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Abstract— In real world applications, robotic solutions re-
main impractical due to the challenges that arise in unknown
and unstructured environments. To perform complex manipu-
lation tasks in complex and cluttered situations, robots need to
be able to identify the interaction possibilities with the scene,
i. e. the affordances of the objects encountered. In unstructured
environments with noisy perception, insufficient scene under-
standing and limited prior knowledge, this is a challenging
task. In this work, we present an approach for grasping
unknown objects in cluttered scenes with a humanoid robot in
the context of a nuclear decommissioning task. Our approach
combines the convenience and reliability of autonomous robot
control with the precision and adaptability of teleoperation in a
semi-autonomous selection of grasp affordances. Additionally,
this allows exploiting the expert knowledge of an experienced
human worker. To evaluate our approach, we conducted 75
real world experiments with more than 660 grasp executions on
the humanoid robot ARMAR-6. The results demonstrate that
high-level decisions made by the human operator, supported by
autonomous robot control, contribute significantly to successful
task execution.

I. INTRODUCTION

The decommissioning of nuclear power plants is one of the
most challenging problems that affect many countries around
the world. A report of the International Atomic Energy
Agency from 2019 shows that by the end of 2018, there
were 451 operational, 55 incomplete, 81 planned and 172
permanently shutdown reactors worldwide [1]. In total, 144
of these shutdown reactors have been in a decommissioning
process while only 5 of them have reached the final decom-
missioning phase. Until now, most of the involved processing
steps cannot be automated as they require complex object
manipulation by humans with expert knowledge, as e. g.
the decontamination of plant components. Due to the fact
that these humans need to deal with radioactive material,
they are often exposed to hazardous and exhausting working
conditions, i. e. they suffer from a high cognitive load and are
forced to work under strict safety restrictions such as wearing
whole-body protective suits [2]. Furthermore, most of these
tasks need to take place directly inside the partially decom-
missioned nuclear power plants. This means that people have
to work in a strongly restricted working environment with
limited space that cannot easily be modified for automation.
The precarious working conditions, the requirement to work
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Fig. 1. The humanoid robot ARMAR-6 grasping and placing unknown
objects in a cluttered scene in context of a nuclear decommissioning task.

in a human-designed environment with limited space as well
as the need for complex manipulation tasks makes the de-
commissioning process a suitable application for humanoid
robots. As humanoid robots are designed to work in human-
centered environments, they are able to move around, adapt
to changing working conditions and fulfill tasks with physical
abilities comparable to humans.

However, to perform complex manipulation tasks, robots
need to be able to identify interaction possibilities within
the environment, i. e. they need to detect object affordances
[3]. In unstructured environments with noisy perception,
unknown objects and limited prior knowledge, this poses
a major challenge. The considered scenario in this work
deals with dismantled plant components of a nuclear power
plant that have to be picked up from a box and placed
at a predefined location before they get decontaminated
by humans. As these objects have arbitrary shapes, colors,
textures and occur in any given configuration, they can be
considered as completely unknown. Therefore, robust ap-
proaches are required that enable grasp affordance extraction
and execution by a humanoid robot in cluttered scenes.

In this work, we present a robust approach for grasping
unknown objects in cluttered scenes with a humanoid robot
in the context of a nuclear decommissioning task. Our
approach includes an autonomous method for extracting and
selecting grasp affordances and a semi-autonomous method
with an intuitive human-robot interface that can be used by
the human operator to select extracted affordances in virtual
reality (VR). While the former does not require any decision-
making by humans, the latter allows combining the advan-
tages of an autonomous robot with the expert knowledge of



an experienced human worker. As a result, the operator is
always able to actively intervene in the scene. In context of
nuclear plant decommissioning, this can be very helpful as
a worker can, for instance, decide where and which object
to grasp for decontamination. At the same time, the human
operator can focus on the important high-level decisions and
is no longer exposed to the high cognitive load caused by
the complexity of robot control. To evaluate our approach
in a real world scenario, we conducted 75 experiments on
the humanoid robot ARMAR-6 (see Figure 1) and compared
three different operational modes: a manual mode in which
grasp affordances are defined by a human operator with a 2D
mouse-screen interface, a semi-autonomous mode where the
operator selects the affordances in VR and an autonomous
mode in which the robot makes decisions based on a pre-
defined heuristic. Our results show that a semi-autonomous
execution reduces the number of grasp failures drastically,
compared to a fully autonomous and manual operational
mode.

In the following sections, we provide an overview of
existing real world applications and describe how the general
concept of affordances can be used and integrated into the
scenario of nuclear decommissioning tasks. After looking
into the implementation details, we discuss the robustness of
our approach by evaluating the experiment results.

II. RELATED WORK

For most real world applications in industrial or disaster
response scenarios, robotic solutions remain hard to realize
due to the many challenges that arise in unstructured and un-
known environments. Previous studies of humanoid robots in
real world applications have shown that they are well suited
for human-centered environments, such as disaster response
scenarios [4], [5], [6], industrial manufacturing [7], [8] and
collaborative maintenance and repair tasks [9], as they are
versatile, mobile and can use tools designed for humans to
fulfill complex loco-manipulation tasks. To accomplish this,
they need to understand which actions can be performed in
unknown scenarios that lead to successful task execution,
i. e. they need to recognize task-related affordances [3], [10].
However, as perceptual uncertainty in unknown environments
increases the complexity of the system drastically and might
lead to failures, more robust methods are required to use
humanoid robots in real world scenarios.

The humanoid robot ARMAR-6 [9], for example, was
particularly designed for collaborative maintenance and re-
pair tasks in industrial warehouses. The high degree of
autonomy allows the robot to recognize the need for help,
learn new tasks from human observation and support work-
ers by performing complex tasks such as grasping, mobile
manipulation and bimanual collaboration. Although many
of these tasks can be executed in a robust way, failures
can occur in different situations that need to be recovered.
In unknown scenarios with no prior knowledge about the
environment, this becomes very challenging. This can also
be seen in the work of [8], where the position-controlled
humanoid robot HRP-4 and the torque-controlled TORO are

used for autonomous assembly tasks in aircraft manufactur-
ing. Initial concerns for the stability of bipedal robots were
outweighed by their improved versatility and smaller size
compared to multi-legged solutions. The experiment results
show that humanoid robots can even operate in complex
scenarios, however, there are still limitations regarding robust
perception and failure recovery strategies which, e. g. in case
of falling, can even lead to unrecoverable hardware failures.

To overcome the challenges of fully autonomous robot
control, researchers look into semi-autonomous or teleop-
erated solutions for real world applications. In the well-
known DARPA Robotics Challenge (DRC) [4], for example,
the participants had to tackle eight tasks to investigate
the efficiency of supervised robotics in disaster response
scenarios. The authors of [11] report that human-robot in-
teraction had a considerable influence on the performance
of the teams. The two top-ranked teams at DRC [12], [13]
employed bipedal humanoid robots to handle difficult tasks
in unstructured environments. However, due to even higher
complexity, applications of humanoids to actual disaster sites
were still out of reach [14].

In context of nuclear decommissioning and decontamina-
tion, the work of [15] shows that the current robotic solutions
used in the industry have little or no autonomy, most of
them being remotely controlled via master-slave systems or
manual teleoperation. These systems often require a high
bandwidth of communication between the human operator
and the robot. However, this cannot always be provided in
disaster and nuclear decommissioning sites. Furthermore, a
pilot study in the work of [16] shows that an autonomous
solution can increase the reliability of the task execution in
decommissioning scenarios, while decreasing the cognitive
load of the operator. Similar conclusions are drawn in [17]
which confirms that a semi-autonomous solution should be
preferred over manual teleoperation in order to exploit the
expert knowledge of an operator in the form of high-level
decision making. To reduce the high cognitive load on human
operators, [6] implement a full-body suit for manual teleop-
eration as well as different methods for autonomous manip-
ulation of familiar objects. The experiments show that some
tasks could be accomplished autonomously while others still
required the utilization of a 6D mouse interface for precise
manipulation. The work of [18] presents a teleoperational
framework that includes a low-level real-time control for
manipulation and high-level teleoperation for locomotion,
using VR and motion tracking. The proposed system of [19]
only depends on a VR-headset in combination with a motion
controller to track the hand-pose of the operator for remote
control of a robotic gripper. However, both approaches rely
on fast data transmission and low-level teleoperation for
manipulation which puts high cognitive load on the human
operator. Thus, they are less suitable for disaster response or
decommissioning tasks.

To overcome these challenges, we propose a robust ap-
proach that makes use of both an autonomous method for
affordance extraction and selection and a semi-autonomous
interface for intuitive affordance selection in VR. In our
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Fig. 2. Affordance selection by a human operator in the semi-autonomous mode (a) and by the robot in the autonomous mode (b). The grasp affordances
are extracted based on visual information from the scene and provided to the operator and the robot, respectively. Hands that are displayed in green
represent grasp candidates that are reachable by the robot, while candidates that are not reachable from the robot’s position are displayed in red.

previous work [20], a pilot interface for the teleoperated
selection of whole-body affordances was presented that in-
creases the autonomy of the system while decreasing the
communication bandwidth as well as the operator’s cognitive
load. In this work, we build on the concept of affordance-
based teleoperation and show how this can improve the
task execution performance in complex grasp scenarios in
the context of nuclear decommissioning tasks with unknown
objects in cluttered scenes. As a result, the human operator
is able to operate from a safe distance and can focus on
important high-level decisions such as the decontamination
sequence of objects, without having to worry about robot
control.

III. SYSTEM SETUP

A. Decommissioning Scenario

During the decommissioning of a nuclear power plant,
surfaces and objects are checked for residual radiation before
they can be decontaminated and approved for disposal. In
an example workflow, human workers divide the relevant
objects into pieces of a maximum size of 80 × 80 cm and
put them into a standardized box. These boxes will then
be transported to the decontamination facilities where the
objects are picked up from the box and subsequently cleaned,
e. g. using high pressure water jetting. After a clearance
measurement, the objects can be further processed in the
regular waste disposal system.

To evaluate the industrial feasibility of robotic solutions in
a similar decommissioning procedure, this work considers
the subtask of retrieving the unknown, dismantled objects
from the delivered box and transporting them for further
processing. The evaluated scenario consists of grasping
unknown objects from a cluttered box and placing them
into a second, empty box. The task is executed on the
humanoid robot ARMAR-6 in a static indoor environment
and implemented using the robot development environment
ArmarX [21]. An example setup can be seen in Figure 1.
In order to draw meaningful conclusions about how much
teleoperation is required in such a real world application,

the experiments are performed in three different operational
modes with varying degrees of autonomy: manual, semi-
autonomous and autonomous.

There is no prior knowledge used for grasping the un-
known objects, except the position and dimensions of the
boxes. All affordances are derived from the images and point
clouds of an RGB-D camera in the head of the robot. The
remote interaction of a human operator with the scene in
the semi-autonomous mode is realized by a teleoperation
interface in VR, where the user can choose between multiple
grasp affordances. This intuitive remote control of the robot
allows for the intervention in case of failures and reduces
the mental strain on the human operator.

B. Virtual Reality Interface

The objective of VR-assisted teleoperation is to allow a
user to control a robot and interact with the robot’s environ-
ment immersively, while physically being in a different place
- possibly several kilometers away. A key challenge is letting
the user know about the robot’s surroundings, especially in
scenarios with sparse data and unreliable communication.
Usually, the user can only observe the robot’s workspace
from sensor data provided by the robot, e. g. video streams,
laser scans, or point clouds. Given that most of these sensors
are located on the robot’s head, a straightforward solution
would be to stream the camera images directly onto the head-
mounted display of the operator. However, this approach
limits the user’s point of view to the robot’s head, and even
a binocular view would not allow the user to fully exploit
the captured depth information.

Instead, we chose to project the RGB-D data into the
three-dimensional world as a point cloud, together with a 3D
model of the robot with correct pose and joint positions. This
permits the user to move freely and choose the virtual point
of view that best suits them. The projected sensor data takes
the robot’s pose into account, i. e. objects in the point cloud
remain fixed in place even if the robot is moving. Then, by
decoupling the robot’s head from the operator’s virtual point
of view, we obtain three key advantages: First, users can



perceive depth information optimally, in particular curvatures
and corners, by viewing the point cloud from any angle they
choose. Second, the robot can move at any moment and at
any speed without dragging or affecting the user’s point of
view, avoiding confusion. Third, the virtual world is rendered
locally and decoupled from the sensor data stream. This
means that if the user moves their head, they will see the
results immediately, even if communication with the robot
suffers from high latency and the point cloud updates slowly.
This last point is critical for minimizing motion sickness, one
of the key challenges in VR environments.

IV. APPROACH

In our approach, we distinguish between three cases for
affordance extraction and selection. Each of them has a
different level of autonomy and thus, needs to be regarded
separately. To clearly differentiate between these cases, we
refer to them as operational modes that can be described as
follows:

1) Manual mode: Based on the perceived point cloud
of the robot, a human operator manually sets an
affordance in the scene. The corresponding action for
the defined affordance is directly executed on the robot.
Consequently, there is no autonomy included regarding
affordance extraction or selection.

2) Semi-Autonomous mode: In the semi-autonomous
mode, the affordances are extracted autonomously by
the robot and visualized in VR (Figure 2a). A human
operator then selects one of the given affordances and
thus, decides upon the next action, e. g. where and
which object to grasp next that is executed on the robot.

3) Autonomous mode: In this mode, the affordance extrac-
tion and selection is done fully autonomously by the
robot without human interaction (Figure 2b). During
action execution, a human operator is still able to stop
the execution if necessary (e. g. in case of failure).

A complete overview of our affordance extraction and
execution pipeline, including the different operational modes,
is given in Figure 3. In the following sections, we provide a
detailed description of each individual step in the pipeline.

A. Preprocessing and Segmentation

In the first step (I.), the point cloud of the RGB-D camera
is registered and transformed into the robot’s coordinate
frame. As the location of the box is known in advance, the
point cloud can be filtered such that all points lying outside
the box or belonging to the box itself are cropped. After pre-
processing, the point cloud contains only the visible parts of
the objects.

Since we need to cope with arbitrary configurations of
unknown objects in a box, the segmentation must be versatile
and robust against clutter. The best results regarding geomet-
rical consistency were obtained with euclidean clustering,
followed by a region growing algorithm. In many cases, this
results in an oversegmentation and thus, parts of the objects
that are separated through occlusion are assigned to different
labels. Additionally, there is no guarantee that the segments

are temporally consistent over multiple camera frames. A
segmented object part can have two completely unrelated
labels in two successive point clouds. These factors need to
be considered in the following steps.

B. Affordance Extraction

The affordance extraction step (II. and III.) differs de-
pending on the used operational mode. In the manual mode,
affordances are defined directly by the operator that draws
a line in the received camera image in a 2D mouse-screen
interface to identify the region of interest in which a grasp
should be performed. More specifically, this line is used as
a mask to select the points corresponding to an object in the
scene. The first two principal components of this selected
area are then used to determine the orientation of the grasp
affordance. To grasp an object in a robust way, the pose of
the hand is oriented orthogonally to the first and along the
second principal component as shown in Figure 3.

In the semi-autonomous and autonomous mode, the af-
fordance extraction is based on the labeled point cloud
and thus, depends on the preprocessing and segmentation
from the previous step. For each identified segment, the
Object-Oriented Bounding Boxes (OOBB) and a principal
component analysis (PCA) is computed as shown in Figure 3,
III. Following this, multiple grasp candidates are generated
in fixed intervals and along the largest axis of the OOBB.
If the two largest axes of the OOBB have the same length,
a random axis among them is chosen for the generation of
candidates. From the PCA, grasp candidates are extracted in
the same way as manual grasp affordances, i. e. orthogonal
to the first principal component. To account for sensor noise
and temporal inconsistencies in the segmentation, the gen-
erated affordances are filtered over time. Grasp candidates
of the last 10 timesteps are stored and clustered in the
local spatio-temporal neighborhood. Clusters with less than
5 members are discarded as outliers produced by noise.
For the remaining clusters, the grasp candidate representing
the spatial median pose is selected as cluster representative.
Afterward, the actions corresponding to the resulting grasp
affordances are checked for self-collision and reachability
with respect to the current robot pose and the affordance is
labeled accordingly.

C. Affordance Selection

The goal of the affordance selection is to choose the
next affordance, which is linked to an action to be executed
by the robot, i. e. where and which object to grasp next.
Similar to the previous step, the affordance selection depends
on the chosen operational mode. In the manual mode, no
further selection is required as only a single affordance is
generated in the pipeline (II.). In the semi-autonomous and
autonomous mode, however, the affordance is either selected
by the human operator (IV.) or by the robot (V.), respectively.

In the semi-autonomous mode (IV.), this is realized in
an intuitive way through a VR interface as shown in Fig-
ure 2. Available affordances are visualized in the form of
colored virtual ”hands” at the corresponding position in



Fig. 3. The affordance extraction and execution pipeline: In a first step, the input point cloud is preprocessed and points belonging to the box itself are
removed before a segmentation is performed (I.). In a second step, the grasp affordances are either set manually by a human operator (II.) or extracted
fully autonomously (III.), given the segmented point cloud. The resulting affordances are then selected semi-autonomously by the operator in virtual reality
(IV.) or autonomously by the robot (V.), depending on the operational mode. Finally, the corresponding action is executed by the robot (VI.).

the scene, where reachable grasp affordances are displayed
with green color and affordances that are not executable
from the current robot position are colored red. The list
of available affordances is updated regularly, based on the
frame rate and processing time in the affordance extraction
component. During the affordance selection, the operator is
able to remove all existing affordances by pressing a button
on a hand-held controller and wait for new affordances.
The human-robot interface then becomes very intuitive and
easy to use: First, the human operator waits for extracted
affordances to appear in VR. In the meantime, the operator
can move around in the virtual scene in a third-person view to
perceive the scene. To make a decision, a virtual hand can be
selected by pointing to the target and pressing a trigger on the
controller. The robot will then execute the action associated
with the selected affordance. After finishing the task, the
robot clears and provides a new list of affordances as the
scene changes due to physical interaction.

In case of autonomous affordance selection (V.), a simple
heuristic is used that includes two conditions: First, the
highest grasp affordance in the scene is selected since we
assume that the highest objects are easier to grasp than those
occluded or blocked by other objects. The second condition
compares the position of the newly selected affordance to the
positions of the last three grasp executions if there are any
previous grasp attempts that failed. If the chosen affordance
is too close to a previously failed grasp, it is neglected in
the selection process. This prevents the robot from trying
to grasp the same object again, after failing in previous
grasp executions. A comparison of the semi-autonomous and
autonomous affordance selection is depicted in Figure 2.

D. Execution and Validation

Once a grasp affordance is selected, the execution
and validation step (VI.) is identical for all operational
modes. First, the robot moves to a pre-pose, a position
and orientation directly above the corresponding target
object, using velocity control. The pre-pose is calculated by
adding a fixed distance value along the z-axis to the grasp
pose. After that, the robot moves towards the target until
contact with the object is established, which is detected
by the 6D force-torque sensor in the wrist. As soon as a
certain force-torque threshold is exceeded, the robot follows
a predefined grasp trajectory to close its hand. After the
object is fully grasped, the robot moves its hand to the final
location using Via-Point Movement Primitives (VMP) [22]
to place the object in the second box.

During execution, the operator is always able to abort the
current action of the robot, e.g. if a grasp execution fails
due to slippage or unstable grasping. In this case, the hand
automatically opens again and the robot arm returns to the
initial position, where the process starts from the beginning.
Additionally, the robot stores the object information such
as position and orientation in its memory so that it can be
considered in the following autonomous affordance selection
(see subsection IV-C).

V. EXPERIMENTS

To evaluate our approach and the level of autonomy
required in a real world scenario for successful task comple-
tion, we conducted 75 experiments on the humanoid robot
ARMAR-6 with more than 660 grasp executions.
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Semi-Autonomous 199 143 72% 56 28% 8.0 ± 2.5 5.7 ± 0.5 2.2 ± 2.6 5:28 ± 1:32

Autonomous 236 135 57% 101 43% 9.4 ± 2.9 5.4 ± 0.8 4 ± 3.1 5:22 ± 1:15
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Fig. 4. Results of the grasp selection experiments on ARMAR-6, with six objects placed in the box in each of the 25 experiments per operational
mode. This results in a total of 150 objects possible to grasp in the manual, semi-autonomous and autonomous mode. On the left side, the statistics are
accumulated over all 25 experiments for each affordance selection method, i.e. the operational mode. The right side shows the mean and standard deviation
of the success and failure rates for a single series of grasping the six unknown objects in the box. The color of the entries corresponds to the relative
quality of the results for one evaluation criterion. A darker shade of blue indicates better results.

A. Experimental Setup

In every experiment, the robot has to pick up six unknown
objects from a cluttered box and place them into another.
For each operational mode (manual, semi-autonomous and
autonomous) we conducted 25 experiments, i. e. 150 objects
that need to be grasped. To be consistent over all operational
modes, we used the same six (unknown) objects throughout
the experiments, consisting of construction materials with
different shapes, colors and sizes such as pipes, connectors
and cable canals, which were randomly arranged by a human
to represent a cluttered scene in a box. Due to the fact that the
cluttered scene is human-made and randomly arranged, it is
not easily reproducible and differs between every experiment.
In total, this results in 450 objects to be grasped by the robot
over all experiments.

The experiments are evaluated based on the number of
grasp attempts required to empty the box. To limit the
number of executions, an experiment was canceled after a
maximum of 10 failures or an execution time of 10 minutes.
In addition, an experiment was canceled if the objects were
no longer reachable for the robot, i.e. the robot could not
reach the remaining objects. The number of successful and
failed grasps was counted by a neutral person (i. e. a referee)
and independent of the human operator. Throughout the 25
experiments in each operational mode, the person acting
as a human operator stays the same. A grasp attempt was
considered as successful if, and only if, an object was
grasped, manipulated and successfully placed in the second
box and as a failure otherwise.

B. Experimental Results

The experiment results are given in Figure 4. In case of
manual affordance selection, all 150 objects could be grasped
successfully after 227 grasp executions, which results in a
total success rate of 66% and a failure rate of 34% over 25
experiments. This means that, on average, 9.1 ± 2.9 grasp
attempts were required to empty a box with six objects.
As the manual affordance selection was able to grasp all
six objects in each experiment, the mean of successful

grasps is 6.0 whereas the mean failed grasps are given by
3.1± 2.9. The rate of successful grasps shows that, even in
difficult scenarios, our system is very robust regarding grasp
execution, since all objects could successfully be grasped
in the experiments. The high number of grasp executions
and failures, however, implies that many interactions with
the scene were required before an object could be grasped
successfully. This could be due to the fact that in the
manual affordance selection, the robot directly executes the
grasp affordance selected by the human without checking for
collision and reachability which can result in a failure.

In the semi-autonomous mode, 143 of the 150 objects
were grasped successfully after 199 grasp executions. Con-
sequently, 72% of all selected actions were successful. On
average, 8.0 ± 2.5 grasp executions were required in every
single experiment to empty the box with 6 objects, while
5.7 ± 0.5 grasp executions are successful and 2.2 ± 2.6
result in failures. The results of the semi-autonomous af-
fordance selection show that the high-level decisions and
expert knowledge of the operator have a significant impact on
the successful outcome of the experiments. Besides the high
number of successful grasps, the teleoperation resulted in
very few failed grasp attempts. The ability of the operator to
perceive the scene from different perspectives as well as the
intuitive and automated interaction with the scene presents a
good trade-off between autonomy and manual teleoperation.
Nevertheless, in some cases, the objects ended up in unreach-
able positions, where either no valid grasp affordances could
be extracted or the execution of the available action would
have resulted in a potential collision with the box.

The results of the autonomous affordance selection show
that 135 of 150 objects could be grasped successfully in
a total of 236 executions. On average, 5.4 ± 0.8 grasp
executions were successful in each experiment and 4 ± 3.1
resulted in failure. In other words, 9.4±2.9 grasp executions
are required to grasp all six objects in the box. The exper-
iments demonstrate that the heuristic used to autonomously
select the next affordance is able to cope with simple object
arrangements in the scene. In the case of very complex and



cluttered scenes, however, selecting the highest grasp in the
scene is not always the best choice, as these objects might
be blocked by underlying objects or not easily graspable by
the robot. Consequently, an attempt to grasp that object could
fail and make the scene even more complex such that objects
are no longer reachable for the robot.

The mean execution times of 4:59 ± 1:21 (manual),
5:28±1:32 (semi-autonomous) and 5:22±1:15 (autonomous)
show that the manual affordance selection takes less time
than the semi-autonomous and autonomous selection. This
is due to the fact that in the latter two cases, the affordances
are extracted fully autonomously by the robot. In these
operational modes, there is an additional waiting time to
ensure that enough affordances are extracted and can be
filtered over time while in the manual case, the affordances
were directly defined by the human operator with a 2D
mouse-screen interface and do not require additional waiting
time. Based on our observations during the experiments, we
can further conclude that the high execution time in the
semi-autonomous mode is related to the high flexibility in
virtual reality which allows the user to freely move around
and choose different virtual points of view, i.e. the human
operator first evaluated the scene in greater detail in the
virtual 3D environment before making a decision.

C. Comparison and Summary

The experiments show that the semi-autonomous affor-
dance selection covers 143 of 150 objects, i. e. 95% of all
cases. At the same time, it has the highest grasp success rate
compared to the other operational modes and consequently,
the lowest number of failures over all experiments. The
autonomous affordance selection, on the contrary, requires
more executions for the same number of objects as it fails
to clear the box in complex scenes. However, it is still
able to grasp 90% of the objects over all experiments. The
fact that all objects of the experiments could be grasped
in case of manual affordance selection indicates that the
operator is able to create very precise grasps and even deal
with complex scenes. Nevertheless, as manual teleoperation
cannot easily cope with challenges regarding robot control
such as checking for reachability or avoiding collision, it
leads to more failures which is also shown by the high
number of grasp executions. Furthermore, it puts the highest
cognitive load on the human operator.

The comparison demonstrates that exploiting the expert
knowledge and the high-level decisions of an experienced
human operator has a significant impact on successful task
execution while keeping the cognitive load to a minimum.
Additionally, it shows that more than 90% and 95% of
all cases in complex scenes can already be covered by
the autonomous and semi-autonomous mode, respectively.
As a consequence, the operator only has to make use of
the manual affordance selection in the remaining 5% of
the cases. Due to the fact that the operational mode can
be switched during run-time, our approach is capable to
combine these methods and thus, can provide a robust
solution that is applicable in real world scenarios.

VI. CONCLUSION

In this paper, we presented a robust approach for grasping
unknown objects in cluttered scenes with a humanoid robot
in the context of a nuclear decommissioning task. Our
approach combines the advantages of autonomous robot
control as well as the exploitation of expert knowledge of
an experienced human operator by the semi-autonomous
selection of grasp affordances. We evaluated our approach
in 75 real world experiments with more than 660 grasp
executions on the humanoid robot ARMAR-6 in which we
compared three different levels of autonomy for selecting
and extracting grasp affordances.

The experiments show that the semi-autonomous selection
of grasp affordances through an operator can drastically
reduce the number of failures to 28%, compared to 43%
failures in the autonomous, and 34% failures in the manual
mode. Therefore, it can contribute significantly to successful
task execution while keeping the cognitive load of the
operator to a minimum. Furthermore, the comparison of the
three operational modes demonstrates that, even in complex
scenarios, more than 90% and 95% of all cases can already
be covered by the autonomous and semi-autonomous mode.
Thus, manual selection is only required in 5% of the remain-
ing cases. However, due to the fact that not all cases can be
covered semi-autonomously and the human operator should
always be able to actively intervene in the scene, we propose
to use a combination of these methods to provide a robust
solution for real world scenarios.

In the future, we plan to extend our approach by in-
tegrating mobility and adding more affordances such as
pushing, lifting, and bimanual manipulation. This would
lead to further improvements of the approach in terms of
versatility, i. e. the ability to consider additional manipulation
actions. Furthermore, we want to improve the autonomous
manipulation, e.g. by learning from human decisions for
affordance selection and learning from experience in order
to detect and predict failures during task execution.

Considering that a human operator manually sets or selects
an affordance in the manual and semi-autonomous mode,
respectively, it is not yet clear how much human learning can
influence the success of the robot’s task execution. Therefore,
we plan to investigate the success rate in similar experiments
with varying human operators in a broader study. In this
context, the cognitive load on the human operator could
further be evaluated in a quantifiable way.
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