uses also the SBAM of 1⃝ in combination
with the new initial scene and a bimanual Franka Emika
Panda setup to create a successful execution of pouring drink.
While the majority of the execution appears to be as expected,
each action experiences a short interruption, where the milk
carton is rotated but the spout is not above the cup. Clips 6⃝
and 7⃝ show ARMAR-6 and ARMAR-7 respectively rolling
dough with a rolling pin on the table. While the SBAM in
6⃝ uses SSACs, the SBAM optimizing the configurations
for ARMAR-7 in 7⃝ utilizes CyACs to represent the same
two rolling demonstrations. In both executions, the desired
motions of rolling dough are visible.

B. Quantitative Evaluation

To assess the effectiveness of our approach, we employed
a cross-validation for two different bimanual actions: Pouring
Drink IV-B.1 and Rolling Dough IV-B.2.

1) Pouring Drink: To train the spatial bimanual action
model we used 8 demonstrations of the pouring drink action
from apple juice into the large cup and 3 demonstrations
of the pouring drink action from the small milk into the
small cup and evaluated its performance on the 9th unseen
demonstration of pouring drink from apple juice into the

TABLE II
AFFORDANCE CONSTRAINT SIMILARITY FOR pouring drink IN mm

affordance region pair type avg std min

place onto of table
↓

place of cup large

CaAC
CyAC
SSAC

135.233
132.965
155.870

123.702
131.112
138.069

10.385
10.379
10.363

place onto of table
↓

pour into of cup large

CaAC
CyAC
SSAC

136.563
132.257
157.483

136.543
144.325
155.158

9.445
9.442
9.454

place onto of table
↓

pour from of apple juice

CaAC
CyAC
SSAC

175.586
176.766
190.240

203.581
203.715
191.454

0.444
0.444
0.444

place onto of table
↓

place of apple juice

CaAC
CyAC
SSAC

214.453
216.057
218.582

216.694
219.126
218.675

0.396
0.396
0.396

place of cup large
↓

pour into of cup large

CaAC
CyAC
SSAC

23.087
22.072
24.532

22.889
21.133
29.096

0.208
0.208
0.208

place of cup large
↓

pour from of apple juice

CaAC
CyAC
SSAC

174.932
176.445
180.333

211.721
221.118
214.044

1.849
1.575
2.708

place of cup large
↓

place of apple juice

CaAC
CyAC
SSAC

182.554
182.544
197.645

192.510
200.068
208.331

7.894
7.327
5.384

pour into of cup large
↓

pour from of apple juice

CaAC
CyAC
SSAC

165.770
169.718
173.982

208.665
218.626
215.371

3.357
1.805
1.963

pour into of cup large
↓

place of apple juice

CaAC
CyAC
SSAC

172.947
175.450
189.538

184.193
193.651
203.633

1.688
7.585
2.313

pour from of apple juice
↓

place of apple juice

CaAC
CyAC
SSAC

123.095
121.581
133.062

97.722
94.565
93.486

0.621
0.621
0.621

large cup in a simulation. The reported numbers are the
mean of all nine folds. At each keypoint, we measure the
similarity of the unseen demonstration and the execution by
calculating the Euclidean distance between vectors connecting
the centers of the affordance regions in the demonstrated
action and the optimized object poses derived from Equation
1. Our evaluation results, including mean, standard deviation,
and minimum values across all keypoints and scenarios, are
summarized in Table II, providing a comprehensive analysis
of the approach’s performance.

The evaluation results reveal that the usage of the three
representations results in very similar deviations between the
demonstration and the execution. The values of the mean
difference between the demonstration and the execution for
each affordance region pair are tightly clustered with the most
deviation observed in the place onto affordance region for
the table and the pour into affordance region for cup large,
exhibiting a mean difference of 25.226mm. The values are
quite high (ca. 17 cm for the top of the bottle and the top
of the cup). It should be noted, however, that times with
extensive object movement and thus a high variance are over-
represented, as the number of keypoints in these parts is
higher due to the accumulation of the segmentation points,
needed to closely represent these changes, compared to the
areas of low deviation.
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Fig. 8. Symbolic spatial affordance constraints (SSACs) in comparison
to the generalized linear segments as well as the values of the action as
performed by the human demonstrator for the rolling dough-action

Surprisingly, the SSACs, for which we used the same
parameters as detailed in Table I, consistently achieved
the highest and thus worst mean similarity across nearly
all instances, while the CaACs and CyACs demonstrated
the lowest mean similarities. This outcome is particularly
intriguing given the substantial time investment required for
optimizing SSACs – averaging 8 hours for 30 keypoints
– compared to the more efficient optimization times of 10
minutes each for cylindrical and Cartesian representations
on a Ryzen 9 5900X processor running at 4.5GHz. The
keypoints have to be optimized in sequential order as the
final robot configuration serves as the initial configuration
at the next keypoint. Therefore, parallel optimization was
deemed impractical due to the introduction of non-consistent
object movement.

The good performance of CaACs can be attributed to
their inherent simplicity for generalization and ease of
comparability during optimization. In Cartesian coordinates,
each dimension possesses an identical size, facilitating a
straightforward comparison of the distance between current
affordance constraint values and their target counterparts using
respective weights. In contrast, CyACs pose challenges for
optimization due to the different value ranges in the different
dimensions – ranging from (−∞,∞) for both elevation
and radius, and [−π, π] for the azimuth. This inherent
characteristic means that even slight changes in azimuth
values can disproportionately impact the scene compared
to changes in elevation or radius. For instance, a small
change in azimuth can equate to a significant deviation, while
the same change in radius or elevation would be next to
negligible, resulting in difficulties in optimizing effectively
solely within cylindrical space. To address these challenges,
we transformed cylindrical values into Cartesian coordinates,
where differences in values exert uniform influence across all
dimensions during optimization. One potential explanation for
the relatively inferior performance of the spatial constraint set

could stem from challenges associated with optimizing joint
configurations within a non-linear, high-dimensional space.
Additionally, the mean value ranges of individual constraints
within this set tend to be smaller compared to constraints such
as elevation (cf video 1⃝ with approximately 200 units versus
video 3⃝ with around 10 units). Consequently, these smaller
value ranges lead to correspondingly smaller deviations
between the executions, resulting in smaller weights assigned
to each constraint. The smaller weights incentivize the opti-
mizer to treat all constraints nearly equally, diminishing the
potential advantage of identifying and discounting irrelevant
dimensions. Consequently, the optimizer may struggle to
effectively prioritize and leverage relevant constraints for
optimizing the overall action performance.

TABLE III
AFFORDANCE CONSTRAINT SIMILARITY FOR roll IN mm

affordance region pair type avg std min

left handle of rolling pin
↓

right handle of rolling pin

CaAC
CyAC
SSAC

8.762
11.802
12.006

5.996
22.036
12.215

0.782
1.552
1.387

left handle of rolling pin
↓

place onto of table

CaAC
CyAC
SSAC

134.810
134.788
115.850

72.513
87.605
71.209

21.103
25.146
17.747

right handle of rolling pin
↓

place onto of table

CaAC
CyAC
SSAC

135.882
136.227
118.420

75.134
90.163
74.384

21.034
29.437
15.387

2) Rolling Dough: To ensure that our findings were not
limited to the pouring drink action, we also trained models to
perform a rolling dough action involving moving a rolling pin
back and forth across a table five times. Our analysis of the
leave-one-out cross-validation focuses on comparing the mean
and variance of the difference of relative affordance region
positions during execution from an unseen scene. The results
of this evaluation are summarized in Table III. Similar to our
previous observations, the evaluation exhibits similar values
across different methods. However, it is noteworthy that the
SSACs appear to yield the most accurate executions, whereas
the CyACs show the least similarity. Figure 8 presents the
courses of all the SSACs between place onto of the table and
left handle of the rolling pin of the target demonstration, the
execution, and the learned values. Remarkably, the zig-zag
pattern is present, albeit at minimal amplitudes, in 6 out of
the 8 SSACs. This incentivizes the optimizer to execute the
motion more precisely. In comparison, only two of the three
constraints manifest the zig-zag pattern in the cylindrical
coordinate system (cf. video 7⃝).

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel approach for learning
spatial bimanual action models from affordance constraints
observed in human demonstrations. We formulated an op-
timization problem that finds optimal object arrangements
across multiple keypoints for the execution of a bimanual
action on a humanoid robot. It takes into account the
affordance constraints in the spatial bimanual action model,
the present affordance constraints in the current scene, as
well as the robot’s kinematics. We evaluated our approach



qualitatively and quantitatively in simulation with two tasks
and compared the influence of different objects, different
robots, and three different affordance constraint types. The
results show that given such a spatial bimanual action model,
a humanoid robot is able to execute observed bimanual
manipulation actions learned from human demonstration.

In future work, we aim to further improve the execution
on the robot by utilizing movement primitives such as in our
previous work [30]. Although the symbolic spatial affordance
constraints performed worse than expected, we still believe
that this representation has merit and will continue to improve
its performance. Additionally, we plan to include collision
avoidance between the manipulation objects, the robot, and
the environment (e. g. using constraints similar to [31]) in
order to validate our approach in real experiments with the
humanoid robots ARMAR-6 and ARMAR-7, demonstrating the
model’s applicability in real-world settings. This also includes
improving the performance of the approach by refining
the underlying code and using gradient-based optimization
methods. Furthermore, incorporating the capability to identify
relevant affordance regions will allow us to execute bimanual
actions in complex environments. In the long term, we want
to investigate, how to combine various additional modalities
other than the spatial constraints between affordance regions,
such as temporal constraints between actions [32] or force
constraints in our strive to create unifying manipulation task
models that are learned from human demonstration.
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