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Probabilistic Spatio-Temporal Fusion of Affordances
for Grasping and Manipulation

Christoph Pohl and Tamim Asfour , Member, IEEE

Abstract—Robust vision-based grasping and manipulation of
unknown objects in unstructured scenes requires the extraction
of action candidates based on visual information while taking
into account noise and occlusions in such scenes. We address this
problem by combining the concept of affordances and Bayesian
Recursive State Estimation. We propose to extract affordances using
heuristics on the averaged local surface information of supervoxels
in a point cloud. Based on a local, geometry-aware coordinate
frame, we define a uniform state for different affordances. Using
Bayesian statistics, this state is fused across multiple observations
of the scene to improve the estimates for the pose and existence
certainty of actions. This facilitates the extraction of robust grasp-
ing and manipulation actions independent of the segmentation of a
scene. The proposed approach is evaluated in grasping experiments
with more than 900 grasp executions using the humanoid robot
ARMAR-6 in an unstructured scene with a variable number of
unknown objects. The experimental results show that the grasping
success rate is improved by over 10% compared to a state-of-the-art
approach.

Index Terms—Perception for grasping and manipulation,
probabilistic inference, semantic scene understanding.

I. INTRODUCTION

THE interaction of an autonomous robot with unstructured
and unknown environments based on visual information

is still a difficult task. It requires an interpretation of the scene
to allow the selection of proper actions that can be executed in
a given situation. The ability to interact with cluttered scenes
is necessary to increase the robot’s autonomy for real-world
applications e. g., in inhospitable environments, such as disaster
response scenarios or work in contaminated areas, where robots
can increase the safety and working conditions for humans (see
Fig. 1). The concept of affordances [1], adapted from cognitive
psychology, has been recently employed to endow robots with
the ability to extract interaction possibilities and hypotheses for
potential actions in the scene based on visual perception. Exist-
ing approaches for affordance-based grasping and manipulation
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Fig. 1. ARMAR-6 executing an affordance-based grasp.

rely on the segmentation of the scene, which is often noisy
and inaccurate, thus leading to infeasible actions. Additionally,
having a measure of the uncertainty of e. g., a grasping pose can
be used as an indicator of the grasp’s success. For example, in the
case of a grasp pose with high uncertainty, the robot could first
explore the scene from a different viewpoint before executing
such a grasp to increase the probability of success. To deal
with uncertainties in an affordance-based extraction of potential
actions in a given scene, we present a probabilistic approach
to estimate the pose of an action hypothesis together with the
certainty of its existence, derived over multiple observations.

A. Previous Work

The proposed method builds on our previous work on the
computational formalization, extraction, and validation of scene
affordances [2], [3], in which we describe affordances as
Dempster-Shafer belief over the space of end-effector poses.
This formulation allows for a hierarchical definition of affor-
dances and the fusion of information from different input modal-
ities. Affordances are defined on primitive shapes, like cylinders,
spheres, and planes, and affordance belief functions are used to
describe the degree of certainty in the existence of an affordance
for an end-effector pose. This formulation facilitates the consis-
tent fusion of affordance-related evidence for their validation
through physical interaction. However, the representation of
affordances as belief over shape surfaces cannot take previous
observations for an improved estimate of the end-effector poses
into account. Therefore, an entirely different approach to affor-
dances – independent of the representation as primitives shapes
– is needed. Estimating the state of a system from multiple
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observations is a well-understood problem in robotics and can
be solved, e. g., using Recursive State Estimation [4]. Estimat-
ing the 6-dimensional pose remains difficult nevertheless, as
conventional recursive filters in Euclidean space cannot easily
handle orientations. However, ready-to-use algorithms for the
fusion of poses have recently been developed based on Bayesian
State Estimation [5].

Therefore, our goal is the probabilistic state estimation of ac-
tion hypotheses based on the spatio-temporal fusion of visually-
extracted affordances from multiple observations. Contrary to
our prior work, quadric approximations of the local surface of a
point cloud are used to extract curvature information, which is
then used to heuristically derive affordances for surface patches
that conform to object boundaries. These affordances can be
used to generate different types of actions associated with a
frame at each surface patch that is uniquely defined through
the local surface structure. Recursive State Estimation with an
unscented Kalman filter is then combined with a Hidden Markov
Model to estimate the existence certainty of an action hypothesis
and improve its associated pose over multiple observations.

B. Contributions

In this work, we present a Bayesian Recursive State Esti-
mation approach for combining multiple observations of affor-
dances to estimate their existence certainty as well as the pose of
their associated action’s coordinate frame. We evaluate the pre-
cision of our approach and its robustness in multiple real-world
grasping experiments in a scene with different degrees of clutter
on the humanoid robot ARMAR-6 [6]. The major contributions
of this work are

1) the probabilistic, spatio-temporal fusion of action-related
observations combining an unscented Kalman filter and a
Hidden Markov Model, which is made possible by

2) the definition of a state for different affordances, facilitat-
ing the joint fusion of all affordances, while still allowing
for versatile action generation.

II. RELATED WORK

Robotic manipulation in real-world scenarios remains a
challenging problem, as the robot has to cope with cluttered
environments, perceptual uncertainties, and dynamic change
of the scene. To identify suitable interaction possibilities for
autonomous manipulation in robotics, the concept of affor-
dances [1] was adopted from cognitive psychology. In an
affordance-based interpretation of the scene, objects are as-
signed their respective action opportunities as properties, so
that, e. g., a cup might have the “graspability” and “fillability”
affordances. In our previous work [2], [7], affordances have
been investigated for the discovery and execution of autonomous
actions with a humanoid robot in real-world environments. How-
ever, our previous work does not consider the fusion of multiple
observations to improve extraction of scene affordances. In [8],
affordances derived from local geometric features of object parts
are used to define Conceptual Equivalence Classes, which state
that objects can be treated interchangeably in action execution if
they possess parts with the same affordances. While still being

dependent on an instance segmentation of the object, the authors
of [9] assign affordances to certain keypoints – and not to the
entire object – on object classes and show that their system
can handle large intra-class variability in a pick-and-place task.
There also exist multiple works similar to our approach that treat
affordances in a probabilistic framework. In our previous work
in [3], affordances were formalized as Dempster-Shafer belief
functions to facilitate the fusion of belief from different input
modalities. A Markov Logic Network was used in [10] to extract
a probability distribution over grasp affordances of an object
to predict the most probable location of a successful grasping
action. In [11], a relational affordance model for high-level plan-
ning is introduced, which incorporates the current state of the
world in terms of random variables and considers object relations
between multiple objects. The authors model affordances as
a joint probability distribution over objects, actions, and their
effects. To the best of our knowledge, there does not yet exist an
approach that fuses multiple observations of scene affordances
to improve the estimate of the pose, as well as the existence
certainty of manipulation actions.

As noisy point clouds can affect the accuracy of vision-based
manipulation, surface approximation techniques are employed
in many robotic applications. Quadrics [12] are a mathematical
construct that can be used to alleviate some of the restraints when
working with RGB-D sensors. In [13], quadric surface patches
are used for the calculation of stable grasp poses for known
objects, which are decomposed to an approximate quadric rep-
resentation. The approach proposed in [14] is similar to ours,
as it uses curved surface patches with a uniquely defined pose
based on its curvature to extract a stable foot placement for a
bipedal robot. However, in this work, we define one universal
parameterization of surface patches for all shapes and affor-
dances. Moreover, we don’t rely on a semantic segmentation
of the scene, which improves the performance in very cluttered
environments.

Recursive State Estimation in robotics [4] has been thoroughly
investigated for applications like pose estimation, object track-
ing, localization, and mapping [15]. Nevertheless, the nonlinear
nature of orientations is a problem for traditional approaches
like the Kalman filter. The statistical treatment of 6D poses as
a Lie group [16] has gained attention for state estimation in
recent years. In [17], nonlinear filtering based on the unscented
transform of dual quaternions is used for a visual SLAM system.
For nonlinear state estimation on 6D poses, adaptions to the
unscented Kalman filter (UKF) [18] show promising results.
In [19], the standard UKF is extended for the estimation and
modeling of the pose of a quadrotor platform in SE(3). For the
application in general Lie groups, a UKF with partial or full state
measurements is proposed in [5]. The authors use concentrated
Gaussians on the manifold and define the sigma points in the
Lie algebra, therefore removing the need to map them back onto
the manifold. The authors in [20] build upon their work and
define the time propagation in the Lie algebra as well, instead
of on the manifold. This increases the computational efficiency
and facilitates the computation of the mean and covariance in
the Lie algebra. A Matrix Fisher Distribution directly defined
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Fig. 2. Overview of the approach.

on the manifold SO(3) is used in [21] instead of Gaussians to
implement a UKF for attitude estimation.

III. APPROACH

An overview of our approach for the extraction and proba-
bilistic fusion of affordance-based actions is given in Fig. 2.
The approach can be split into three main steps. First, the local
surface geometry of a point cloud is analyzed and normals,
as well as principal curvatures, are calculated at every point.
Based on this, locally consistent surface patches are extracted via
an adapted supervoxel clustering (Section III-A). Afterwards,
the averaged geometrical features of the supervoxels are used
to heuristically define affordances and a temporally consistent
coordinate system – the Local Curvature Frame – for each patch
(Section III-B). In the last step, correspondence likelihoods to
previously observed actions are determined and the state of an
action hypothesis is updated accordingly using an unscented
Kalman filter (UKF) and a Hidden Markov Model (HMM)
(Section III-C). The steps of the approach for the graspability
affordance are shown in Fig. 3.

A. Local Surface Analysis

The first step of the approach is to estimate and extract local
surface information from the raw point cloud data, as this is the
basis for subsequent processing steps.

1) Quadric Patch Estimation: As a geometrical representa-
tion of surfaces in a point cloud, quadrics [12] are used. Quadrics
are D-dimensional hypersurfaces embedded in a space of the
dimension (D + 1), where in this case D = 2. By treating
surfaces as functions, methods of differential geometry allow
the closed-form calculation of important metrics for the local
surface structure [22, Chapter 3].

For the approximation of the local surface of a raw point
cloud as quadrics, the GPU-implementation described in [23]
is used. As a result, the surface normal n and the principal
curvature coefficients κ±, as well as the quadric parameters
L,M,N , are obtained. L,M,N are called second fundamental
form coefficients and are defined through the 2nd fundamental
form [22].

For the extraction of a coordinate frame defined by the local
surface structure in the later sections, the principal directions
λ± are required. They can be obtained from the definition of the
curvature through the second fundamental form coefficients:

λ± = − M

N − κ±
= −L− κ±

M

2) Supervoxel Clustering augmented by Local Surface Cur-
vature: After the calculation of the local surface information
for each point of the point cloud, the next step is to find regions
which have similar properties and cluster them. This can be
achieved using different clustering algorithms. We assume one
single action hypothesis per region for the manipulation of
unknown objects. Therefore, the clustering algorithm described
in [24] was chosen. The advantage of this approach is that it
adheres to object boundaries and provides an over-segmentation
of the scene in the form of supervoxels. To improve the seg-
mentation accuracy, the implementation in the Point Cloud
Library [25] was adapted to also consider the previously ex-
tracted local surface metrics. It is reasonable to assume that
points with similar local surface properties, such as the direction
of maximum curvature, belong to one semantic segment and,
therefore, share affordances (see e. g., [14], [26]).

A supervoxel V = (t, c,n,kλ− ,K) represents a cluster of
points and is defined using the averaged features of all points
belonging to it, where t ∈ R3 is the position, c ∈ [0 . . . 255]3

the color, n ∈ R3 the surface normal, kλ− ∈ R3 the direction of
minimal curvature, and K = κ+ · κ− is the Gaussian curvature.
Beginning with an initial seeding, the supervoxels are iteratively
grown based on the distance dvccs between two adjacent voxels
V1 and V2 in the feature space given by

dvccs = α||t2 − t1||+ β||c2 − c1||+ γ(1− |n1 · n2|),

where α, β, γ are scaling constants. To better account for the
local surface structure, the feature space was extended by the
principal directions and curvatures of the point cloud. Therefore,
the new distance in feature space is

daug = dvccs + δ(1− |kλ−,1 · kλ−,2|) · |K2 −K1|.

B. Affordance Extraction

In our previous work, we introduced affordance-based ap-
proaches for the extraction of potential actions for autonomous
and semi-autonomous manipulation tasks performed by hu-
manoid robots in unknown environments [7] and presented
methods for the probabilistic formalization of affordances [3].
The approach presented in this paper on the other hand, needs
a universal state for all affordances to be able to deal with the
recursive spatio-temporal fusion of actions.

1) Heuristic Affordance Extraction for Clustered Surface
Patches: In our previous work [2], threshold-based decision
functions were used to define affordances on extracted envi-
ronmental geometric primitives. Similarly, heuristics resulting
from thresholds of the averaged supervoxel statistics of the local
surface geometry are used in this work to extract affordances in
the scene. For example, it is natural to assume, that only flat sur-
faces with a normal that is anti-parallel to the direction of gravity
have the affordance of placability or supportability. Further,
we assume that only convex objects (i. e., using the convention
of the curvature direction as used in [22] with κ− ≤ 0) afford
graspability. An overview of surface metrics used for affordance
extraction is given in Table I. Based on these metrics, every point
belonging to a supervoxel can be assigned the affordance for
which its supervoxel fulfills the requirements.
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Fig. 3. In (a) the normals, minimal and maximal curvature directions for each point in a surface patch are displayed. (b) shows the clustered supervoxels and
(c) the averaged surface information. (d) shows the extracted action observations, and (e) the final, filtered action hypotheses and sphere with a radius equal to
3σm. For comparison, (f) shows bounding boxes for the objects based on a segmentation of the scene.

TABLE I
SURFACE METRICS FOR THE DEFINITION OF AFFORDANCES

2) Action Generation in a Uniquely Defined, Local Coor-
dinate System: Depending on the affordances extracted for a
supervoxel, actions are generated. As n ≥ 0 affordances can
exist for a single supervoxel, i. e., multiple potential actions
can be assigned to one supervoxel, a state definition for all
action types is needed for the probabilistic state estimation.
Otherwise, the temporal fusion would require tracking the state
for each affordance, which can quickly become computationally
intensive for larger scenes.

For differential surfaces, it holds that the normal direction
n and the principal directions kλ± are always orthogonal [22].
Therefore, we can define a local, geometrically motivated frame
X for each supervoxel, referred to as the Local Curvature Frame,
that only depends on the averaged curvature and normal of
all points belonging to the supervoxel. The frame is chosen
in a way that its z-axis aligns with the averaged normal n̄
and its y-axis aligns with the averaged minimal curvature di-
rection of the supervoxel. The execution instructions for the
actions can then be generated based on the pose of this Lo-
cal Curvature Frame. For example, a grasp can be generated
in a way that the fingers of the hand align with the mini-
mal curvature direction (i. e., y-axis of the Local Curvature
Frame).

C. Bayesian State Estimation

As the Local Curvature Frame for a surface patch is uniquely
defined and is associated with the affordances of this patch, it
can be used to construct an action’s state that facilitates spatio-
temporal fusion. Considering that action possibilities in a scene
can appear and disappear at any time (e. g., when an object is
removed), it is not sufficient to model only the action’s pose and
its uncertainty, as an additional measure for the existence of an
action is needed. Therefore, we use a combination of a Kalman
filter with a Hidden Markov Model for the complete probabilistic
state estimation of the actions.

We define an action observation At, which is linked to the
Local Curvature Frame with poseX ∈ R3 × SO(3) at time step
t ∈ R+ and is associated with n affordances ai

At = (X, t, {a1, . . . , an}).

An action hypothesis Āt is the result of combining multiple
observations At of an action using the UKF and the HMM

Āt = (X̄,ΣX, t, {pa1

E , . . . , pam

E }),

where pai

E is the existence certainty of Āt for the i-th affordance
ai and ΣX ∈ R6×6 is the covariance matrix of the filtered pose
X̄ ∈ R3 × SO(3) with the time of last observation t.

For the probabilistic estimation of the state of Ā, two main
problems arise: Firstly, a matching hypothesis Ā needs to be
identified for each new action observation, i. e., a hypothesis
Āt−1 corresponding to the currently observed actionAt needs to
be found. Secondly, the current observation At and the previous
state estimation Āt−1 need to be fused to estimate the new state
Āt of the action hypothesis.

1) Search for Correspondences between Observations and
Hypotheses: For the identification of correspondences between
actions in subsequent observations of the scene, we apply a
similar approach as for the belief fusion in our previous work [3].
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The basic assumption is, that observations of the pose X of an
action hypothesis Ā are distributed in a Gaussian manner around
the mean pose X̄. For the positional part of the pose t, this can
be expressed by a multivariate Gaussian Probability Density
Function (PDF) [4], given that the observation and hypothesis
correspond to one another (i. e., conditioned on C)

p(t|C) =
1√

det(2πΣt)
exp

(
−1

2
(t− t̄)TΣ−1

t (t− t̄)

)
,

where t̄ ∈ R3 is the mean position of the action and Σt ∈ R3×3

is its covariance matrix.
Since the orientation R of A is an element of the special

orthogonal group SO(3), the above probability density function
cannot be used without adaption. Following [16], we use local
perturbations τ on the Lie group SO(3) to model the uncertainty
for the orientation. A Lie group G is a smooth manifold M,
which locally resembles a linear space. This implies that there
exists a unique Euclidean tangent space TY at each point Y on
the manifold. All these tangent spaces have the same structure
and therefore, can be transformed into each other. To model
probability distributions on a Lie group, one can simply define
Y as a perturbation with τ ∈ TȲM around the mean Ȳ locally
in its tangent space. Thus, Y and its covariance matrix ΣY can
be expressed in terms of τ

Y = Ȳ ⊕ τ = Ȳ ◦ Exp(τ )

τ = Y � Ȳ = Log(Ȳ-1 ◦Y)

ΣY = Σ[ττT ] � E
[
(Y � Ȳ)(Y � Ȳ)T

]
∈ Rm×m,

where Exp(τ ) is the retraction of τ onto M and Log is
the inverse operation that transfers an element of M to its
tangent space. Therefore, a Gaussian distributed variable on
Lie groups can be naturally expressed in the tangent space
as Y ∼ N(Ȳ,ΣY). With this in mind, the correspondence
likelihood for the orientation R becomes

p(R|C) =

1√
det(2πΣR)

exp

(
−1

2
(R� R̄)TΣ−1

R (R� R̄)

)
,

where ΣR ∈ R3×3 is the covariance matrix, and R̄ ∈ SO(3)
is the mean orientation of a hypothesis. Note that the mean
values are taken from filtered action hypotheses. Furthermore,
we assume that the orientationR and translation t are condition-
ally independent, i. e., p(R, t|C) = p(R|C) · p(t|C). Now, the
Bayes’ rule can be used to estimate the likelihood p(C|R, t)
that the observed action A at position t and orientation R
corresponds to the hypothesis Ā

p(C|R, t) =
p(C) · p(R|C) · p(t|C)

p(R) · p(t) ∝ p(R|C) · p(t|C).

To avoid checking every single hypothesis for correspondence
with all observations in a given scene, we run a search with a
k-dimensional tree. For every hypothesis, a search radius r =
3 · σm = max diag(Σt) is used. This is warranted, as the posi-
tion of a hypothesis follows a multivariate normal distribution
with independent components and the confidence region defined

by the three times scaled Standard Deviational Hyper-Ellipsoid
is enclosed by the sphere with r = 3 · σm. Therefore the prob-
ability of finding a sample (i. e., a corresponding observation)
inside this sphere is larger than ∼ 97% [27].

2) Bayesian Filtering of Action Hypotheses: Once a corre-
sponding observation At of the filtered action hypothesis Āt−1

has been identified, the next step is to update the estimated state
of the filtered action using that observation. Therefore, an update
to the existence certainties pai

E , as well as the pose X̄ of Ā has
to be performed.

The existence certainty can be determined using the previ-
ously calculated correspondence certainty p = p(C|R, t). For
that we use a Continuous Density Hidden Markov Model
(CDHMM) with 2 states [28]. The hidden states are S1 (action
hypothesis exists) andS2 (action hypothesis does not exist). As a
hypothesis is initially created when an observation indicates that
it does exist, we assume that the CDHMM is in S1 upon creation
and that the state can only go from existing (S1) to not existing
(S2), i. e., a hypothesis can only vanish. Therefore, we can define

the state λ = (A,B,π) of the CDHMM with π =
(
1 0

)
and

A =

(
a11 1− a11

0 1

)
, B =

(
p 1− p

1− b22 b22

)
.

The forward-backward algorithm is then used to calculate the
probability pai

E of being in state S1 at time t for the affordance
ai.

Since the orientationR cannot be easily modeled in Euclidean
space, a simple Kalman filter is not adequate for the estimation
of the pose X̄ from multiple observations X. Recently, multiple
works have investigated the use of Lie groups for robotic appli-
cations and state estimation [5], [16], [20], [21], as they offer a
natural, smooth representation of poses.

In [5], Gaussian distributions on manifolds are used to imple-
ment a UKF for generic Lie groups using retractions onto the
tangent space, where the standard algorithms for a UKF can be
used to update and propagate the state. We use the open-source
implementation of a UKF on manifolds (UKF-M) [29] for
the spatio-temporal fusion of the mean pose X̄ of the filtered
action Ā and its covariance matrix ΣX from multiple action
observations A.

Together with the previously defined fusion of the existence
certainty for affordances, a complete probabilistic state estima-
tion using Bayesian statistics for actions is possible.

IV. EXPERIMENTS

We evaluated the approach regarding the spatio-temporal
fusion of action candidates for the graspability affordance in
a series of real-world grasping experiments on the humanoid
robot ARMAR-6 in two cluttered setups:

1) Box emptying setup and
2) table clearing setup.
In both setups, unknown objects are randomly placed and

should be grasped and manipulated to empty the box or clear
the table. A video describing the approach and experiments can
be found under https://youtu.be/lXxWtTIySB0
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A. Setup

Top-grasp candidates in both scenarios were generated using
three methods:

1) the geometry-based action extraction (GAE), using sur-
face patch-based action observations (utilizing the meth-
ods described in Sections III-A and III-B) without fusing
them,

2) the probabilistic action extraction and fusion (PAEF) de-
scribed in Section III-A through Section III-C, and

3) the approach based on object-oriented bounding boxes
(OOBB) combined with a region growing segmentation
described in our previous work [30].

The parameters used for the PAEF method were chosen
empirically. For the supervoxel clustering, the parameters α =
β = γ = δ = 5 were used and their respective distances were
normalized, so that all contributions were on the same scale. For
the Kalman filter, the initial position covariance was chosen to
be 1cm and the initial orientation covariance to be 0.1 rad. The
parameters of the HMM are chosen as a11 = 0.9 and b22 = 0.5.
After generation of the grasping action candidates, each candi-
date was checked for a feasible solution of the inverse kinematics
and, depending on the orientation of the grasp candidate, a
suitable placement of the mobile robot base, as well as one of
the robot’s hands to execute the grasp with, are chosen. From all
valid grasp candidates, the highest one was selected, executed,
and stored for reference. Prospective candidates are preferred if
they do not lie inside a small area around each previous candidate
to increase the variability of the executed grasps and to prevent
that a single grasp is executed multiple times in succession.
The reaching motions for the execution were generated using
Via-point Movement Primitives [31] which allow adaptation to
new goals, i. e., grasping poses.

B. Box Emptying Experiments

The first experiments are conducted in a setup similar to the
one used in our previous work [7]. A varying number of unknown
objects used in a decontamination scenario are randomly placed
inside a box, 30 grasp attempts were performed for each candi-
date generation method (GAE, PAEF, and OOBB) and the results
were recorded. This was repeated in five setups with a varying
number (ranging from 6 to 14 per setup) of randomly placed
objects in the box. The objects consist of boxes, cylinders, and
other more complex shapes, like bent pipes, a hammer, or a spray
bottle. To increase the variability of the investigated scenes,
during the 30 grasps the object configuration was changed after
5 grasps attempts by either rearranging or even exchanging the
objects in the box by a human operator. In case of a successful
grasp, the object was lifted and dropped from about 30 cm
height before executing the next grasp. Through the robot’s
interaction with the scene and the frequent rearranging of the
objects, we aim at reducing bias regarding the generation of
object configurations in the scene in all setups.

The grasp attempts were categorized based on the result of
the execution and failure reasons, as can be seen in Table II.
Additionally, for each grasp attempt, the time from candidate
generation until candidate selection was measured. Since the

TABLE II
POSSIBLE OUTCOMES OF GRASPING ATTEMPTS

PAEF and the OOBB grasp generation methods rely on previous
scene observations to calculate new candidates, the methods
were reset after each grasp attempt to provide a worst-case
estimate for the time required for the generation and selection
of grasp candidates in novel scenes.

C. Table Clearing Experiments

The second experiment was conducted in a kitchen scenario
and comprised clearing an 80 cm× 80 cm table cluttered with
18 objects and stowing them in a box. The objects consisted
of 6 boxes, 3 cups, 3 plates, and 6 fruits like pears, lemons,
and oranges. If a grasp attempt fails or an object is dropped,
the grasping process was manually aborted and restarted by
a human operator. The grasp candidate generation, selection,
and execution were done in the same manner as in the box
emptying scenario. For each grasp generation method, the table
was cleared five times and the number of objects in the stowing
box, as well as the total time and number of grasp attempts
necessary to clear the table, was recorded for each experiment.
An experiment ends if all objects were removed from the table
or if no executable grasp is found for the duration of 5 minutes.

D. Results and Discussion

1) Box Emptying Experiments: The results of the grasping
experiments are shown in Fig. 4. If only the cases “grasped”
and “stable lifted” are counted as successful grasp candidates,
the grasp extraction using only action observations (GAE) has
an average success rate of 46.0%, while the OOBB method
has only 38.7%. The additional spatio-temporal fusion of the
actions (PAEF) increases the success rate to 50.7%. For the
successful executions, there is no strong correlation on the
number of objects in the box for all methods with a Pearson’s
correlation coefficient ofρPAEF = −0.11 for PAEF,ρGAE = 0.18
for GAE and ρOOBB = −0.42 for OOBB candidates. On the
other hand, only for the OOBB candidates, there is a correlation
for missed grasps and the number of objects in the box with
ρGAE = −0.28, ρPAEF = 0.22 and ρOOBB = 0.96. This shows,
that while all methods are able to generate sufficiently good
grasping candidates even in very cluttered scenes, PAEF and
GAE were able to consistently perform well in the most difficult
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Fig. 4. Results of the box emptying experiments on ARMAR-6.

scenes. This confirms our hypothesis that the use of only local
surface geometry, independent of the segmentation of the point
cloud, has a positive influence on the accuracy of our approach.
As the average grasp success rate of the PAEF method increases
by more than 4% in comparison to the GAE method, it is evident
that the spatio-temporal fusion of actions has a positive impact
on the robustness of our approach. On the other hand, OOBB
has fewer failures than PAEF due to slipping of the object,
which happens mostly when there is a slight offset in the pose
from where an “ideal” grasp would be located. Therefore, it
seems that in cluttered scenes action observations are fused that
do not belong to one object or action hypothesis. This is not
the case for OOBB, as the candidates have access to global
context in the form of the bounding boxes that are supposed
to span an entire object. Most of the failed grasp attempts were
caused by the collision of the hand with other objects during the
reaching or hand closing phase. This is especially visible for the
OOBB candidates, which can be explained by fewer generated
candidates. In several situations, only one reachable candidate
was generated by OOBB, which resulted in the same candidate
being executed multiple times. If the execution does not lead to
significant change of the scene, the grasp will fail again due to
the same reason. In some object configurations in the box, the
OOBB method was not able to find a grasp at all and required
manual changes to the scene to recover.

Due to an increasing number of action observations being
generated as the number of objects in the box increases, the
PAEF method generally requires more time for grasp selection
than the OOBB method, as can be seen in Fig. 5. This can be
explained by the longer time needed for the search for action
correspondences, as a larger number of hypotheses has to be
checked and subsequently fused. As the OOBB method gener-
ates fewer candidates, only dependent on the number of point
cloud clusters segmented in a scene, with an averaging over close
candidates, the time needed to generate candidates is almost
constant over all degrees of clutter. The GAE method requires
approximately the same time for all setups, as the number of
surface patches to be processed is independent of the number of
objects in the scene. It is faster than the other methods, as no
averaging or filtering is performed.

2) Table Clearing Experiments: The results of the table
clearing experiment can be seen in Table III. As in the box
emptying scenario, the success rates of the GAE and PAEF
methods exceed those of the OOBB method. While the total

Fig. 5. Comparison of the combined extraction, filtering, and selection times
for the GAE, PAEF and OOBB methods.

TABLE III
RESULTS OF THE TABLE CLEARING EXPERIMENTS

amount of objects stowed away for the PAEF method is only
slightly larger than for the GAE method, the number of necessary
grasps to clear the table is by far higher for the GAE method. This
is in accordance with the results of the box emptying scenario
and stems from the higher robustness of the temporally fused
grasp candidates. Additionally, the higher accuracy of the PAEF
method partially compensates for the higher extraction times, as
the total time to clear the table was only slightly larger than for
GAE method. The OOBB method only has a small number of
grasp attempts and a low clearing time, as an average of more
than 5 objects remained on the table when the experiment had
to be terminated due to the time constraint.
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V. CONCLUSION

In this work, we presented an approach for the extraction of
scene affordances based only on the local surface geometry of
a point cloud and the subsequent probabilistic, spatio-temporal
fusion of the corresponding grasping and manipulation action
candidates. To this end, we defined a geometry-aware shared
state for all affordances in the form of the Local Curvature Frame
and used methods from Bayesian Recursive State Estimation to
fuse the pose of this frame over multiple distinct observations.
Based on the averaged Local Curvature Frame, concrete action
candidates can be synthesized in a global coordinate system. The
approach was tested in multiple real-world grasping scenarios
on the humanoid robot ARMAR-6 and compared to the grasp
extraction based on the method presented in [30] in more than
900 grasp executions. Our approach performed consistently
better than a grasp candidate extraction based on bounding boxes
of the unknown objects over all degrees of clutter in a scene and
resulted in an increase of over 10% in grasp success rate. We also
proved that the success rate is largely independent of the number
of objects in the scene, and therefore, the approach is able to
handle difficult and cluttered scenes. We postulate that this is
because our approach is independent of the scene segmentation.

In the future, we plan to use global information for the
correspondence search, as there were indications of wrong cor-
respondences being fused during the experiments in scenes with
a higher number of objects. Furthermore, we want to extend our
approach to other affordances, as we only consider grasping
affordances in this work, and test the entire framework in more
challenging scenarios.
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