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Probabilistic Spatio-Temporal Fusion of
Affordances for Grasping and Manipulation

Christoph Pohl and Tamim Asfour

Abstract—Robust vision-based grasping and manipulation of
unknown objects in unstructured scenes requires the extraction
of action candidates based on visual information while taking
into account noise and occlusions in such scenes. We address this
problem by combining the concept of affordances and Bayesian
Recursive State Estimation. We propose to extract affordances
using heuristics on the averaged local surface information of
supervoxels in a point cloud. Based on a local, geometry-
aware coordinate frame, we define a uniform state for different
affordances. Using Bayesian statistics, this state is fused across
multiple observations of the scene to improve the estimates for the
pose and existence certainty of actions. This facilitates the extrac-
tion of robust grasping and manipulation actions independent of
the segmentation of a scene. The proposed approach is evaluated
in grasping experiments with more than 900 grasp executions
using the humanoid robot ARMAR-6 in an unstructured scene
with a variable number of unknown objects. The experimental
results show that the grasping success rate is improved by over
10% compared to a state-of-the-art approach.

Index Terms—Perception for Grasping and Manipulation,
Semantic Scene Understanding, Probabilistic Inference

I. INTRODUCTION

THE interaction of an autonomous robot with unstructured
and unknown environments based on visual information

is still a difficult task. It requires an interpretation of the scene
to allow the selection of proper actions that can be executed
in a given situation. The ability to interact with cluttered
scenes is necessary to increase the robot’s autonomy for real-
world applications e. g., in inhospitable environments, such
as disaster response scenarios or work in contaminated areas,
where robots can increase the safety and working conditions
for humans. The concept of affordances [1], adapted from
cognitive psychology, has been recently employed to endow
robots with the ability to extract interaction possibilities and
hypotheses for potential actions in the scene based on visual
perception. Existing approaches for affordance-based grasping
and manipulation rely on the segmentation of the scene, which
is often noisy and inaccurate, thus leading to infeasible actions.
Additionally, having a measure of the uncertainty of e. g.,
a grasping pose can be used as an indicator of the grasp’s
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Fig. 1: ARMAR-6 executing an affordance-based grasp.

success. For example, in the case of a grasp pose with high
uncertainty, the robot could first explore the scene from a
different viewpoint before executing such a grasp to increase
the probability of success. To deal with uncertainties in an
affordance-based extraction of potential actions in a given
scene, we present a probabilistic approach to estimate the
pose of an action hypothesis together with the certainty of
its existence, derived over multiple observations.

A. Previous Work

The proposed method builds on our previous work on
the computational formalization, extraction, and validation of
scene affordances [2], [3], in which we describe affordances
as Dempster-Shafer belief over the space of end-effector
poses. This formulation allows for a hierarchical definition of
affordances and the fusion of information from different input
modalities. Affordances are defined on primitive shapes, like
cylinders, spheres, and planes, and affordance belief functions
are used to describe the degree of certainty in the existence
of an affordance for an end-effector pose. This formulation
facilitates the consistent fusion of affordance-related evidence
for their validation through physical interaction. However, the
representation of affordances as belief over shape surfaces
cannot take previous observations for an improved estimate
of the end-effector poses into account. Therefore, an en-
tirely different approach to affordances – independent of the
representation as primitives shapes – is needed. Estimating
the state of a system from multiple observations is a well-
understood problem in robotics and can be solved, e. g., using
Recursive State Estimation [4]. Estimating the 6-dimensional
pose remains difficult nevertheless, as conventional recursive



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

filters in Euclidean space cannot easily handle orientations.
However, ready-to-use algorithms for the fusion of poses have
recently been developed based on Bayesian State Estimation
[5].

Therefore, our goal is the probabilistic state estimation
of action hypotheses based on the spatio-temporal fusion
of visually-extracted affordances from multiple observations.
Contrary to our prior work, quadric approximations of the
local surface of a point cloud are used to extract curvature
information, which is then used to heuristically derive affor-
dances for surface patches that conform to object boundaries.
These affordances can be used to generate different types
of actions associated with a frame at each surface patch
that is uniquely defined through the local surface structure.
Recursive State Estimation with an unscented Kalman filter
is then combined with a Hidden Markov Model to estimate
the existence certainty of an action hypothesis and improve
its associated pose over multiple observations.

B. Contributions

In this work, we present a Bayesian Recursive State Es-
timation approach for combining multiple observations of
affordances to estimate their existence certainty as well as
the pose of their associated action’s coordinate frame. We
evaluate the precision of our approach and its robustness
in multiple real-world grasping experiments in a scene with
different degrees of clutter on the humanoid robot ARMAR-6
[6]. The major contributions of this work are (1) the proba-
bilistic, spatio-temporal fusion of action-related observations
combining an unscented Kalman filter and a Hidden Markov
Model, which is made possible by (2) the definition of a state
for different affordances, facilitating the joint fusion of all
affordances, while still allowing for versatile action generation.

II. RELATED WORK

Robotic manipulation in real-world scenarios remains a
challenging problem, as the robot has to cope with cluttered
environments, perceptual uncertainties, and dynamic change of
the scene. To identify suitable interaction possibilities for au-
tonomous manipulation in robotics, the concept of affordances
[1] was adopted from cognitive psychology. In an affordance-
based interpretation of the scene, objects are assigned their
respective action opportunities as properties, so that, e. g., a
cup might have the ”graspability” and ”fillability” affordances.
In our previous work [2], [7], affordances have been investi-
gated for the discovery and execution of autonomous actions
with a humanoid robot in real-world environments. However,
our previous work does not consider the fusion of multiple
observations to improve extraction of scene affordances. In [8],
affordances derived from local geometric features of object
parts are used to define Conceptual Equivalence Classes,
which state that objects can be treated interchangeably in ac-
tion execution if they possess parts with the same affordances.
While still being dependent on an instance segmentation of
the object, the authors of [9] assign affordances to certain
keypoints – and not to the entire object – on object classes and
show that their system can handle large intra-class variability

in a pick-and-place task. There also exist multiple works
similar to our approach that treat affordances in a probabilistic
framework. In our previous work in [3], affordances were
formalized as Dempster-Shafer belief functions to facilitate
the fusion of belief from different input modalities. A Markov
Logic Network was used in [10] to extract a probability
distribution over grasp affordances of an object to predict
the most probable location of a successful grasping action. In
[11], a relational affordance model for high-level planning is
introduced, which incorporates the current state of the world
in terms of random variables and considers object relations
between multiple objects. The authors model affordances as a
joint probability distribution over objects, actions, and their
effects. To the best of our knowledge, there does not yet
exist an approach that fuses multiple observations of scene
affordances to improve the estimate of the pose, as well as
the existence certainty of manipulation actions.

As noisy point clouds can affect the accuracy of vision-
based manipulation, surface approximation techniques are
employed in many robotic applications. Quadrics [12] are a
mathematical construct that can be used to alleviate some of
the restraints when working with RGB-D sensors. In [13],
quadric surface patches are used for the calculation of stable
grasp poses for known objects, which are decomposed to an
approximate quadric representation. The approach proposed in
[14] is similar to ours, as it uses curved surface patches with a
uniquely defined pose based on its curvature to extract a stable
foot placement for a bipedal robot. However, in this work, we
define one universal parameterization of surface patches for all
shapes and affordances. Moreover, we don’t rely on a semantic
segmentation of the scene, which improves the performance
in very cluttered environments.

Recursive State Estimation in robotics [4] has been thor-
oughly investigated for applications like pose estimation, ob-
ject tracking, localization, and mapping [15]. Nevertheless, the
nonlinear nature of orientations is a problem for traditional
approaches like the Kalman filter. The statistical treatment of
6D poses as a Lie group [16] has gained attention for state
estimation in recent years. In [17], nonlinear filtering based
on the unscented transform of dual quaternions is used for a
visual SLAM system. For nonlinear state estimation on 6D
poses, adaptions to the unscented Kalman filter (UKF) [18]
show promising results. In [19], the standard UKF is extended
for the estimation and modeling of the pose of a quadrotor
platform in SE(3). For the application in general Lie groups,
a UKF with partial or full state measurements is proposed in
[5]. The authors use concentrated Gaussians on the manifold
and define the sigma points in the Lie algebra, therefore
removing the need to map them back onto the manifold.
The authors in [20] build upon their work and define the
time propagation in the Lie algebra as well, instead of on
the manifold. This increases the computational efficiency and
facilitates the computation of the mean and covariance in the
Lie algebra. A Matrix Fisher Distribution directly defined on
the manifold SO(3) is used in [21] instead of Gaussians to
implement a UKF for attitude estimation.
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III. APPROACH

An overview of our approach for the extraction and proba-
bilistic fusion of affordance-based actions is given in Figure 2.
The approach can be split into three main steps. First, the local
surface geometry of a point cloud is analyzed and normals,
as well as principal curvatures, are calculated at every point.
Based on this, locally consistent surface patches are extracted
via an adapted supervoxel clustering (Section III-A). After-
wards, the averaged geometrical features of the supervoxels
are used to heuristically define affordances and a temporally
consistent coordinate system – the Local Curvature Frame –
for each patch (Section III-B). In the last step, correspondence
likelihoods to previously observed actions are determined and
the state of an action hypothesis is updated accordingly using
an unscented Kalman filter (UKF) and a Hidden Markov
Model (HMM) (Section III-C). The steps of the approach for
the graspability affordance are shown in Figure 3

A. Local Surface Analysis

The first step of the approach is to estimate and extract local
surface information from the raw point cloud data, as this is
the basis for subsequent processing steps.

1) Quadric Patch Estimation: As a geometrical represen-
tation of surfaces in a point cloud, quadrics [12] are used.
Quadrics are D-dimensional hypersurfaces embedded in a
space of the dimension (D+1), where in this case D = 2. By
treating surfaces as functions, methods of differential geometry
allow the closed-form calculation of important metrics for the
local surface structure [22, Chapter 3].

For the approximation of the local surface of a raw point
cloud as quadrics, the GPU-implementation described in [23]
is used. As a result, the surface normal n and the principal
curvature coefficients κ±, as well as the quadric parameters
L,M,N , are obtained. L,M,N are called second fundamental
form coefficients and are defined through the 2nd fundamental
form [22].

For the extraction of a coordinate frame defined by the
local surface structure in the later sections, the principal
directions λ± are required. They can be obtained from the
definition of the curvature through the second fundamental
form coefficients:

λ± = − M

N − κ±
= −L− κ±

M

2) Supervoxel Clustering augmented by Local Surface Cur-
vature: After the calculation of the local surface informa-
tion for each point of the point cloud, the next step is to
find regions which have similar properties and cluster them.
This can be achieved using different clustering algorithms.
We assume one single action hypothesis per region for the
manipulation of unknown objects. Therefore, the clustering
algorithm described in [24] was chosen. The advantage of this
approach is that it adheres to object boundaries and provides
an over-segmentation of the scene in the form of supervoxels.
To improve the segmentation accuracy, the implementation in
the Point Cloud Library [25] was adapted to also consider the
previously extracted local surface metrics. It is reasonable to

Fig. 2: Overview of the approach.

assume that points with similar local surface properties, such
as the direction of maximum curvature, belong to one semantic
segment and, therefore, share affordances (see e. g., [14], [26]).

A supervoxel V = (t, c,n,kλ− ,K) represents a cluster
of points and is defined using the averaged features of all
points belonging to it, where t ∈ R3 is the position, c ∈
[0 . . . 255]3 the color, n ∈ R3 the surface normal, kλ− ∈
R3 the direction of minimal curvature, and K = κ+ · κ− is
the Gaussian curvature. Beginning with an initial seeding, the
supervoxels are iteratively grown based on the distance dvccs
between two adjacent voxels V1 and V2 in the feature space
given by

dvccs = α||t2 − t1||+ β||c2 − c1||+ γ(1− |n1 · n2|),

where α, β, γ are scaling constants. To better account for
the local surface structure, the feature space was extended
by the principal directions and curvatures of the point cloud.
Therefore, the new distance in feature space is

daug = dvccs + δ(1− |kλ−,1 · kλ−,2|) · |K2 −K1|.

B. Affordance Extraction

In our previous work, we introduced affordance-based ap-
proaches for the extraction of potential actions for autonomous
and semi-autonomous manipulation tasks performed by hu-
manoid robots in unknown environments [7] and presented
methods for the probabilistic formalization of affordances [3].
The approach presented in this paper on the other hand, needs
a universal state for all affordances to be able to deal with the
recursive spatio-temporal fusion of actions.

1) Heuristic Affordance Extraction for Clustered Surface
Patches: In our previous work [2], threshold-based decision
functions were used to define affordances on extracted envi-
ronmental geometric primitives. Similarly, heuristics resulting
from thresholds of the averaged supervoxel statistics of the
local surface geometry are used in this work to extract af-
fordances in the scene. For example, it is natural to assume,
that only flat surfaces with a normal that is anti-parallel to
the direction of gravity have the affordance of placability or
supportability. Further, we assume that only convex objects
(i. e., using the convention of the curvature direction as used in
[22] with κ− ≤ 0) afford graspability. An overview of surface
metrics used for affordance extraction is given in Table I.
Based on these metrics, every point belonging to a supervoxel
can be assigned the affordance for which its supervoxel fulfills
the requirements.
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Fig. 3: In (a) the normals, minimal and maximal curvature directions for each point in a surface patch are displayed. (b) shows
the clustered supervoxels and (c) the averaged surface information. (d) shows the extracted action observations, and (e) the
final, filtered action hypotheses and sphere with a radius equal to 3σm. For comparison, (f) shows bounding boxes for the
objects based on a segmentation of the scene.

Surface Metric/
Affordance Graspability Pushability Placability

Mean Surface
Curvature Convex – Flat

Mean Normal
Direction

Upper
Hemisphere Horizontal Upwards

Volume < Grasp
Volume – > Object/

Threshold

TABLE I: Surface metrics for the definition of affordances.

2) Action Generation in a Uniquely Defined, Local Coor-
dinate System: Depending on the affordances extracted for a
supervoxel, actions are generated. As n ≥ 0 affordances can
exist for a single supervoxel, i. e., multiple potential actions
can be assigned to one supervoxel, a state definition for all
action types is needed for the probabilistic state estimation.
Otherwise, the temporal fusion would require tracking the state
for each affordance, which can quickly become computation-
ally intensive for larger scenes.

For differential surfaces, it holds that the normal direction
n and the principal directions kλ± are always orthogonal
[22]. Therefore, we can define a local, geometrically motivated
frame X for each supervoxel, referred to as the Local Curva-
ture Frame, that only depends on the averaged curvature and
normal of all points belonging to the supervoxel. The frame is
chosen in a way that its z-axis aligns with the averaged normal
n̄ and its y-axis aligns with the averaged minimal curvature
direction of the supervoxel. The execution instructions for the
actions can then be generated based on the pose of this Local
Curvature Frame. For example, a grasp can be generated in
a way that the fingers of the hand align with the minimal
curvature direction (i. e., y-axis of the Local Curvature Frame).

C. Bayesian State Estimation
As the Local Curvature Frame for a surface patch is

uniquely defined and is associated with the affordances of
this patch, it can be used to construct an action’s state
that facilitates spatio-temporal fusion. Considering that action
possibilities in a scene can appear and disappear at any time
(e. g., when an object is removed), it is not sufficient to model
only the action’s pose and its uncertainty, as an additional
measure for the existence of an action is needed. Therefore, we
use a combination of a Kalman filter with a Hidden Markov
Model for the complete probabilistic state estimation of the
actions.

We define an action observation At, which is linked to the
Local Curvature Frame with pose X ∈ R3 × SO(3) at time
step t ∈ R+ and is associated with n affordances ai

At = (X, t, {a1, . . . , an}).
An action hypothesis Āt is the result of combining multiple

observations At of an action using the UKF and the HMM

Āt = (X̄,ΣX, t, {pa1

E , . . . , p
am

E }),
where pai

E is the existence certainty of Āt for the i-th af-
fordance ai and ΣX ∈ R6×6 is the covariance matrix of the
filtered pose X̄ ∈ R3×SO(3) with the time of last observation
t.

For the probabilistic estimation of the state of Ā, two main
problems arise: Firstly, a matching hypothesis Ā needs to be
identified for each new action observation, i. e., a hypothesis
Āt−1 corresponding to the currently observed action At needs
to be found. Secondly, the current observation At and the
previous state estimation Āt−1 need to be fused to estimate
the new state Āt of the action hypothesis.
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1) Search for Correspondences between Observations and
Hypotheses: For the identification of correspondences between
actions in subsequent observations of the scene, we apply a
similar approach as for the belief fusion in our previous work
[3]. The basic assumption is, that observations of the pose X
of an action hypothesis Ā are distributed in a Gaussian manner
around the mean pose X̄. For the positional part of the pose t,
this can be expressed by a multivariate Gaussian Probability
Density Function (PDF) [4], given that the observation and
hypothesis correspond to one another (i. e., conditioned on C)

p(t|C) =
1√

det(2πΣt)
exp

(
−1

2
(t− t̄)TΣ−1

t (t− t̄)

)
,

where t̄ ∈ R3 is the mean position of the action and Σt ∈
R3×3 is its covariance matrix.

Since the orientation R of A is an element of the special
orthogonal group SO(3), the above probability density func-
tion cannot be used without adaption. Following [16], we use
local perturbations τ on the Lie group SO(3) to model the
uncertainty for the orientation. A Lie group G is a smooth
manifold M, which locally resembles a linear space. This
implies that there exists a unique Euclidean tangent space TY
at each point Y on the manifold. All these tangent spaces
have the same structure and therefore, can be transformed into
each other. To model probability distributions on a Lie group,
one can simply define Y as a perturbation with τ ∈ TȲM
around the mean Ȳ locally in its tangent space. Thus, Y and
its covariance matrix ΣY can be expressed in terms of τ

Y = Ȳ ⊕ τ = Ȳ ◦ Exp(τ )

τ = Y 	 Ȳ = Log(Ȳ-1 ◦Y)

ΣY = Σ[ττT ] , E
[
(Y 	 Ȳ)(Y 	 Ȳ)T

]
∈ Rm×m,

where Exp(τ ) is the retraction of τ onto M and Log is
the inverse operation that transfers an element of M to its
tangent space. Therefore, a Gaussian distributed variable on
Lie groups can be naturally expressed in the tangent space
as Y ∼ N(Ȳ,ΣY). With this in mind, the correspondence
likelihood for the orientation R becomes

p(R|C) =

1√
det(2πΣR)

exp

(
−1

2
(R	 R̄)TΣ−1

R (R	 R̄)

)
,

where ΣR ∈ R3×3 is the covariance matrix, and R̄ ∈ SO(3) is
the mean orientation of a hypothesis. Note that the mean values
are taken from filtered action hypotheses. Furthermore, we as-
sume that the orientation R and translation t are conditionally
independent, i. e., p(R, t|C) = p(R|C) · p(t|C). Now, the
Bayes’ rule can be used to estimate the likelihood p(C|R, t)
that the observed action A at position t and orientation R
corresponds to the hypothesis Ā

p(C|R, t) =
p(C) · p(R|C) · p(t|C)

p(R) · p(t)
∝ p(R|C) · p(t|C).

To avoid checking every single hypothesis for correspon-
dence with all observations in a given scene, we run a search

with a k-dimensional tree. For every hypothesis, a search
radius r = 3 · σm = max diag(Σt) is used. This is warranted,
as the position of a hypothesis follows a multivariate normal
distribution with independent components and the confidence
region defined by the three times scaled Standard Deviational
Hyper-Ellipsoid is enclosed by the sphere with r = 3 · σm.
Therefore the probability of finding a sample (i. e., a corre-
sponding observation) inside this sphere is larger than ∼ 97%
[27].

2) Bayesian Filtering of Action Hypotheses: Once a cor-
responding observation At of the filtered action hypothesis
Āt−1 has been identified, the next step is to update the
estimated state of the filtered action using that observation.
Therefore, an update to the existence certainties pai

E , as well
as the pose X̄ of Ā has to be performed.

The existence certainty can be determined using the pre-
viously calculated correspondence certainty p = p(C|R, t).
For that we use a Continuous Density Hidden Markov Model
(CDHMM) with 2 states [28]. The hidden states are S1 (action
hypothesis exists) and S2 (action hypothesis does not exist). As
a hypothesis is initially created when an observation indicates
that it does exist, we assume that the CDHMM is in S1 upon
creation and that the state can only go from existing (S1) to
not existing (S2), i. e., a hypothesis can only vanish. Therefore,
we can define the state λ = (A,B,π) of the CDHMM with
π =

(
1 0

)
and

A =

a11 1− a11

0 1

 , B =

 p 1− p

1− b22 b22

 .

The forward-backward algorithm is then used to calculate
the probability pai

E of being in state S1 at time t for the
affordance ai.

Since the orientation R cannot be easily modeled in Eu-
clidean space, a simple Kalman filter is not adequate for
the estimation of the pose X̄ from multiple observations X.
Recently, multiple works have investigated the use of Lie
groups for robotic applications and state estimation [5], [16],
[20], [21], as they offer a natural, smooth representation of
poses.

In [5], Gaussian distributions on manifolds are used to
implement a UKF for generic Lie groups using retractions
onto the tangent space, where the standard algorithms for a
UKF can be used to update and propagate the state. We use
the open-source implementation of a UKF on manifolds (UKF-
M) [29] for the spatio-temporal fusion of the mean pose X̄
of the filtered action Ā and its covariance matrix ΣX from
multiple action observations A.

Together with the previously defined fusion of the existence
certainty for affordances, a complete probabilistic state estima-
tion using Bayesian statistics for actions is possible.

IV. EXPERIMENTS

We evaluated the approach regarding the spatio-temporal
fusion of action candidates for the graspability affordance in
a series of real-world grasping experiments on the humanoid
robot ARMAR-6 in two cluttered setups: (1) Box emptying
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setup and (2) table clearing setup. In both setups, unknown
objects are randomly placed and should be grasped and
manipulated to empty the box or clear the table. A video
describing the approach and experiments can be found under
https://youtu.be/lXxWtTIySB0

A. Setup

Top-grasp candidates in both scenarios were generated
using three methods: (A) the geometry-based action extraction
(GAE), using surface patch-based action observations (utiliz-
ing the methods described in Section III-A and Section III-B)
without fusing them, (B) the probabilistic action extraction
and fusion (PAEF) described in Section III-A through Sec-
tion III-C, and (C) the approach based on object-oriented
bounding boxes (OOBB) combined with a region growing
segmentation described in our previous work [30].

The parameters used for the PAEF method were chosen
empirically. For the supervoxel clustering, the parameters
α = β = γ = δ = 5 were used and their respective
distances were normalized, so that all contributions were on
the same scale. For the Kalman filter, the initial position
covariance was chosen to be 1 cm and the initial orientation
covariance to be 0.1 rad. The parameters of the HMM are
chosen as a11 = 0.9 and b22 = 0.5. After generation of the
grasping action candidates, each candidate was checked for a
feasible solution of the inverse kinematics and, depending on
the orientation of the grasp candidate, a suitable placement
of the mobile robot base, as well as one of the robot’s hands
to execute the grasp with, are chosen. From all valid grasp
candidates, the highest one was selected, executed, and stored
for reference. Prospective candidates are preferred if they do
not lie inside a small area around each previous candidate to
increase the variability of the executed grasps and to prevent
that a single grasp is executed multiple times in succession.
The reaching motions for the execution were generated using
Via-point Movement Primitives [31] which allow adaptation to
new goals, i. e., grasping poses.

B. Box Emptying Experiments

The first experiments are conducted in a setup similar to
the one used in our previous work [7]. A varying number
of unknown objects used in a decontamination scenario are
randomly placed inside a box, 30 grasp attempts were per-
formed for each candidate generation method (GAE, PAEF,
and OOBB) and the results were recorded. This was repeated
in five setups with a varying number (ranging from 6 to 14
per setup) of randomly placed objects in the box. The objects
consist of boxes, cylinders, and other more complex shapes,
like bent pipes, a hammer, or a spray bottle. To increase the
variability of the investigated scenes, during the 30 grasps the
object configuration was changed after 5 grasps attempts by
either rearranging or even exchanging the objects in the box by
a human operator. In case of a successful grasp, the object was
lifted and dropped from about 30cm height before executing
the next grasp. Through the robot’s interaction with the scene
and the frequent rearranging of the objects, we aim at reducing

Outcome Description

Grasped The object does not touch the ground for 5 seconds

Stable Lifted The object is lifted for 5 seconds but parts of the object
still touch the ground

Lifted the object is visibly lifted for less than 5 seconds

Collision The object is not lifted because the hand collides with
other objects or the environment (e. g., box)

Slipped The object is not lifted because the hand slipped off the
object / was misaligned

Missed
The grasp is generated incorrectly, no object is close
enough to be grasped or no executable grasp is found
after 2 minutes

TABLE II: Possible outcomes of grasping attempts.

bias regarding the generation of object configurations in the
scene in all setups.

The grasp attempts were categorized based on the result
of the execution and failure reasons, as can be seen in
Table II. Additionally, for each grasp attempt, the time from
candidate generation until candidate selection was measured.
Since the PAEF and the OOBB grasp generation methods rely
on previous scene observations to calculate new candidates,
the methods were reset after each grasp attempt to provide a
worst-case estimate for the time required for the generation
and selection of grasp candidates in novel scenes.

C. Table Clearing Experiments

The second experiment was conducted in a kitchen scenario
and comprised clearing an 80 cm× 80 cm table cluttered with
18 objects and stowing them in a box. The objects consisted
of 6 boxes, 3 cups, 3 plates, and 6 fruits like pears, lemons,
and oranges. If a grasp attempt fails or an object is dropped,
the grasping process was manually aborted and restarted by
a human operator. The grasp candidate generation, selection,
and execution were done in the same manner as in the box
emptying scenario. For each grasp generation method, the
table was cleared five times and the number of objects in the
stowing box, as well as the total time and number of grasp
attempts necessary to clear the table, was recorded for each
experiment. An experiment ends if all objects were removed
from the table or if no executable grasp is found for the
duration of 5 minutes.

D. Results and Discussion

1) Box Emptying Experiments: The results of the grasping
experiments are shown in Figure 4. If only the cases ”grasped”
and ”stable lifted” are counted as successful grasp candidates,
the grasp extraction using only action observations (GAE) has
an average success rate of 46.0%, while the OOBB method
has only 38.7%. The additional spatio-temporal fusion of
the actions (PAEF) increases the success rate to 50.7%. For
the successful executions, there is no strong correlation on
the number of objects in the box for all methods with a
Pearson’s correlation coefficient of ρPAEF = −0.11 for PAEF,
ρGAE = 0.18 for GAE and ρOOBB = −0.42 for OOBB
candidates. On the other hand, only for the OOBB candidates,

https://youtu.be/lXxWtTIySB0
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(a) GAE-based Grasping (b) PAEF-based Grasping (c) OOBB-based Grasping

Fig. 4: Results of the box emptying experiments on ARMAR-6

there is a correlation for missed grasps and the number of
objects in the box with ρGAE = −0.28, ρPAEF = 0.22 and
ρOOBB = 0.96. This shows, that while all methods are able
to generate sufficiently good grasping candidates even in very
cluttered scenes, PAEF and GAE were able to consistently
perform well in the most difficult scenes. This confirms
our hypothesis that the use of only local surface geometry,
independent of the segmentation of the point cloud, has a
positive influence on the accuracy of our approach. As the
average grasp success rate of the PAEF method increases by
more than 4% in comparison to the GAE method, it is evident
that the spatio-temporal fusion of actions has a positive impact
on the robustness of our approach. On the other hand, OOBB
has fewer failures than PAEF due to slipping of the object,
which happens mostly when there is a slight offset in the pose
from where an ”ideal” grasp would be located. Therefore, it
seems that in cluttered scenes action observations are fused
that do not belong to one object or action hypothesis. This is
not the case for OOBB, as the candidates have access to global
context in the form of the bounding boxes that are supposed to
span an entire object. Most of the failed grasp attempts were
caused by the collision of the hand with other objects during
the reaching or hand closing phase. This is especially visible
for the OOBB candidates, which can be explained by fewer
generated candidates. In several situations, only one reachable
candidate was generated by OOBB, which resulted in the same
candidate being executed multiple times. If the execution does
not lead to significant change of the scene, the grasp will fail
again due to the same reason. In some object configurations
in the box, the OOBB method was not able to find a grasp at
all and required manual changes to the scene to recover.

Due to an increasing number of action observations being
generated as the number of objects in the box increases, the
PAEF method generally requires more time for grasp selection
than the OOBB method, as can be seen in Figure 5. This can
be explained by the longer time needed for the search for
action correspondences, as a larger number of hypotheses has
to be checked and subsequently fused. As the OOBB method
generates fewer candidates, only dependent on the number of
point cloud clusters segmented in a scene, with an averaging
over close candidates, the time needed to generate candidates
is almost constant over all degrees of clutter. The GAE method
requires approximately the same time for all setups, as the
number of surface patches to be processed is independent of

Fig. 5: Comparison of the combined extraction, filtering, and
selection times for the GAE, PAEF and OOBB methods

the number of objects in the scene. It is faster than the other
methods, as no averaging or filtering is performed.

2) Table Clearing Experiments: The results of the table
clearing experiment can be seen in Table III. As in the box
emptying scenario, the success rates of the GAE and PAEF
methods exceed those of the OOBB method. While the total
amount of objects stowed away for the PAEF method is
only slightly larger than for the GAE method, the number of
necessary grasps to clear the table is by far higher for the
GAE method. This is in accordance with the results of the
box emptying scenario and stems from the higher robustness of
the temporally fused grasp candidates. Additionally, the higher
accuracy of the PAEF method partially compensates for the
higher extraction times, as the total time to clear the table was
only slightly larger than for GAE method. The OOBB method

GAE PAEF OOBB

Stowed Boxes 4.6± 1.7 5.6± 0.5 4.2± 0.8

Stowed Plates 2.8± 0.4 2.0± 0.7 1.6± 1.1

Stowed Cups 2.0± 1.0 2.8± 0.4 2.2± 0.8

Stowed Fruit 2.4± 1.1 1.8± 0.8 1.8± 1.3

Total Stowed 11.8± 1.5 12.2± 0.8 9.8± 1.1

Remaining Objects 0.8± 0.8 1.6± 1.1 5.2± 2.4

Grasp Attempts 37.0± 2.2 30.2± 4.2 29.4± 6.1

Total Time [min] 33:11 ±
2:31

34:39 ±
5:39

25:24 ±
2:50

TABLE III: Results of the table clearing experiments.
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only has a small number of grasp attempts and a low clearing
time, as an average of more than 5 objects remained on the
table when the experiment had to be terminated due to the
time constraint.

V. CONCLUSION

In this work, we presented an approach for the extraction of
scene affordances based only on the local surface geometry of
a point cloud and the subsequent probabilistic, spatio-temporal
fusion of the corresponding grasping and manipulation action
candidates. To this end, we defined a geometry-aware shared
state for all affordances in the form of the Local Curvature
Frame and used methods from Bayesian Recursive State
Estimation to fuse the pose of this frame over multiple distinct
observations. Based on the averaged Local Curvature Frame,
concrete action candidates can be synthesized in a global
coordinate system. The approach was tested in multiple real-
world grasping scenarios on the humanoid robot ARMAR-6
and compared to the grasp extraction based on the method
presented in [30] in more than 900 grasp executions. Our
approach performed consistently better than a grasp candidate
extraction based on bounding boxes of the unknown objects
over all degrees of clutter in a scene and resulted in an increase
of over 10% in grasp success rate. We also proved that the
success rate is largely independent of the number of objects
in the scene, and therefore, the approach is able to handle
difficult and cluttered scenes. We postulate that this is because
our approach is independent of the scene segmentation.

In the future, we plan to use global information for the
correspondence search, as there were indications of wrong
correspondences being fused during the experiments in scenes
with a higher number of objects. Furthermore, we want to
extend our approach to other affordances, as we only consider
grasping affordances in this work, and test the entire frame-
work in more challenging scenarios.
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