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Abstract— To perform versatile mobile manipulation tasks in
human-centered environments, the ability to efficiently transfer
learned tasks and experiences from one robot to another or
across different environments is key. In this paper, we present
MAkEable, a versatile uni- and multi-manual mobile manip-
ulation framework that facilitates the transfer of capabilities
and knowledge across different tasks, environments, and robots.
Our framework integrates an affordance-based task descrip-
tion into the memory-centric cognitive architecture of the
ARMAR humanoid robot family, which supports the sharing
of experiences and demonstrations for transfer learning. By
representing mobile manipulation actions through affordances,
i. e., interaction possibilities of the robot with its environment,
we provide a unifying framework for the autonomous uni- and
multi-manual manipulation of known and unknown objects in
various environments. We demonstrate the applicability of the
framework in real-world experiments for multiple robots, tasks,
and environments. This includes grasping known and unknown
objects, object placing, bimanual object grasping, memory-
enabled skill transfer in a drawer opening scenario across two
different humanoid robots, and a pouring task learned from
human demonstration. Upon acceptance, code will be released
through our project page1.

I. INTRODUCTION

In the rapidly evolving landscape of robotics, the ability
to efficiently transfer learned tasks and experiences from
one robot to another or across diverse environments is
pivotal (see Fig. 1). This could not only accelerate the
deployment of robots into new settings but also significantly
enhance their adaptability and functionality [1]. For example,
when deploying humanoid robots to household scenarios,
this translates to a seamless transition of a robot from one
home to another, adapting to different layouts and task
requirements without the need for extensive reprogramming.
Additionally, having robots that share their experiences e. g.,
via a central knowledge base or a memory system, can
bootstrap the transfer of learned skills and capabilities to
other robots, tasks, and environments.

To date, in most cases, manipulation skills are designed
with specific scenarios and contexts in mind, i. e., reusing
skills across different robots or environments is often not
feasible. To promote this kind of transferability at different
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Fig. 1: Our framework facilitates triple-mode transfer, i. e.,
across tasks (e. g., grasp and place), robots (e. g., ARMAR-6
and ARMAR-DE) and environments (e. g., household and
maintenance).

levels of abstraction in dynamic, unstructured, and cumula-
tive scenarios, a universal task description is required [1]. On
one hand, combining this description with a memory system
facilitates the accumulation of a rich repository of mobile
manipulation experiences that can be applied to solve novel
problems. On the other hand, a universal task description
fosters a collaborative learning environment among robots,
enabling them to leverage knowledge about the success and
failure of other robots.

Applying the concept of affordances (i. e., interaction
possibilities of the robot with its environment [2]) from
cognitive psychology to this kind of task description is
advantageous, especially in the case of unknown objects
and diverse environments. It allows for the representation
of potential action possibilities without any prior knowledge
of the objects and without dependency on their locations. By
assigning action possibilities as properties to relevant objects
and locations, affordances provide a way to reason about
the environment in terms of what can be done with objects
rather than what and where the objects are. Consequently,
affordance-based representations are inherently transferable
between agents and environments.

To address the three modes of transfer learning (i. e.,
transfer between tasks, robots, and environments), according
to the taxonomy of [1], there is a need for such a universal
framework that facilitates the flexible design and implemen-
tation of mobile manipulation tasks involving known and
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unknown objects in unstructured environments.
In this paper, we propose MAkEable, a memory-centered,

affordance-based framework for mobile manipulation that
unifies the description and execution of mobile manipulation
actions (e. g., pick-and-place tasks, opening, pouring, etc.)
across different tasks, environments, and robots. To the best
of our knowledge, our approach is the first to tackle all three
modes of transfer. It allows for the autonomous and semi-
autonomous generation and execution of uni- and multi-
manual manipulation actions while being flexible enough to
support customization of individual steps to the user’s needs
and various scenarios. We provide several use cases and show
the transfer between tasks and environments through uni- and
bimanual grasping, placing of known and unknown objects,
and transfer of a drawer opening skill to another robot
using the humanoid robots ARMAR-6 [3] and ARMAR-DE.
We also show that our framework is versatile enough to
accommodate different robots by executing a pouring task
in simulation.

II. RELATED WORK

Similar to [1], we distinguish between three levels of
task descriptions for robotic mobile manipulation that differ
in their respective degree of abstraction. The semantically-
lowest level encompasses only descriptions of single
tasks using the highest information density (e. g., state-
machines [4], [5] or behavior trees [6]) where transfer is
difficult as they are tailored to specific robots and tasks. The
highest level is that of a natural language description of tasks,
like in many recent works that use Large Language Models
(LLMs) for task planning (e. g., [7] or [8]), where only a
goal state is provided in natural terms. However, no concrete
information about the task (e. g., how an object needs to
be grasped) is given, and only a high-level description is
available. As mentioned in [1], it is easy to transfer to other
robots but has no direct connection to the actual execution on
a robot, necessitating an already implemented stack of low-
to mid-level capabilities for each individual robot. Finally, at
the intermediate level, actions and executions are abstracted
into skills with specific goals in mind. In this level, enough
information for execution exists about the task, but also
enough abstraction to transfer these descriptions to other
robots, environments, and tasks (e. g., [9], [10]). Therefore,
this level can be naturally used to connect task descriptions
of the highest level with the low-level execution. However,
to be able to execute high-level tasks across different agents
and environments, the medium abstraction level is where
the actual transfer has to happen. For example, in [11], we
introduced an approach to execute mobile pick-and-place
tasks using high-level plans generated by an LLM. To be
able to execute them on different robots, it was necessary to
have a framework that could ground the steps of the plan to
robot-specific instructions for the execution of the grasping
and placing tasks.

In this context, the paper develops a task description and
execution framework that facilitates the transfer of mobile
manipulation skills across different robots, environments, and

tasks. Therefore, in the following, we focus only on the
medium abstraction level and categorize works depending
on the number of transfer modes as described in [1].

A. Single-mode Transfer

The prevalent part of research so far has focused on the
methods that are transferable across a single mode (either
robot, task, or environment). For example, early works like
that of [12], [13] or [14] tried to create systems that facili-
tate the transfer across environments by creating integrated
hardware and software solutions for mobile manipulation
tasks. Rovida and Kruger [15] present a modular framework
for programming robots based on tasks and skills, which
is organized into abstraction levels. Their lowest abstraction
level, the Device Layer, allows transfer across robots in
industrial setups. In [16], Keleştemu et al. present a mo-
bile manipulation system for domestic environments. This
system can execute grasping tasks in different household
environments on the HSR robot. Some approaches, like [17]
or [18], specifically focus on reactive grasping and provide
special control architectures for robust transfer of grasping
tasks across environments.

B. Dual-mode Transfer

A major research trend in recent years has been increasing
the flexibility of mobile manipulation systems, therefore
transitioning from a single-mode transfer to a dual-mode
transfer. A modular, general-purpose software framework
for mobile manipulation in household environments is in-
troduced in [19]. It covers navigation, visual perception,
manipulation, human-robot interaction, and high-level auton-
omy. Its versatility was demonstrated on the robots HSR and
MSR-1 across various environments. With the increased per-
formance and availability of Foundation Models for robotic
applications in recent years, recent works like [20] and [21]
have investigated Open Vocabulary Mobile Manipulation
(OVMM). The aim of OVMM is ”picking any object in
any unseen environment, and placing it in a commanded
location” [20], promoting a transfer across tasks and en-
vironments. However, these works have so far only been
implemented for single robots. The Affordance Templates
Task Description Language ([9], [10]) is particularly relevant
to our approach. It also employs affordances to describe
manipulation tasks in a robot-agnostic manner, which we
took inspiration from. A key difference to our approach is
that an Affordance Template has to be created for each task
separately, hindering a transfer of capabilities and knowledge
across tasks.

In contrast to the existing literature, our focus lies in
creating a task description and execution framework that
facilitates the transfer of mobile manipulation tasks and
experiences to different robots and environments. We employ
a memory-centered architecture that promotes interpretability
in every step of our approach and the explainability of the
results. Our affordance-based representation is inherently
transferable between robots, tasks, and environments and
covers actions like grasping, placing, opening, and pouring
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Fig. 2: Embedding of MAkEable into the memory-centric cognitive architecture [22] implemented in ArmarX. Several
strategies that implement the five steps of the architecture (see Section III-C) are connected to the robot’s memory.

in complex, unstructured scenarios. Therefore, we facilitate
a triple-mode transfer of mobile manipulation skills.

III. THE FRAMEWORK

In this section, we present MAkEable and its proposed
description for mobile manipulation tasks in unstructured en-
vironments for the autonomous execution of uni- and multi-
manual actions across different robotic platforms. Based on
the fundamental requirements from Section I, we present
our system architecture and its leading design principles.
As shown in Fig. 2, our framework is embedded into the
memory of the cognitive architecture [22] of ArmarX [23]
and makes use of its provided interpretable data format
(IDF), facilitating the transfer across all three modes.

A. Design Principles

We identify various requirements for a software framework
that provides skills that are transferable across tasks, robots,
and environments. Such a framework should be modular
to support various skill types, extensible regarding tasks
and robots, and support “transferable and universal repre-
sentations” [1], thus being interpretable and explainable.
In developing our framework, we address these require-
ments through the following design principles: (i) Affor-
dance-based: The unification of different action types for
known and unknown objects supports transfer across actions
and tasks; (ii) Memory-centered: Our memory system greatly
supports explainability through introspection, learning from
experience, and transfer of experience and knowledge. More-
over, it is modular and extensible; (iii) Robot-agnostic:
Robot-agnostic implementation of skills and data types sup-
ports the extensibility of the system and transfer to different
robots; (iv) Strategy-based: A strategy-based architecture
permits enough flexibility and precision to adapt to any
environment, robot, and task. (v) End-effector-based: Con-
centrating on an end-effector-based representation of skills
allows the definition of unimanual and multi-manual actions,
thus supporting a modular design. Next, we will explain
the task description, which is derived from these design
principles.

B. Task Description using IDF

The description of a manipulation task is – similar to [9] –
based on the concept of affordances and is defined in terms
of IDF objects, as shown in Fig. 3. As affordances are, by
definition, agent-specific, we define the robot-agnostic coun-
terpart to an Affordance to be an ActionHypothesis.
An action hypothesis is, therefore, an end-effector pose in
an abstract frame connected to an ActionType, like Grasp,
Place, or Push. This facilitates the extraction of action
candidates from visual perception independent of the robot.

ActionHypothesis

+ type: ActionType
+ pose: FramedPose
+ obsTime: DateTime
+ existCert: float*
+ objectInfo: ObjectInfo*
+ approachInfo: ApproachInfo*

Affordance

+ hypothesis: ActionHypothesis
+ robot: RobotDescription

<<Enumeration>>
ActionType

 Grasp / Push / Pull / Place

Unimanual

+ affordance: Affordance
+ side: Handedness
+ executionPose: FramedPose
+ trajectory: EndEffectorTrajectory
+ prePose: FramedPose*
+ retractPose: FramedPose*

ExecutableAction

+ platformPose: FramedPose*
+ unimanual: list<Unimanual>
+ info: PlanningInfo

ExecutedAction

+ startTime: DateTime
+ endTime: DateTime
+ success: bool
+ action: ExecutableAction

Fig. 3: Simplified class diagram of the IDF task description.
Types marked with a “*” are optional.

The main object relevant to the execution is the
ExecutableAction, which contains all relevant and nec-
essary information for a specific robot. This object can
contain up to n Unimanual actions, which consist of rel-
evant information for a single end-effector. By generating
an ExecutableAction with a Unimanual for each end-
effector, we facilitate the execution of multi-manual manip-
ulation actions. An affordance-based manipulation action is
defined to be an EndEffectorTrajectory (i. e., a framed
trajectory of the end-effector with optional finger-joint values
or hand-shape names for each keypoint) that is executed
at the executionPose (i. e., an end-effector pose). Ad-
ditionally, a pre- and retract pose can be defined, which
will be approached before and after the execution of the
action trajectory, respectively. After an ExecutableAction

has been executed, its result and all relevant execution
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Fig. 4: Data flow in our framework visualizing the interaction
of the IDF task description with the system architecture.

information are saved in an ExecutedAction for storage,
introspection in the memory, and continual learning. Our task
descriptions are embedded in our overall system architecture,
as explained next.

C. System Architecture

Our integrated architecture is designed to facilitate the
autonomous discovery and execution of uni- and multi-
manual mobile manipulation actions on unknown objects in
unstructured scenes while being flexible enough to adapt to
different tasks, environments, and robots. To this end, we
split the overall task of generating and executing actions into
five distinct steps:

• Discovery of actions (ActionHypothesis) from e. g.,
visual perception or prior scene knowledge.

• Parameterization. An ExecutableAction is derived
from a ActionHypothesis for a specific robot, which
contains all necessary information for execution (i. e.,
robot base poses, EndEffectorTrajectory, etc.).

• Validation of all ActionHypothesis by checking for
feasibility e. g., reachability, correct handedness, ap-
proach direction, collision checking.

• Selection of the best ExecutableAction based on
multiple criteria (e. g., execution height, execution side,
platform movement, etc.).

• Execution of the ExecutableAction on the targeted
robot. In this paper, we use an approach similar to [24]
combined with the navigation of [25].

Figure 4 shows an overview of the data flow of our
architecture. All steps are implemented using the Strategy
pattern to be easily exchangeable and customizable by the
user. The basic workflow is controlled by a state machine that
can decide during runtime which strategy to call based on
the type information of IDF. Each step also has a specific
interface for the implementation of external strategies for
additional flexibility in case of special use cases. In the case
of more general scenarios, it is possible to combine different
strategies of one step, e. g., detecting ActionHypotheses

for known and unknown objects at the same time. For ease
of use, users can request certain combinations of strategies
through high-level skills, as explained in Section III-D next.

D. Embedding into Memory Architecture

We fully integrate the proposed framework into the
memory-centric cognitive architecture [22] implemented in

ArmarX [23] where the memory acts as a mediator between
the high-level skills of the robotic system and the low-level
control components. Thus, all communication from high- to
low-level passes through the robot’s memory, which requires
the data to have a specific format that is understandable by
the memory (i. e., IDF). Through introspection of knowledge,
our memory can adapt its behavior based on its content.
Instead of being a simple static data storage, we believe
that the robot’s memory should play an active role so
that it can adapt to incoming multi-modal and possibly
associative streams of information. As part of the robot’s
long-term memory, executable skills are stored in the robot’s
procedural memory in the form of references to executable
code, which can be parameterized based on the content of
the robot’s working memory. In the case of grasping and
manipulation, a skill (e. g., GraspingKnownObject or
GraspingUnknownObject) can be parameterized by one
or more strategies per step of our proposed framework as
depicted in Fig. 2. Moreover, the behavior of each step can
be adapted based on the content of the robot’s memory, e. g.,
object poses or common knowledge such as typical fetching
and placing positions. The intermediate and final results of
each step may be stored back in the memory. This is espe-
cially useful in the case of skill transfer. Since the knowledge
inside the memory is already generalized and all our robots
have the same memory structure (i. e., distributed working
and long-term memory in the form of memory servers and
segments as described in [22]), execution knowledge can
directly be transferred from one memory to another.

IV. USE CASES

This section presents different use cases on which we
evaluate our mobile manipulation framework in Section V.
This includes grasping of known and unknown objects,
object placing, and semi-autonomous bimanual grasping of
unknown objects. Additionally, we demonstrate the oppor-
tunities our approach provides to transfer learning through
example scenarios based on kinesthetic teaching and learning
from observations of a human demonstration.

A. Grasping of Known Objects

For the grasping of known objects, the Discovery and
Parameterization steps can be combined. Grasp affordances
are continuously discovered based on 6D object pose estima-
tion and manually defined grasps stored in a grasp database
as part of the robot’s prior knowledge. Based on those
instantiated grasp hypotheses, suitable robot placements are
generated in a two-step approach: First, based on our pre-
vious work [25], initial collision-free robot placements are
generated. Second, a local refinement is performed by solv-
ing a non-linear optimization problem similar to [26], which
considers the end-effector target pose, joint-limits avoidance,
environmental collision, human-joint limits [27], [28] and
maximizes the manipulability of the end-effector [29], [30]
while also orienting the robot towards the object. Only if the
aforementioned criteria are fulfilled to a certain extent, the
action hypothesis is further considered. The Execution step



Fig. 5: Action hypothesis extraction for unknown objects.
Point cloud segmentation using Segment Anything [31] (left)
and object-oriented bounding boxes fitting [32] (right).

makes use of the referenced object pose information in the
ExecutableAction to refine the execution pose through
re-localization of the object to account for inaccuracies
in previous object pose estimation, self-localization, and
eventual unforeseen movement of the object itself. The action
execution and movement of the end-effectors are performed
as described in our previous work [24]. There, the tool center
point (TCP) is moved from the pre-pose to the execution
pose until a force threshold is reached. At this point, the
EndEffectorTrajectory – a coordinated hand and finger
motion – is executed. Afterward, the TCP is moved to a
secure retract pose.

B. Grasping of Unknown Objects

In order to discover grasp affordances and to generate
action hypotheses for unknown objects, we use an RGB-D
camera. As shown in Fig. 5, we first segment the color image
using Segment Anything [31]. The action hypotheses are
generated in the Discovery step according to [32]: object-
oriented bounding boxes (OOBB) are fit to each segment
in the point cloud. If the OOBB are within certain margins
that conform to the robot’s end-effector, grasp hypotheses
are generated along the sides of the box for left- and right-
handed grasps.

C. Object Placement at Common Places

Contextual knowledge about known objects can be added
via the robot’s memory to solve e. g., a pick-and-place
task. This includes common places, i. e., grounded spatial
symbols that indicate where to search or where to place
an object. This symbolic representation of common sense
knowledge is grounded in the continuous real world in order
to be useful for execution. A common place is a volumetric
space defined as either absolute or relative to an object
class or instance. Each object can have multiple prioritized
common places which the robot can choose from in the
given scene. Fig. 6 shows several common locations used
in our experiments, including their symbolic labels and sub-
symbolic real positions. Here, knowledge about common
places is provided through Prior Knowledge, i. e., knowledge
given by the programmer to the robot and available from
startup, but can also be learned from experience through the
episodic memory.

D. Bimanual Grasping of Unknown Objects

For the discovery of bimanual grasp affordances, an ap-
proach combining the teleoperation from [33] with the hy-

<<on workbench>>
<<on table>>

<<in sink>>

<<on countertop>>

Fig. 6: Common places used in our experiments. The colored
labels indicate symbolic names for each common place and
the light-green boxes depict their respective position and
extents in the global frame.

pothesis generation of [34] can be used. The grasp candidates
were generated by a human operator by clicking on a specific
point in an interactive visualization of the scene during the
Discovery step. The pose of the ActionHypothesis was
then generated using the averaged local surface informa-
tion of the point cloud by calculating the Local Curvature
Frame at that point and defining the pose relative to that
frame [34]. The pose can be adapted by the operator after
the initial generation of the ActionHypothesis. The Pa-
rameterization step then only generates a Unimanual action
for each ActionHypothesis and combines them into one
ExecutableAction and computes a platform placement
centered in the middle between both hands. During the Exe-
cution, a bimanual grasp candidate is treated equivalently to
two independent grasp candidates by concurrently executing
one grasp candidate with each arm. Thereby we showcase the
ability of our approach to transfer capabilities across different
tasks (i. e., from single-handed grasping to bimanual lifting
of large objects). After each phase, the arms stop until both
arms have finished the phase to synchronize the grasping
process between both arms. The compliant control of both
arms is done independently of each other using Via-point
Movement Primitives [35], similar to [24]. As we do not use
any form of coordination between the arms beside the four
synchronization points (i. e., prePose, executionPose,
trajectory and retractPose), the compliant behavior of
the controller helps to compensate for small misalignments
of the tool center points with respect to each other when
lifting or carrying an object bimanually.

E. Learning to Interact with Articulated Objects using
Kinesthetic Teaching

We show the applicability of our framework in trans-
fer learning between robots using a drawer opening task.
More specifically, we show that our framework can be
used for transfer learning on the lowest abstraction level
(i. e., trajectory demonstrations, as defined in [1]). For
this use case, we can rely on the abstractions that the
EndEffectorTrajectory provides. As each keypoint can
have an optional shape name associated, we can kinesthet-
ically teach-in the trajectory and only tell the robot when
to ”open” and ”close” its end-effector, or when to use pre-
shapes, e. g., for a ”hook” grasp. Based on the demonstration,
the robot learns a representation of the trajectory in the
abstract end-effector frame relative to a local affordance
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Fig. 7: Table-clearing of known and unknown objects with ARMAR-DE and ARMAR-6. 1⃝ Initial setup, 2⃝ grasping of
known objects, 3⃝ placing of known objects, 4⃝ grasping of unknown objects, and 5⃝ placing of unknown objects.

Fig. 8: Exemplary pouring motion selected from the KIT Bi-
manual Manipulation Dataset [37] (left). Extracted reference
motion of the bottle’s pour affordance frame relative to the
cup’s fill affordance frame (right).

frame, e. g., the drawer’s handle. In this format, the learned
trajectory can directly be loaded into the memory of other
robots so that they may execute the same action but at a
new location of the affordance with their own definition of
the shapes ”open” and ”close”.

F. Learning and Transferring Motion of Affordance Frames
from Human Demonstration

To demonstrate the flexibility of our framework in incorpo-
rating new knowledge, e. g., through observational learning,
we extend the above approach of representing an end-effector
trajectory in a local frame: Instead of focusing on the robot’s
gripper motion, we focus here on the motion of object
affordance frames relative to each other – inspired by [36].
This is particularly relevant for tasks where the consideration
of two affordances is necessary, eventually through tool use.
Examples are cutting with a knife or pouring water from
a bottle into a glass. In the latter example, the motion of
a local pour frame of a bottle can be expressed in a fill
affordance frame of a glass, as exemplified in Fig. 8. Such
a representation can easily be transferred to new pouring
tasks as long as the affordance frames are present – which
we assume to be given as part of the object description.
When confronted with a new situation, we learn Via-point
Movement Primitives [35] from the reference motion and
adapt the start pose accordingly. Via-points can be specified
to preserve additional characteristics of the motion.

V. EXPERIMENTS

We performed real-world experiments on the ARMAR
humanoid robots to demonstrate the applicability of our
framework to transfer across all modes (tasks, robots, and
environments) in realistic environments. The experiments

consist of a table-clearing, a box-picking and a drawer-
opening scenario. They were also designed to support our
design decision described in Section III-A. An additional ex-
periment in simulation shows the transfer across agents and
proves the applicability to non-humanoid robots. The videos
on our project page show the execution of all experiments.

A. Clearing a Table with Known and Unknown Objects

We show the generalization and transfer of manipulation
tasks across different robots using the two humanoid robots
ARMAR-6 [3] and ARMAR-DE in a table-clearing setup
(see Fig. 7). This requires the robots to grasp known and
unknown objects and place them at common places, cov-
ering the corresponding use cases Section IV-A-IV-C. Both
robots are equipped with two anthropomorphic 8 degrees
of freedom (DoF) arms and two underactuated five-finger
hands with 2 DoF (ARMAR-6) and 4 DoF (ARMAR-DE).
For 6D object pose estimation, we use an RGBD-based
pose estimation on both platforms and additionally a stereo-
based pose estimation on ARMAR-6. Each table-clearing
experiment consists of 7 different rigid and deformable
household objects, which are placed arbitrarily on a table
in structured clutter. Each of the known objects is associated
with a common place (sink, kitchen countertop, or work-
bench). As long as the robot recognizes known objects, it
will prioritize manipulating them before unknown objects.
Due to the aforementioned differences in 6D object pose
estimation, the robots treat different objects as known and
unknown. ARMAR-DE is able to recognize the mustard, the
bio-milk, the apple-tea and the spraybottle. The first three
objects should be placed on the countertop while the latter
should be placed on the workbench. In addition, ARMAR-6
is able to recognize the screwbox, which should be placed
on the workbench, and the sponge, which should be placed
in the sink. All unknown objects or objects that the robot
cannot recognize should be placed on the free table next to
the kitchen as shown in Fig. 6. Both robots were able to
clear the table, as shown in the accompanying video.

B. Box Picking through Bimanual Grasping of Unknown
Objects

To showcase the ability of our framework to handle
more than unimanual actions and incorporate user feedback
through teleoperation, we performed a number of semi-
autonomous, bimanual pick-and-place executions of larger
objects on ARMAR-6. The bimanual grasping approach



Fig. 9: The humanoid robot ARMAR-6 grasping and carry-
ing multiple objects (exhaust, pan, and pipe) bimanually.

explained in Section IV-D was used for all executions,
demonstrating the successful transfer between tasks and envi-
ronments. After an object was successfully lifted, ARMAR-6
navigated autonomously to a second box and placed the
object there. For the bimanual placing of objects, a similar
strategy to the unimanual case was used: The object was
lowered with both arms until a force threshold was surpassed
and the hands were opened. The only difference to the
unimanual placing is that the EndEffectorTrajectory

only has a single waypoint where the hand is opened. Fig. 9
shows exemplary successful bimanual grasp executions of
different objects.

C. Memory-enabled Transfer of a Drawer-Opening Skill

The experimental setup for the drawer opening task ex-
plained in Section IV-E, and its results can be seen in Fig. 10.
ARMAR-6 is given the task of opening a drawer. Although
the robot has an understanding of the ”Open” affordance,
it does not know how to interact with the drawer to open
it (i. e., no suitable EndEffectorTrajectory is known to
the robot). A human is asked by the robot to demonstrate
the motion through kinesthetic teaching from a suitable
executionPose, which is derived from the known position
of the drawer’s handle in the prior knowledge. This experi-
ence is preserved and stored in the robot’s procedural mem-
ory. Due to the universal description, the learned motion can
easily be transferred to other platforms, e. g., ARMAR-DE.
To show this, ARMAR-DE is tasked to open another drawer
by leveraging the gained knowledge through ARMAR-6. As
shown in Fig. 10, it can successfully instantiate the drawer
opening skill for its left arm (even though the demonstration
was for the right arm of ARMAR-6) and execute it at the
position of the new drawer.

Fig. 10: Transfer of drawer opening skill learned through
kinesthetic learning from ARMAR-6 to ARMAR-DE.

D. Grasping and Pouring with a Non-Humanoid Robot

To demonstrate the versatility and extensibility of our
framework, we exemplary instantiate the grasping and pour-
ing skill for the Omni-Frankie [30] featuring a 7 DoF
Franka-Emika Panda manipulator on a Ridgeback mobile

Fig. 11: Omni-Frankie grasping a milk jug (left) and pouring
milk into a mug using an end-effector trajectory learned and
adapted from human demonstration (right).

base in simulation. In contrast to the ARMAR humanoid
robots, this robot has a parallel gripper. Yet, due to the
universal task and robot description, our framework can
generate grasp hypotheses for the robot and gripper to grasp
and lift the object (Fig. 11). In addition, we transfer the
reference pour motion described in Section IV-F to filling
milk from a milk jug into a coffee mug as shown in Fig. 11.
This also showcases a successful transfer between different
embodiments and environments.

VI. CONCLUSION

This paper presented MAkEable, a modular, memory-
centered, and affordance-based grasping and mobile manip-
ulation framework, unifying the autonomous manipulation
of known and unknown objects in various environments. In
multiple complex real-world and simulated experiments, we
showed that our framework (i) can be used for different task
definitions, such as grasping known and/or unknown objects,
(ii) can be applied to different robots with different kine-
matics (i. e., end-effectors), (iii) supports multiple autonomy
levels (full autonomy, semi-autonomy, and teleoperation),
and (iv) can be used for the execution of uni- and bimanual
actions. Thereby, we demonstrated the capability of our
approach to transfer knowledge and experience across tasks,
environments, and robots. Additionally, we showed that the
link to a memory system, as part of a cognitive architecture,
offers contextual awareness, supporting the utilization of
common knowledge in the context of manipulation tasks and
also facilitating learning from both success and failure. By
creating a task description of the medium abstraction level,
we facilitate the execution of manipulation actions while
being independent of robots and environments. This way,
we provide a bridge between high-level, natural language
instructions and the corresponding low-level, robot-specific
execution of the required skills (as e. g., in [11]).

Future work will consist of incorporating more feedback
(e. g., tactile sensing) into our system to enable a more
closed-loop approach to mobile manipulation. To account
for failures, especially during grasping, we will combine
our framework with more reactive mobile manipulation ap-
proaches. Additionally, integrating an online failure detec-
tion [38] would increase the robustness of our framework.
In order to perform a reproducible quantitative evaluation of
the overall framework, we plan to standardize an evaluation
scenario that focuses on grasping known and unknown
objects in highly cluttered scenes.
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