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Abstract— Performing versatile mobile manipulation actions
in human-centered environments requires highly sophisticated
software frameworks that are flexible enough to handle special
use cases, yet general enough to be applicable across different
robotic systems, tasks, and environments. This paper presents a
comprehensive memory-centered, affordance-based, and mod-
ular uni- and multi-manual grasping and mobile manipulation
framework, applicable to complex robot systems with a high
number of degrees of freedom such as humanoid robots. By
representing mobile manipulation actions through affordances,
i. e., interaction possibilities of the robot with its environment,
we unify the autonomous manipulation process for known and
unknown objects in arbitrary environments. Our framework
is integrated and embedded into the memory-centric cognitive
architecture of the ARMAR humanoid robot family. This way,
robots can not only interact with the physical world but also
use common knowledge about objects, and learn and adapt
manipulation strategies. We demonstrate the applicability of
the framework in real-world experiments, including grasp-
ing known and unknown objects, object placing, and semi-
autonomous bimanual grasping of objects on two different
humanoid robot platforms.

I. INTRODUCTION

Due to their targeted application in dynamic and human-
centered environments, assistive humanoid robots need to
be able to robustly handle everyday situations like clearing
cluttered kitchen tables or setting the dinner table. This is
especially challenging considering the unknown objects and
unstructured surroundings these tasks involve. The integra-
tion of mobility and manipulation capabilities is essential
to enhance the versatility and adaptability of robots in such
real-world scenarios.

Employing the concept of affordances [1], i. e., interaction
possibilities of an agent with its environment, from cognitive
psychology to the scenarios is advantageous, especially in the
case of unknown objects. It allows for the representation of
potential action possibilities without any prior knowledge of
the objects. By assigning action possibilities as properties to
relevant objects and locations, affordances provide a way to
reason about the environment in terms of what can be done
with objects, rather than what the objects are. Therefore,
affordances allow for a more flexible and adaptable approach
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Fig. 1: The humanoid robots ARMAR-DE and ARMAR-6
grasping and placing objects using our framework.

to interacting with the environment, as they enable robots
to identify and utilize potential action possibilities without
relying on specific object features or properties. To improve
the performance of manipulation actions, it is advantageous
to have access to “common knowledge”, i. e., knowing which
objects can be grasped, where objects have been seen the last
time, or where they can be usually found and what is the
most successful way to grasp objects that the robot already
knows. Additionally, having a recollection of past action ex-
ecutions, their parametrization, and their outcomes promotes
explainability and facilitates learning from experience.

However, the amount of expert knowledge required to im-
plement robotic applications in these unpredictable, dynamic,
and complex settings slows the progress of the deploy-
ment of robots into daily environments. On the other hand,
most implementations and systems are highly specialized
to specific scenarios and contexts. Therefore, there is a
need for a framework that facilitates the flexible design
and implementation of mobile manipulation tasks involving
known and unknown objects in unstructured environments
and that can fully leverage the advantages of a cognitive
memory architecture.

We propose a memory-centered, affordance-based mobile
manipulation framework that unifies the task description
of various manipulation actions (e. g., pick-and-place tasks)
across different situations and robotic platforms. It allows
for the autonomous and semi-autonomous generation and
execution of uni- and multi-manual manipulation actions
while being flexible enough to support customization of the
single steps to the user’s needs and various scenarios. The
coupling of our framework with a memory-centric cognitive
architecture [2] enables introspection and state disclosure,
as well as learning from experience. We provide several
use cases of our approach and show their application to
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Fig. 2: Embedding of our framework into the memory-centric cognitive architecture [2]. Several strategies that implement
the five steps of the mobile manipulation architecture are connected to the procedural memory. We assume the robot to be in
the Execution step. Already performed phases of the high-level skill “Grasp known object” are marked with dotted borders.

the uni- and bimanual grasping and placing of known and
unknown objects on the humanoid robots ARMAR-6 [3] and
ARMAR-DE.

II. RELATED WORK

There exist multiple frameworks that aim to simplify
the creation and description of robotic tasks in a unified
manner, like the Statechart [4] concept of ArmarX [5]
or SMACH of ROS [6]. For example, in [7] a modular
framework for programming robots based on tasks and skills,
which is organized into abstraction levels, is introduced.
It leverages a world model to enhance planning and is
based on the hierarchical structure of robot capabilities. The
authors of [8] propose a three-layered architecture, called
LAAIR, for autonomous robots performing real-world tasks.
It sequences modular skills using a deliberate control layer
and offers reactive control options, providing flexibility in
task execution. The Affordance Templates Task Description
Language ([9], [10]) is particularly relevant to our approach,
as it also employs affordances to describe manipulation
tasks in a robot-agnostic manner. Similarly, we developed
our own task description based on scene affordances and
abstract end-effector poses. However, their approach is cen-
tered around semi-autonomous manipulation requiring the
strong involvement of a human operator through RViz. Our
method focuses on – but is not limited to – autonomous
task execution through the combination of a task description
with a memory-centered software architecture that can easily
adapt and instantiate actions for different manipulation tasks
and robots.

Even though these works offer valuable assistance in the
design of general robotic applications, a considerable amount
of work is necessary to adapt them to specific scenarios
and different robot architectures. Therefore, multiple works
consider integrated software architectures that can handle
different tasks and environments. The authors of [11] present
an integrated hardware and software system for mobile

manipulation in industrial applications. It facilitates the use
of pre-computed grasp candidates and a modular roadmap
planner for task programming. In [12], the Acromovi frame-
work is extended to enable distributed mobile manipulation
by combining a manipulator with a mobile base. A modular,
general-purpose software framework for mobile manipula-
tion in household environments is introduced in [13]. It
covers navigation, visual perception, manipulation, human-
robot interaction, and high-level autonomy, demonstrating its
versatility in various tasks and environments. In [14], a mo-
bile manipulation system for domestic environments is pre-
sented. This system incorporates natural language process-
ing, perception, navigation, and integrated motion and grasp
planning, highlighting its success in the Robocup@Home
competition. The BART framework, a behavior-based archi-
tecture for mobile manipulation tasks, is introduced in [15].
BART has a focus on ready-to-use software components for
execution speed, quality, and performance.

Some other approaches specifically focus on reactive
grasping and develop special control architectures for such
applications. The authors of [16] present a reactive control
scheme for vision-based mobile grasping of unknown ob-
jects. This approach tracks and extracts grasping regions for
objects, enabling reach and grasping motions. The approach
of [17] focuses on a control architecture for reactive pick-
and-place tasks with a one-armed mobile manipulator. Their
control scheme facilitates the execution of grasps while the
mobile base of the robot is still on the move.

In contrast to the existing literature, our focus lies on
the combination of the integrated, memory-centered software
architecture with our affordance-based task description. This
enables the modular adaption and extension of multi-handed
manipulation tasks while being able to access the full advan-
tages of the cognitive robot memory. Our aim was to develop
a framework that facilitates autonomous mobile manipulation
in unstructured environments.



III. FRAMEWORK FOR MOBILE MANIPULATION

Based on the Interpretable Data Format (IDF), which
is necessary to integrate our framework to the memory-
centric cognitive architecture [2] of ArmarX, we developed
a task description for mobile manipulation tasks in unstruc-
tured environments for the autonomous execution of uni-
and bimanual actions across different robotic platforms. An
overview of our approach can be seen in Figure 2.
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Fig. 3: Data flow in our framework visualizing the interaction
of the IDF task description with the system architecture.

A. Design Principles

For the development and implementation of our software
framework, we followed multiple design principles that were
driven by the goals of our approach:

• memory-centered: explainability, learning from experi-
ence

• affordance-based: unification of different action types
for known and unknown objects

• modular: flexibility and extensibility
• robot-agnostic: usability across different robots
• end-effector-based: allows definition of unimanual and

multi-manual actions

B. Task Description using IDF

The description of a manipulation task is – similar to [9] –
based on the concept of affordances and is defined in terms of
IDF objects, which can be seen in Figure 4. As the concept
of affordances is, per definition, agent-specific, we define
a robot-agnostic counterpart to an Affordance to be an
ActionHypothesis. An action hypothesis is, therefore, an
abstract end-effector pose connected to an ActionType, like
Grasp, Place, or Push. This facilitates the extraction of action
candidates from visual perception independent of the robotic
system this action will be executed on.

The main object relevant to the execution is the
ExecutableAction, which contains all relevant and neces-
sary information for a specific robot. This object can contain
up to n Unimanual, which consist of relevant information
for a single end-effector. An affordance-based manipulation
action is defined to be a HandTrajectory (i. e., a Hand-
Finger-Trajectory) that is executed at the executionPose

(i. e., an end-effector pose). Additionally, a pre- and retract
pose can be defined, which will be approached before and

ActionHypothesis

+ type: ActionType
+ pose: FramedPose
+ obsTime: DateTime
+ existCert: float*
+ objectInfo: ObjectInfo*
+ approachInfo: ApproachInfo*

Affordance

+ hypothesis: ActionHypothesis
+ robot: RobotDescription

<<Enumeration>>
ActionType 

 Grasp / Push / Pull / Place 

Unimanual

+ affordance: Affordance
+ side: Handedness
+ executionPose: FramedPose
+ actionTrajectory: HandTrajectory
+ prePose: FramedPose*
+ retractPose: FramedPose*

PlanningInformation

+ isDicarded: bool
+ scores: dict<float>
+ debugInfo: DebugInfo

ExecutableAction

+ platformPose: FramedPose*
+ unimanual: list<Unimanual>
+ info: PlanningInformationExecutedAction

+ startTime: DateTime
+ endTime: DateTime
+ success: bool
+ action: ExecutableAction

Fig. 4: Simplified class diagram of the IDF task description.
Types marked with a “*” are optional.

after the execution of the action trajectory, respectively.
After an ExecutableAction has been executed, its result
and all relevant execution information will be saved in
a ExecutedAction for storage and introspection in the
memory.

C. System Architecture

Our integrated architecture is designed to facilitate the
autonomous discovery and execution of mobile manipulation
actions in unknown and unstructured environments while
being flexible enough to adapt to different applications,
situations, and robots. To this end, we split the overall task
of generating and executing actions into five distinct steps:

• Discovery of affordances (ActionHypothesis) from
e. g., visual perception (images and point clouds) or
prior scene knowledge.

• Parameterization. An ExecutableAction is derived
from a ActionHypothesis for a specific robot, which
contains all necessary information for execution (i. e.,
robot base poses, HandTrajectory, etc.).

• Validation of all ActionHypothesis by checking for
feasibility e. g., reachability, correct handedness, ap-
proach direction, collision checking.

• Selection of the best ExecutableAction based on
multiple criteria (e. g., execution height, proximity to
previously executed actions, execution side, platform
movement).

• Execution of the ExecutableAction. In this paper,
we use an approach similar to [18] combined with the
navigation of [19].

An overview of the data flow of our architecture can
be seen in Figure 3. All steps are implemented using the
Strategy pattern to be easily exchangeable and customizable
by the user. Each step also has a specific interface for the
implementation of external strategies for additional flexibility
in case of special use cases. In the case of more general
scenarios, it is possible to combine different strategies of



one step, e. g., detecting ActionHypothesis for known and
unknown objects at the same time. For ease of use, users can
request certain combinations of strategies through high-level
skills, as explained in Section III-D.

D. Embedding into Memory Architecture

We fully integrate the proposed framework into the
memory-centric cognitive architecture [2] implemented in
ArmarX [5] where the memory acts as a mediator between
the high-level capabilities of the robotic system and the low-
level control components. Thus, all communication from
high- to low-level passes through the robot’s memory, which
requires the data to have a specific format that is understand-
able by the memory (i. e., IDF). Instead of being a simple
static data storage, we believe that the robot’s memory should
play an active role so that it can adapt to incoming multi-
modal and possibly associative streams of information. Our
memory consists of (i) a Working Memory (WM) orches-
trating the knowledge coming from different sources of the
robot system, (ii) a Long-term Memory holding procedural,
episodic, and semantic information persistently and (iii) a
Prior Knowledge that is given a priori by the programmers
(e. g., known grasps, object shapes, or semantic common
knowledge). As part of the long-term memory, executable
skills are stored in the robot’s procedural memory. In the
case of grasping and manipulation, a skill is represented by
one or more strategies per step of our proposed framework
thus creating a unique combination of strategies for one
specific problem. Figure 2 and Figure 3 depict the con-
nection between the aforementioned steps and the memory.
Each step adapts its behavior based on the content of the
robot’s memory, e. g., object poses or common knowledge
such as typical fetching and placing positions. The used
parameterization as well as the final results of each step (e. g.,
ActionHypothesis, ExecutableAction, ...) is stored in
the memory so that it can be used for debugging or offline
learning. Symbolic abstractions of the skill execution result
(such as success and failure) are stored in the memory as
well. That way, one can trace back the complete execution
status of a manipulation action.

IV. USE CASES

We show the versatility of our mobile manipulation frame-
work through several use cases including grasping of known
and unknown objects, object placing, and semi-autonomous
bimanual grasping of objects.

A. Grasping of Known Objects

For the grasping of known objects the Discovery and
Parameterization steps can be combined. Grasp affordances
are continuously discovered based on 6D object pose estima-
tion and manually defined grasps stored in a grasp database
as part of the robot’s prior knowledge. Based on those
instantiated grasp hypotheses, suitable robot placements are
generated in a two-step approach: First, based on our pre-
vious work [19], initial collision-free robot placements are

generated. Second, a local refinement is performed by solv-
ing a non-linear optimization problem similar to [20] which
considers the end-effector target pose, joint-limits avoidance,
environmental collision, human-joint limits [21], [22] and
maximizes the manipulability of the end-effector [23], [24]
while also orienting the robot towards the object. Only if the
aforementioned criteria are fulfilled to a certain extent, the
action hypothesis is further considered.

The Execution step makes use of the referenced object
pose information in the ExecutableAction to refine the
execution pose through re-localization of the object to ac-
count for inaccuracies in previous object pose estimation,
self-localization, and eventual unforeseen movement of the
object itself. The action execution and movement of the
end-effectors are performed as described in our previous
work [18]. There, the tool center point (TCP) is moved from
the pre-pose to the execution pose until a force threshold is
reached. At this point, the HandTrajectory- a coordinated
hand and finger motion - is executed. Afterward, the TCP is
moved to a secure retract pose.

B. Grasping of Unknown Objects

In order to discover grasp affordances and to generate
action hypotheses for unknown objects, we use a RGB-D
camera. As shown in Figure 5, we first segment the color im-
age using Segment Anything [25]. The ActionHypothesis
are generated in the Discovery step according to [26]: object-
oriented bounding boxes (OOBB) are fit to each segment in
the point cloud. If the OOBB are within certain margins
that conform to the robot’s end-effector, grasp hypotheses
are generated along the sides of the box for left- and right-
handed grasps.

Fig. 5: Action hypothesis extraction for unknown objects.
Point cloud segmentation using Segment Anything [25] (left)
and object-oriented bounding boxes fitting [26] (right).

C. Object Placement at Common Places

Contextual knowledge about known objects can be added
via the robot’s memory to solve e. g., a pick-and-place task.
This includes common places [27], i. e., grounded spatial
symbols, that indicate where to search or where to place
an object. This symbolic representation of common sense
knowledge is grounded in the continuous real world in order
to be useful for execution. A common place is a volumetric
space defined as either absolute or relative to an object
class or instance. Each object can have multiple prioritized
common places which the robot can choose from in the given
scene. Figure 6 shows several common locations used in
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Fig. 6: Common places used in our experiments. The colored
labels indicate symbolic names for each common place and
the light-green boxes depict their respective position and
extents in the global frame.

our experiments, including their symbolic labels and sub-
symbolic real positions. Here, knowledge about common
places is provided through Prior Knowledge, but can also
be learned from experience through the episodic memory.

D. Bimanual Grasping of Unknown Objects
For the discovery of bimanual grasp affordances, an ap-

proach combining the teleoperation from [28] with the hy-
pothesis generation of [29] can be used. The grasp candidates
were generated by a human operator by clicking on a specific
point in an interactive visualization of the scene during the
Discovery step. The pose of the ActionHypothesis was
then generated using the averaged local surface information
of the point cloud by calculating the Local Curvature Frame
at that point and defining the pose relative to that frame [29].
The pose can be adapted by the operator after the initial
generation of the ActionHypothesis. The Parameteriza-
tion step then only combines the two ActionHypothesis

into one ExecutableAction and computes a platform
placement in the centered in the middle between both hands.

During the Execution, a bimanual grasp candidate is
treated equivalently to two independent grasp candidates
by concurrently executing one grasp candidate with each
arm. After each phase, the arms stop until both arms have
finished the phase to synchronize the grasping process be-
tween both arms. The compliant control of both arms is
done independently of each other using Via-point Movement
Primitives [30], similar to [18]. As we do not use any
form of coordination between the arms beside the four
synchronization points (i. e., pre-pose, execution pose, action
trajectory and retract pose), the compliant behavior of the
controller helps to compensate for small misalignments of
the tool center points with respect to each other when lifting
or carrying an object bimanually.

V. EXPERIMENTS

We performed a number of real-world experiments on the
humanoid robots ARMAR-6 and ARMAR-DE to demon-
strate the applicability of our framework to realistic environ-
ments. The experiments were designed to support our design
decision described in Section III-A and consist of a table-
clearing and box-picking scenario.

A. Clearing a Table
We show the generalization of manipulation tasks across

different robots of our approach using the two humanoid

robots ARMAR-6 [3] and ARMAR-DE in a table-clearing
setup. Both robots are equipped with two anthropomorphic
8 degrees of freedom (DoF) arms and two underactuated
five-finger hands with 2 DoF (ARMAR-6) and 4 DoF
(ARMAR-DE). For 6D object pose estimation, we use
SimTrack [31] on both platforms and additionally IVT [32]
on ARMAR-6. Each table-clearing experiment consists of
7 different rigid and deformable objects (YCB [33] and
common household objects) which are placed arbitrarily on
a table in structured clutter. Each of the known objects is
associated with a common place (sink, kitchen countertop, or
workbench). As long as the robot recognizes known objects,
it will prioritize manipulating them before unknown objects.
Due to the aforementioned differences in 6D object pose
estimation, the robots treat different objects as known and
unknown. ARMAR-DE is able to recognize the mustard, the
bio-milk, the apple-tea and the spraybottle. The first three
objects should be placed on the countertop while the latter
should be placed on the workbench. In addition, ARMAR-6
is able to recognize the screwbox which should be placed
on the workbench, and the sponge which should be placed
in the sink. All unknown objects or objects that the robot
cannot recognize should be placed on the free table next to
the kitchen as shown in Figure 6.

B. Bimanual Grasping of Unknown Objects

In addition to the table-clearing experiments, we per-
formed a number of semi-autonomous, bimanual pick-and-
place executions of larger objects on ARMAR-6 to showcase
the ability of our framework to handle more than unimanual
actions and incorporate user feedback through teleoperation.
The bimanual grasping approach explained in Section IV-D
was used for all executions.

The experimental setup was very similar to the setup
from [29]: A varying number of unknown objects were
placed in a box of known dimensions. The number of objects
in the box was chosen to be 1, 4, 6, 8, and 10 and remained
constant for 30 consecutive bimanual grasp executions. Every
five grasp attempts, the scene was randomly rearranged and
objects were exchanged by the operator to increase the
variability of the encountered object constellations. After
grasping, the object was lifted for five seconds and then
placed again in the box by the robot. This additionally
introduces a change in the setup and reduces the possibility
of any human bias in the constructed scene.

The objects used for the box emptying experiments consist
of a frying pan, an exhaust pipe, a socket strip, multiple

Fig. 7: The humanoid robot ARMAR-6 grasping and carry-
ing multiple objects bimanually.
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Fig. 8: Table-clearing of known and unknown objects with ARMAR-DE and ARMAR-6. 1⃝ Initial setup, 2⃝ grasping of
known objects, 3⃝ placing of known objects, 4⃝ grasping of unknown objects, and 5⃝ placing of unknown objects. An
accompanying video shows the experiments.

plastic pipes, a toolbox, and a heavy spring arm of a surgical
light system. During the generation of grasp candidates, we
attempted to have an even distribution of grasp attempts for
each object type. The results of the grasp attempts were
categorized based on whether the object (1) remained off
the ground for 5 seconds and is grasped firmly with both
hands (“bimanual”), (2) was lifted for 5 seconds but is only
grasped with one hand (“unimanual”), (3) was visibly lifted
for less than 5 seconds (“lifted”), (4) was not lifted because of
collisions with other objects or the environment (“collision”),
or (5) was not lifted because the hand slipped off the object
(“slipped”). Figure 7 shows exemplary successful bimanual
grasp executions of different objects.

C. Discussion

Qualitative results of the table-clearing experiments are
shown in Figure 8. Both robots were able to perform multiple
pick-and-place attempts successfully. Failed attempts mainly
originated from imprecisely generated grasp poses for known
objects due to the inaccuracy in the 6D object pose estimation
and wrongly generated object-oriented bounding boxes for
unknown objects.

The results of the box emptying experiments can be
seen in Figure 9 according to the categorization described
in Section V-B. The average success rate where at least
one grasp was successful and the object was lifted (cat-
egories “bimanual” and “unimanual”) is 77.3%. However,
this rate drops to 44.7% when only bimanual grasps are
counted. When dealing with a single object in the box, our
teleoperated approach demonstrated high precision, with an
83.3% success rate for bimanual grasps. This large drop in

Fig. 9: Results of the box emptying experiments from
Section V-B. A total of 30 grasp attempts were performed
for each degree of clutter in the box.

performance is to a large degree caused by collision with
other objects. Performing a bimanual grasp implies that the
chance for collision of a hand with other objects is twice
as high as in the unimanual case. This is clearly visible in
the results. As soon as multiple objects were in the box, the
success rate of bimanual grasps dropped significantly.

VI. CONCLUSION

With this work, we presented a modular, memory-
centered, and affordance-based grasping and manipulation
framework for multi-handed, mobile robots, unifying the
autonomous manipulation process for known and unknown
objects in arbitrary environments. In two complex real-world
experiments, we showed that our framework (I) can be
used for different task definitions, such as grasping known
and/or unknown objects, (II) can be applied to different
robots with different kinematics (i. e., hands), (III) supports
multiple autonomy levels (full autonomy and teleoperation),
and (IV) can be used for the execution of uni- and bimanual
actions. Additionally, we showed that the link to a cognitive
memory offers contextual awareness, supporting the utiliza-
tion of common knowledge to enhance the manipulation
process but also facilitating learning from both success and
failure. Technical explanations, such as the decomposition
into five distinct steps (Discovery, Parameterization, Val-
idation, Selection, Execution), related data types, and the
integration into the cognitive architecture of our robots,
provide a deep insight into the overall system.

At this point in time, the presented framework is focused
on grasp and placement affordances. We plan to extend our
approach to additional affordance types, e. g., for opening
and closing of drawers and doors. To account for failures,
especially during grasping attempts, we will combine our
framework with more reactive mobile manipulation ap-
proaches. In order to perform a reproducible quantitative
evaluation of the overall framework, we plan to standardize
an evaluation scenario including grasping of known and
unknown objects in highly cluttered scenes.
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