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Abstract—Future humanoid robots will need the capability to
grasp and manipulate arbitrary objects in order to assist people
in their homes, to interact with them and with the environment.
In this work, we present an approach to grasp known objects.
Our approach consists of an offline step for grasp planning, a
rating step which determines the human likeness of the grasps
and an execution step, where the most suitable grasp is performed
on a humanoid robot. We especially focus on the rating step
where we use human grasping data to rate pre-computed grasp
hypotheses from our grasp planner in order to select the most
human-like feasible grasp for execution on the real robot. We
present the details of our method together with experiments on
our ARMAR-III humanoid robot.

I. INTRODUCTION

The capability to grasp and manipulate objects is crucial
for future service robots that will help people in their daily
lives. In robotics, grasping of known objects consists of several
steps. In the first step, a grasp planning method is used to
generate a set of grasp hypotheses, given the object, the
robotic hand, and possibly obstacles in the environment. In the
second step a feasible grasp has to be selected for execution
on the robot in the third step. Grasp selection is usually
subject to several constraints. Grasps can be rated depending
on their force-closure score [1] which indicates how well the
grasps can resist external forces and torques. In real-world
environments also obstacles have to be taken into account
and the robot’s embodiment can turn many grasp hypotheses
infeasible, because they are not reachable due to kinematic
constraints. Yet, with grasp planners able to generate hundreds
or thousands of grasps, often many feasible grasps remain
to select from, despite the constraints stated above. Also,
the force-closure score does not tell whether a human being
would choose a specific grasp or not. It seems desirable for
humanoid robots that they act human-like. We are convinced
that a humanoid robot that performs tasks and grasps objects
the way a human would do will be more readily accepted
by people than a robot grasping objects in unintuitive ways.
We therefore believe that grasp selection by humanoid robots
should be motivated by human grasping. This leads to the
question how to decide which grasps are more human-like
than others. In this paper we present an intuitive approach to

rate grasps generated by our grasp planner, given measured
data from the human grasping process.

II. RELATED WORK

Before we describe our approach in detail we give an
overview of related work in the field. In the recent years, a
multitude of humanoid robots have been presented, for exam-
ple HRP2 ([2],[3]), ARMAR ([4],[5]), Dexter [6], Justin [7],
or NASA Robonaut [8] where an important focus of research
was grasping and manipulation, also including dealing with
furniture and doors. Work has also been conducted on pre-
grasp manipulation [9], where a flat object is slided to an
intermediate position where it can be grasped more easily.

In the area of grasp planning for known objects, a number
of simulation-based approaches were introduced based on
simulation environments such as GraspIt! [10], OpenRAVE
[11] and Simox [12]. In the context of the grasping by
parts paradigm several authors proposed shape approximation
techniques to prune the search space for grasp planning. The
first of these were Miller et al. [13] who manually decomposed
objects into basic shape primitives such as boxes, spheres,
cylinders and cones. Goldfeder et al. [14] used superquadrics
and Huebner et al. [15] proposed an approach to decompose
objects into a set of minimum volume bounding boxes. Fol-
lowing the same line of thinking, but guided by the idea of
improved shape approximation accuracy, we proposed in our
earlier work the use of object representations based on the
medial axis [16] and the medial axis transform [17]. Aleotti
et al. [18] presented an approach for grasp planning based on
the Reeb Graph. Vahrenkamp et al. [19] proposed a method
that integrates grasp planning with searching for collision free
grasp motions.

As for the human component in grasp selection, recently a
human-guided grasp measure was introduced by Balasubrama-
nian et al. [20]. In their experiments the authors let test persons
interact haptically with a robot so the robot arm would grasp
the objects in a way the test persons considered intuitive. The
authors identified orthogonality of wrist orientation towards
the object’s principal axis as a measure that is optimized by
humans when selecting grasps for robots.



As to human grasping, a variety of behavioral studies have
addressed the question of how hand posture and finger contact
positions are selected when objects are grasped. These studies
have demonstrated that how an object is grasped depends on
a number of parameters. Paulignan et al. [21] showed that
cylindrical objects that were placed at different positions in
front of the participant were grasped at different positions on
the object. The center of mass of the object is also known
to influence the choice of contact points [22]. Finally, the
intended goals of an action or planned movement sequences
also influence how objects are grasped ([23],[24]). Notably,
the choice of fingertip contact points has been studied in most
cases only for two-finger grasps that involved the thumb and
index finger. This contrasts with the recent finding that the
default grasp of humans seems to involve all five fingers
[25]. In general, the small variability of contact points and
the preshaping of the hand in early phases of the prehension
movement indicate a preplanning in the choice of contact
points [26]. This is in line with the view that the goal posture
of the hand in grasping is specified in advance, followed by
an appropriate movement to this posture [27].

The remainder of this paper is organized as follows. In
section III we describe the components of our system. In
section IV we explain in detail our experiments and evaluate
the results before we conclude the paper in section V with
ideas for further research.

III. OUR APPROACH

In this section we explain our approach in detail. Our
method consists of four steps: The generation of grasp hy-
potheses by a grasp planner (see section III-A), the process
of collecting human grasping data (III-B), the rating of the
human-likeness of the grasps (III-C) and finally the selection
and execution of a grasp on the real robot (III-D).

A. Grasp Hypotheses Generation

For grasp hypotheses generation we use a technique based
on a novel object representation we recently presented in [28].
Our object representation, the grid of medial spheres, is based
on the medial axis transform (MAT) [29], a complete shape
descpritor, which can represent arbitrarily shaped objects with
high accuracy and additionally contains volumetric informa-
tion of the object. The MAT can be obtained by inscribing
spheres of maximum diameter into the original shape, where
maximum diameter means that each inscribed sphere has to
touch the original shape at two distinct points. The sphere
diameter d and the object angle αo [30], which describes the
maximum angle included by two vectors from the sphere’s
center to two different nearest surface points of the original
shape touched by this sphere, are parameters that define the
level of detail of the object representation. By discarding
spheres with small object angles αoi

and small diameters di

we can eliminate edges and corners of the object.
Our goal is to generate grasps where the thumb opposes

the other fingers. This kind of grasp hypotheses directly
emerges from our grid of medial spheres object representation.

We use principal component analysis of local areas of the
inscribed spheres’ centers to estimate local symmetry planes
and axes of the object. These local symmetry properties,
combined with the diameters di of the associated spheres
contain valuable information how the object can be grasped.
Approach directions and orientations of the hand are generated
in a way that the robot hand is able to wrap around the local
symmetry axis or that the thumb and the other fingers touch
the object at opposing sides in case of a local symmetry plane.
For more details on this method we refer the reader to [28].
The grasp hypotheses generated by this process are tested
for force-closure. The force-closure grasps among these grasp
hypotheses will later be rated according to their similarity to
human grasps. We will describe this in detail in section III-C.

B. Human Grasping Data Collection Method

We collect human grasping data at a sampling rate of
240 Hz using a Polhemus Liberty electromagnetic motion
tracking system, with a static accuracy of 0.8 mm RMS for
the Cartesian x, y, and z positions and 0.15 degrees for the
orientation of the sensor markers. We attach the sensors with
medical tape to the fingernails of all five fingers of the right
hand. We use an additional wrist sensor as a reference for the
computation of parameters for the transport phase of the hand.
The thickness of the individual fingers and the orientation of
the sensor markers are taken into account in order to compute
the actual fingertip contact positions on the objects. During the
data collection session, participants wear liquid-crystal shutter
glasses [31] that can rapidly switch from opaque to transparent
to ensure standardized viewing conditions. The whole proce-
dure is controlled by custom made software running on a PC.
We filter the obtained position coordinates with a second-order
Butterworth filter that employs a low-pass cut-off frequency of
15 Hz. Velocities of each finger are determined from the data
stream. We determine the start and end of the movement with
a velocity threshold criterion of 0.1 m/s for the wrist sensor.
Contact points of the fingertips are determined in two steps:
First, the sample at which the velocity of the wrist marker is
lower than 0.1 m/s is determined. We then define the minimum
velocity within the next 40 frames as the end of the transport
phase of the hand. Potential contact times for individual fingers
are calculated separately. They are determined by searching
for the minimum velocity within the next 40 frames, starting
from the end of the transport phase. Second, we use a spatial
criterion to decide if the fingers make contact with the object.
If the distance between the finger position and the object is
smaller than 0.5 cm, we assume that the finger touches the
object.

C. Rating the Human-Likeness of Grasps

We now face the problem of deciding which grasp hy-
potheses generated by our grasp planner are more human-like
than others. Each human grasp h from the data recorded as
described in section III-B contains the final fingertip position
phi

on the object for each finger i. Each force-closure grasp g



from our grasp planner consists of the final wrist pose pw of
the hand and the final joint angle vector q of the finger joints:

g = (pw, q) (1)

In order to compute the fingertip position pgi
of finger i of a

grasp g from wrist pose pw and joint angle vector q we use the
forward kinematics model FwdKin() of our simulated robot
hand:

pgi
= FwdKin(pw, qi) (2)

We define a criterion to rate similarity between a planned grasp
g and a human grasp h:

dz =

√√√√ 5∑
i=1

(pgi,z
− pavg(h)i,z

)2 (3)

In the equation above pgi,z
denotes the z component of the

i-th fingertip of the grasp g planned by the grasp planner.
pavg(h)i,z

denotes the z component of the i-th fingertip postion
of the average of all grasps h of one human test subject. The
z axis of our object coordinate frame points up. The criterion
in equation (3) does not compute the overall displacement of
fingertips, but only their displacement in z direction, i.e. if the
fingertips of the planned grasp touch the object at about the
same height as the human grasp. We will explain the reason
for this choice in more detail later in this paper.

D. Selecting and Executing Grasp Hypotheses

We now have a set of force-closure grasps from the grasp
planner, which have been rated with the criterion dz introduced
in the previous section. Which of these grasps should now be
executed on the real robot? The grasps with the lowest values
of dz are the grasps most similar to the human grasps.

In practice however, the feasibility of grasps depends on
the actual pose of the object in the scene. Due to kinematic
constraints of the robot and obstacles in the scene, not all
precomputed grasps are reachable in a given situation. In order
to select a feasible grasp for execution, the object has first
to be identified and its pose has to be estimated. We use
an approach for textured objects described in [32]. First the
object is recognized using 2D feature correspondences. Then
2D localization using scale-invariant feature transform (SIFT)
descriptor correspondences is performed. Finally, a 6D pose
estimate of the object is calculated based on the outcome of
the 2D localization.

As now the object pose is known, the grasps which are
originally in the object coordinate frame can be transformed
to the robot’s platform coordinate system. We order the grasps
with respect to their dz rating, the hypothesis with the smallest
rating first. For each grasp we check reachability using inverse
kinematics, where all seven joints of ARMAR’s right arm, as
well as the hip joint, are considered. As soon as we find a
grasp which is actually reachable, we select it for execution.
To actually perform the selected grasp on ARMAR, we use
a visual servoing approach [33]. For this purpose we first
generate a pre-pose of the hand by shifting the final grasp

pose for a small distance along the negative approach direction.
This is necessary to make sure that the hand approaches the
final grasp pose from the desired direction without toppling
the object. During the grasping movement, ARMAR moves
its hand first to the pre-pose of the selected grasp, then to the
final grasp pose. At the final grasp pose the hand is closed
and ARMAR lifts the object.

IV. EXPERIMENTS

In this section we present our experiments which comprise
three parts: The collection and evaluation of human grasping
data (IV-A), the generation of grasps and their rating with
respect to the human data (IV-B), and the selection and
execution of grasps on the robot (IV-C).

A. Collection and Evaluation of Human Grasping Data

Fig. 1: Experimental setup for collecting human grasps. The
object was to be picked up and placed in the grey shaded area.

The experimental setup for collecting human grasping data
is shown in Fig. 1. We used a cylinder (6.3 cm diameter, 12.2
cm height) and a rectangular box (8.4 cm × 5.2 cm × 15.4
cm) as test objects. The distance of the objects (from their
center of mass) to the starting position of the hand was 30
cm in the y direction. The ’long’ side of the box was always
parallel to the x axis. At the beginning of each trial, thumb and
index finger of the right hand touched a small knob (starting
position) which also served as the origin of the coordinate
system. Participants looked at the object for 1000 ms after the
opening of the shutter glasses. A tone (800 Hz, 100 ms) served
as the signal to start the grasping movement. We instructed
the participants to grasp the object ’from the side’ with as
many fingers as they liked in their self chosen natural speed.
No instructions were given with respect to contact points of
the fingers with the object. The object was to be picked up
and placed in the target region (grey shaded area in Fig.
1). The hand was brought back to the starting position and
the shutter glasses became opaque again. Each object was
grasped ten times in random order. We investigated five right
handed participants. Results from two exemplary participants
are shown in Fig. 2. The left column depicts the contact
positions with the object and the right column illustrates the



Fig. 2: Final fingertip positions (left column) and trajectories of individual fingers (right column) for two exemplary participants
(rows).

trajectories of individual fingers until contact is made with the
object. It can be seen that participants were quite consistent
in their choice of contact points, although differences exist
between participants for this choice. For example, in the box
conditions the participant in the upper row placed all fingers
on the long side of the box, while the participant shown in the
lower row placed the little finger always on the small side.

B. Planning and Rating Grasps

For the grasp planning, rating and execution parts of our
experiments we used the following two objects: A cylindric
salt can and a medium-sized cereals box. The model of the
cylindric salt can was obtained using a 3D laser scanner
([34],[35]). The cereals box was modeled by hand. For rating
the grasps from the grasp planner, we chose to use the
data from a single participant since averaging final fingertip
positions between participants will not lead to meaningful
results in most instances. For this work, we randomly chose to
use the data shown in the upper row in Fig. 2. In order to make
the human grasping data from the previous step applicable to
the differing sizes of the test objects used with the robot, we
scaled up the human grasping data to fit the size of these
test objects. Scaling of the grasping data was performed with
respect to the object’s center of gravity, proportionally to the
scaling of the object size. For the work in this paper, we
assumed that all objects have graspable sizes, i.e. scaling the
human data would not lead to infeasible grasps.

Figure 3 shows the results of the grasp planning and
rating process. Green and orange rays towards the object
describe approach directions of the hand. Magenta lines at

the end of the approach directions indicate the respective
hand orientations which can be thought of as an imaginary
axis the fingers of the hand wrap around when they close
starting from a parallel preshape. For the cereals box, our
grasp planner generated grasps where the approach directions
and hand orientations are inside the object’s biggest symmetry
plane. This ensures that the hand can close around the object
with the thumb touching the object at the side opposed to the
side touched by the other fingers. In case of the salt can, the
grasp planner exploited the object’s central symmetry axis and
generated grasps with approach directions perpendicular to the
symmetry axis and hand orientations parallel to the symmetry
axis. All the depicted grasps are force-closure grasps. The
black spheres indicate the fingertip positions from the human
grasping experiments, transformed to the object coordinate
frame and scaled to fit the size of the object. The purple
spheres located at the approach directions describe the final
wrist positions of the hand during grasp planning. The sizes
of these spheres are inverse to the value of the dz rating
introduced in section 3, i.e. the biggest spheres represent the
grasps with the smallest dz rating, that is, the grasps with
the biggest similarity to the data from the human grasping
experiments. We note that for both objects the planned grasps
most similar to the human grasps with respect to the dz rating
are located somewhere between the top and the center of mass
of the objects, just as we would anticipate from the human
grasping experiments.



Fig. 3: Results from the grasp planning and rating procedure
for the cereals box (left) and the cylindric salt can (right).
Green and orange rays describe approach directions of the
hand towards the object. Magenta lines at the end of the
approach directions indicate the respective hand orientation
vectors. Black spheres indicate the fingertip positions from
the human grasping experiments. Purple spheres located at
the approach directions describe the final wrist positions of
the hand during grasp planning. The bigger these spheres,
the bigger the similarity of the respective grasps to the data
from the human grasping experiments based on the proposed
similarity criterion.

C. Selecting and Executing Grasps

As already described in section III-D, the grasps generated
by the grasp planner are sequentially tested for kinematic
reachability, starting with the most human-like grasp. The
first grasp actually reachable is automatically selected and
performed on ARMAR-III. Figures 4 and 5 show the actual
grasping process on our humanoid robot ARMAR-III for the
two test objects. The first row of Fig. 4 shows ARMAR localiz-
ing the respective object on a table in front of it. In the second
row the object pose is updated in the simulation environment.
In the third row all grasps and pre-poses generated by the grasp
planner for the object are decpicted. The fourth row shows the
selection of the first actually reachable grasp for execution.
The first row of Fig. 5 shows ARMAR’s hand reaching the pre-
pose (first row), then the final grasp pose (second row), closing
the hand (third row) and finally lifting the object (fourth row).

V. DISSCUSSION AND CONCLUSION

In this paper we proposed an approach to grasp known
objects with a humanoid robot, with a focus on human-
inspired selection of the grasp actually to be performed. The
results show that human grasping data can be used to rate
grasps generated by a grasp planner with respect to their
human-likeness, so the selection of grasps for execution on
a humanoid robot can be biased towards more human-like
grasps. The results also show that our grasp planning algorithm
produces grasps similar to those intuitively used by human
beings. The human grasping data seem to indicate that object
symmetries, as exploited by our grasp planner, affect humans
in their choice how to grasp an object.

Yet we are aware of the limitations of our rating approach.
One possible point of criticism might be our choice of similar-
ity criterion that only considers deviations along the z direction

Fig. 4: Grasp rating and selection. Object localization (first
row), updating the object pose in the simulation environment
(second row), all grasps generated by the grasp planner and
rated with respect to human grasping data (third row), selecting
the first feasible grasp for execution (fourth row).

of the object coordinate frame, i.e. variations of the height
where the object is grasped affect the rating, while variations
of the directions, from which side the object is grasped, do not.
One might argue that rather a criterion based on the complete
euclidean distance should be used. During our experiments, we
actually considered this option, too, but found that in the case
of our highly symmetrical test objects, especially the cylindric
salt can, a euclidean distance criterion would be too restrictive,
for the following reason: The grasps generated by the grasp
planner relate to the object coordinate frame, which does not
respect the object’s symmetry. If we turn the cylindric object
around its symmetry axis on the table in front of the robot,
then the object pose changes and the most human-like grasps
with respect to a euclidean distance criterion may be located



Fig. 5: Grasp execution on ARMAR-III. The hand at the
prepose (first row), at the grasp pose (second row), closing
the hand (third row), and lifting the object (fourth row).

at the back of the object, unreachable for the robot.
Apart from this symmetry issue, our experiments raised a set

of interesting questions. First, we only used two objects with
relatively simple shapes - a box and a cylinder - for the data
collection experiments and for grasping on the robot. While
this is motivated by pychological findings and the collected
human data can be scaled up or down to fit objects of similar
shapes but different sizes, the question remains how to deal
with more complexly shaped objects. One might think of
grasps at the handle of a pitcher, at the rim of a salad bowl.
Or consider the classic coffee cup: It can be grasped from the
top, from various sides, at the handle or at the rim with some
fingers reaching inside the cup. This leads us to the second
question: What kind of data can we expect to get from the
human grasping experiments, if we do not tell the test subjects
how to grasp the object? In our experiments in this paper, we

explicitly told the test subjects to grasp the objects from the
side. The data for each of the subjects show little variation
regarding the final fingertip positions during grasping (see Fig.
2). If subjects are asked to grasp the test objects as they please,
and if the test objects have more complex shapes, this could
lead to much more variation in the recorded human grasping
data. In our opinion there are two conceivable outcomes: Either
the recorded data contain distinct clusters or not. In the case
of clusters, one might think of similar grasps belonging to the
same cluster: one cluster for grasps at the handle of a cup,
another cluster for grasps from the top, and so on. In this case
one might think of using our similarity criterion with different
clusters as human reference data, depending on the respective
way the robot is asked to grasp the object. For instance one
would use only the human grasps of the handle grasps cluster
as a reference for rating robot grasps, if the robot is asked
to grasp the cup at the handle. The more challenging case
might be the presence of very strangely shaped clusters in
the data or the absence of clusters at all. In these cases there
would be considerable variation in the data, which leads us
to the third question: How can a criterion for human-likeness
deal with big variations in the collected human grasping data?
In the experiments of this paper our approach of calculating
a distance criterion between planned grasps and the average
of the observed grasping data of a single human subject was
based on the assumption that averaging human grasps would
yield a feasible average grasp. Yet this might not always be
the case. Consider a big salad bowl for example, where one-
handed grasps can only be performed at the rim, but the test
subject might grasp the rim at very differenct places during the
experiments. In this case averaging seems very questionable,
since computing the average over all observed grasps would
possibly not yield a valid grasp at all. We believe that in
these cases the usage of machine learning methods might
be reasonable, where the human-likeness of a planned query
grasp could be rated depending on whether there exists any
human grasp in the space of observed human grasps for this
object within a given distance to the query grasp. We consider
the questions raised above to be promising topics of future
research.
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