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Combining Navigation and Manipulation Costs for Time-Efficient
Robot Placement in Mobile Manipulation Tasks

Fabian Reister, Markus Grotz, and Tamim Asfour

Abstract—Mobile manipulation tasks require a seamless inte-
gration of navigation and manipulation capabilities. Finding suit-
able robot placements to pick up and place objects in such tasks
is crucial for time-efficient task execution. Sub-optimal robot
placements result in infeasible solutions or require larger re-
positioning of the mobile base to reach target objects, increasing
the overall time to complete the task. In this work, we propose
an approach that, given a set of objects, autonomously selects
the optimal placements of a humanoid robot in conjunction with
the best grasp candidate and corresponding arm. In contrast to
previous approaches, our method considers both the navigation
costs between consecutive robot placements and the manipulation
costs to reduce the time needed to complete the task. We evaluate
our method on a simulated table clearing task that requires
the robot to move between pickup and discard locations and
demonstrate the applicability in a real-world experiment on
the humanoid robot ARMAR-6. In addition, we perform a
run-time analysis and show that our approach can integrate
sensory feedback to update the optimal placement in dynamic
environments.

Index Terms—Mobile manipulation, motion and path planning,
integrated planning and control

I. INTRODUCTION

EFFICIENTLY performing mobile manipulation tasks [1]
such as clearing a table or loading a dishwasher is

challenging, as it requires a seamless integration of navigation
and manipulation capabilities to successfully perform these
tasks by robots with usually high number of degrees of
freedom. In a mobile manipulation task, a mobile robot like
ARMAR-6 (Fig. 1) has to reach several poses by its hands to
grasp objects, to follow a certain trajectory of its tool center
point (TCP) e. g. while opening a door, to coordinate arm
and platform motions and to execute these motions based
on sensor feedback. Here, a key aspect is finding suitable
robot placements, i. e. positions of the platform, that allow
the robot to reach all desired TCP poses without the need
of re-positioning during the execution. To increase efficiency
in solving a task, unnecessary movements e. g. due to re-
positioning the platform must be avoided by determining a
placement that is optimal for the next manipulation action
e. g. grasping or placing action or, in the case of a bimanual
mobile robot, by selecting the most appropriate hand to grasp
an object.
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Fig. 1: The humanoid robot ARMAR-6 performing a sequence
of mobile manipulation tasks. The figure shows the initial pose
as well as exemplary pickup placements. The placements in the
bottom row are suboptimal as the arm is close to joint limits
(left) or the robot needs to move around the table (right). The
top row shows the placements found by our approach.

In this work, we consider the mobile manipulation task
of clearing multiple objects from a table. The task involves
grasping and subsequently placing multiple objects at a single
or multiple locations.

One key aspect of solving this task is to find whole-body
goal configurations including the robot’s base and the arm to
manipulate the object. An optimal robot placement can reduce
the total amount of time needed to perform a single pick-and-
place action as it minimizes the navigation distance and time
while maintaining a high manipulability of the end-effector.
Such optimal robot placements not only allow to efficiently
manipulate a single object, but also reduce the overall time
on a sequence of object manipulations. Fig. 1 illustrates an
example for such a pick-and-place task comprising multiple
mobile manipulation actions. The goal is to pick up several
objects at given positions and place them elsewhere. To
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achieve this goal, the robot needs to jointly select the grasp
candidate alongside with the corresponding hand as well as the
base placement to efficiently perform the task. Planning over
the large sequence of object interactions is neither possible in
real-time nor meaningful in dynamic environments, in which
the robot or a human might change the object arrangement on
the table during the task execution.

In our previous work, we introduced reachability inver-
sion [2], by which potential robot base placements for a
fixed TCP position can be calculated, instead of defining the
reachability of the TCP w.r.t. a fixed robot base pose. We
build on our previous work and extend it for the calculation of
multiple, optimal robot placements in a mobile manipulation
task while taking into account the navigation costs to these
placement positions.

Our major contribution in this work is a novel approach
for planning of mobile manipulation task that determines
consecutive robot placements and grasp candidates jointly
in a way that minimize the overall time to complete the
task while combining navigation and manipulation tasks. To
achieve this, movements of the mobile base and TCP are
coordinated to arrive simultaneously at the grasp pre-pose
and mobile base placement by introducing navigation and
manipulation cost maps (Section IV). The former can be
computed online and also be used for optimal navigation
planning once the placement is found (Section IV-A). The
latter can be derived from prior knowledge about the robot’s
reachability (Section IV-B). We validate our approach by
comparing against several baselines (Section V) within a
simulated environment as well as in a real experiment on the
humanoid robot ARMAR-6 as shown exemplary in Fig. 1. We
also perform a computation time analysis on ARMAR-6 in a
dynamic environment.

II. RELATED WORK

Finding consecutive robot placements as part of a mobile
manipulation task is important for efficient execution and
challenging as it requires the generation of kinematically
feasible whole-body motions by combining perception, motion
planning and control. Pioneering work on generating collision-
free whole-body motions has been conducted by Khatib [1]
and Brock [3]. In their Elastic Strips framework, they assume
that the goal and also an initial collision-free path is given.
Approaches that include goal generation can be divided into
two categories depending on whether the placement of the mo-
bile platform of the robot for executing manipulation actions
is determined implicitly or explicitly.

A. Implicit robot placement

Implicit approaches are often reactive and usually generate
platform velocities directly to ensure kinematic feasibility. The
authors in [4] use a dynamical systems based approach in
conjunction with an approximation of the inverse reachability
to generate base and TCP movements. In [5], reinforcement
learning is used to control the platform and use the kinematic
feasibility as a reward such that the agent learns to move the
platform towards the desired goal region. In [6], a whole-body

quadratic program is formulated to generate smooth motions
for repetitive pick-and-place actions. As the manipulability
is considered into the objective function, the controller can
locally maximize the manipulability. However, no guarantee
can be given regarding the global optimality of the solution.

Although these approaches demonstrate their applicability
in dynamic environments, they do not consider the ambiguity
and decision that can be made during execution. In both [4]
and [5], the right arm is used to perform the action instead
of selecting the most suitable one. Furthermore, multiple
strategies exist, e. g. to open a door (grasping the handle from
top or bottom) or how to grasp an object (multiple grasp
candidates), which can improve the overall execution.

B. Explicit methods

The optimal placement can also be planned in advance.
Due to the redundancy of the robot’s arm, the placement
distribution for the pose of the mobile base cannot be de-
scribed analytically. One approach is known as inversion of
reachability maps [2],[7],[8]. Reachability maps represent the
robot’s ability to reach a certain TCP pose w.r.t. a fixed base
position and are calculated by sampling joint configurations qi,
applying forward kinematics to obtain the robot’s TCP pose
within its base frame robotTTCP and evaluating a suitable cost
function c(q) of the joint configuration q which yields the
tuple (robotTTCP(q), c(q)). These reachability maps are usually
approximated using a fixed-sized 6D grid as in [2] and [8], a
task with the complexity of O(n6) with n being the number
of discretization steps of both position and orientation. To
obtain the distribution of the robot placements for a certain
TCP trajectory, the inverse reachability map (IRM) is then
generated by inverting robotTTCP and cutting it with the plane
describing all robot base positions. In [2] it is assumed that
the robot moves within the plane parallel to the ground
plane. Recently, this has been extended to surface-orientated
reachability maps [9]. To overcome the limitation of the grid-
based approximation, [10] learn the reachability and inverse
reachability directly by employing density networks.

Selecting the proper cost function c(q) as reachability
measure is highly task dependent. It can be a statistical
measure of the hit frequency of a cell within the 6D grid,
the manipulability and also an extended manipulability as
described in [2].

If the inverse mapping is learned directly, it can go beyond
joint-space criteria. In [11] a probabilistic placement distribu-
tion is directly learned from experience by so-called action-
related places. Although being used for scene exploration and
object search, the authors in [12] show how multiple criteria
such as arm IK, arm reachability, object observability and base
reachability can be combined.

Lately, also probabilistic methods have been proposed that
reflect the abilities of the perception system to capture platform
pose uncertainty [13] as well as uncertainty about the grasp
pose [14] or the object pose itself [15].

As the IRMs do not consider collisions of the found
solutions, a post-processing step is required to validate the
proposed placements. To overcome this limitation, inverse
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dynamic reachability maps (iDRM) were proposed in [16]
to efficiently incorporate the dynamic scene by means of a
voxelized representation such that whole-body goal configu-
rations can be generated in real-time.

C. Consecutive robot placement

Finding a sequence of robot base placements has been
studied in the context of coverage path planning [17],[18],
inspection [19] and assembly at the example of pick-and place-
tasks [20],[21]. In most cases, the objective is to reduce the
number of base poses required to fulfill the overall tasks.
For example, in [22] a sequence of pick-and-place actions is
planned to minimize the number of required robot placements
by intersecting base regions defined to reach different boxes
containing the objects to be grasped. Yet, their approach is
restricted to a fixed orientation of robot.

In [21], an approach is proposed to minimize the number
of base placements as well as the distance traveled between
these. The formulation is similar to the traveling salesman
problem, which can be solved by using simulated annealing.
Due to the large search space, the approach does not optimize
the orientation of the robot, which is a major restriction
of possible placements. Also, the optimal placement is only
chosen based on the navigation costs, which can have a
major impact on the manipulability. In addition, such a global
optimization approach is time consuming. In experiments, the
authors report a planning time of over one minute, which limits
their approach to offline planning problems.

Yet, most of the presented approaches do not consider
the time required to navigate between the placements which,
especially for household tasks, can be a dominant factor. The
authors in [23] propose an approach which only considers the
navigation costs towards the target. Their approach describes
a two-part placement strategy in which a first placement on a
circle around the object is used to perceive an object. A second
placement is then generated based on inverse reachability maps
to grasp the object which minimizes the distance to the first
one. Yet, their approach does not consider the travel costs to
any subsequent target.

III. PROBLEM FORMULATION

We address the problem of finding multiple consecutive
robot placements from which TCP trajectories can be exe-
cuted. This can be e. g. pick-and-place or other manipulation
task such as opening a dishwasher. The goal is to perform
such tasks in an efficient way, i. e. as fast as possible. For-
mally, we define the problem of finding consecutive robot
placements as finding feasible placements R = (r1, . . . , rn)
with ri = (x, y, α) ∈ R×R× [0, 2π) from an initial pose r0
to reach a set of n objects at the 6D poses p1, . . . ,pn with
corresponding TCP trajectories τ1, . . . , τn. In each step, the
concrete TCP trajectory τi has to be selected out of a set Ti. In
the concrete table clearing scenario, this TCP trajectory must
be selected and derived based on a set of grasp candidates
associated with the target object and selected arm.

The goal is to find such consecutive robot placements as
efficient as possible, i. e. the placements that minimize the
objective function

f(R) =
∑
i

c(ri−1, ri, ri+1), (1)

with the task specific cost function c(·) that depends of the
previous i−1 and the next placement i+1 if e. g. the distance
between the placements is considered. Consequently, this is a
coupled optimization problem. In this work, we set c(·) to be
the time spent to complete the current task.

IV. APPROACH

An overview of our approach is given in Fig. 2. We assume
that the following is given or can be derived from the robot
sensor observations: (i) a scene with n known objects and an
object localization algorithm to estimate their 6D poses, (ii) a
high-level plan which defines the order in which the objects
need to be manipulated, (iii) a grasp planner to generate grasp
candidates for the objects and suitable hand trajectories to
successfully grasp them, (iv) the navigation cost map (Fig. 3),
(v) the reachability maps for the left and right arm, and (vi) the
initial robot pose r0. To find time-efficient robot placement,
we use a simplified objective function c̃ to approximate c as

c ≈ c̃ = cn + cm. (2)

The approximation c̃ consists of two parts: 1) navigation-
related costs cn and 2) manipulation-related costs cm. The first
term in this formulation captures the mobility costs between
the robot base placements while the second term evaluates
the robot base pose w.r.t. the desired manipulation task. We
assume that the time to grasp the object from a pre-pose
associated with a grasp is constant and thus we omit it from
the optimization problem. Yet, grasp specific costs could easily
be integrated into our optimization framework.

The navigation costs cn are independent of the TCP tra-
jectory but depend on the current and its surrounding robot
base poses. Thus, minimizing c̃ becomes a coupled global
optimization problem. Due to the curse of dimensionality,
optimizing cn =

∑
i f(ri−1, ri, ri+1) in real-time becomes

intractable. Therefore, we suggest to split c̃n into two parts
and re-formulate the problem as a local optimization problem:

cn ≈ cn(ri−1, ri) + cn,h(ri, ri+1). (3)

The cost cn(ri−1, ri) can be computed by a suitable
search algorithm from the initial pose ri−1 to a goal re-
gion Ri (ri ∈ Ri). As cn(ri, ri+1) would require to search
through Ri×Ri+1, we approximate it by a suitable heuristic.
This detailed computation of cn will be described in Sec-
tion IV-A. Even if solving the coupled optimization problem
for cn would be feasible, it would have limited practical
applicability in dynamic environments as objects might be
moved between pick-and-place actions, e. g. by a human or
by the robot itself either unintended or intended by pushing
objects aside.

The manipulation costs cm(ri, τi) only depend on the TCP
trajectory and the current robot placement. The corresponding
cost function will be described in Section IV-B.
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(a) Navigation costs (b) Manipulation costs (c) Navigation heuristic (d) Optimal placement (e) Legend

Fig. 2: Overview of the proposed method to find robot placements for time-efficient task execution. In this example, the robot’s
task is to grasp an object from the table on the right and place it on the table in the lower left corner. To find the optimal
placement, the method considers multiple cost terms. First, the navigation costs that arise from navigating from the given
start pose. Second, the manipulation costs that reflect the manipulability of the end-effector while executing the TCP’s grasp
trajectory shown in blue. And third, a heuristic to approximate the navigation costs to reach the placement area on the left.
By combining all cost maps, the robot can find the optimal base placement.

A. Navigation costs to target

In order to navigate safely and reliably, the robot should
avoid close proximity to obstacles. If the robot however needs
to move close to objects, it should lower its velocity to be able
to react to unforeseen situations and to come to rest before
a collision occurs. Therefore, we model the maximal linear
velocity at a position p = (x, y) as

v(p) =
vmax

1 + λ · ds(p)
, (4)

with ds describing the distance to obstacles and do the distance
to the closest obstacle

ds(p) =

{
(1− do(p)/dmax)

k if do(p) < dmax

0 otherwise.

In our experiments, we set the weighting factor λ to 1.3,
k to 4 and the maximum distance dmax that we consider
to 1m. To find the time-optimal path from a start position to all
possible positions in the map, we discretize the search space
and convert it to a graph, in which each vertex represents the
position within the map and is connected to its 8 surrounding
vertices by directed edges. We choose the weight ei,j of an
edge connecting vertex ni and nj to be consistent with the
velocity described by Eq. 4 as

e(ni, nj) = ‖p(ni)− p(nj)‖ · (1 + λ · ds(p(nj))). (5)

Similar to [24] we use the Shortest Path Faster Algorithm
(SPFA) to obtain the minimal costs to reach each node within
the graph. However, in [24], only the Euclidean distance is
considered as edge weights. In our case, we decouple the
computation of do and the graph search by pre-computing
and maintaining a cost map as depicted in Fig. 3. This allows
continuous update based on perceptual information provided
by the robot’s sensor system.

An exemplary cost map with the distance to the nearest
obstacle as well as the navigation costs from an initial start
pose is given in Fig. 3. It can be seen that proximity to
obstacles is avoided.

Fig. 3: Left: The distance to obstacles cost map. The color
coding similar to Fig. 2 indicates the distance to the closest
obstacle. Right: Cost map obtained by SPFA. In addition, an
exemplary distance-aware shortest path is depicted.

B. Manipulation costs

To obtain the manipulation costs, we generate reachability
maps (RMs) for ARMAR-6 using the sampling-based strategy
described in [2] for the left and right arm. By randomly
sampling joint configurations, applying forward kinematics
and evaluating the joint configuration, the corresponding cell
in the lookup table of the 6D grid is filled. Here, we
use the extended manipulability measure that, compared to
the Yoshikawa manipulability index [25], takes additional
constraints such as joint limits and distance between body
parts into account as described in [2]. By optimizing for a
high manipulabilty measure, the robot will be able to reach
the desired TCP pose even in the presence of object pose
estimation and self-localization uncertainty.

To obtain a distribution of the robot’s possible placements,
we perform reachability inversion as described in [2] for the
given TCP trajectory. For each TCP pose of the trajectory, we
generate the IRM and combine them into one, which contains
the minimal extended manipulability of the individual IRMs.

However, each of the combined IRMs only corresponds to a
specific orientation of the robot base. Therefore, we generate n
inverse reachability maps to cover the meaningful orientation
space. As the robot’s head rotation is limited, we restrict the
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workspace such that the TCP must be in front of the robot
and can only be moved up to 45◦ into the workspace of
the other arm. Instead of storing n maps, we combine them
into two where the first contains the largest reachability value
and the second the corresponding orientation. To ensure a
high manipulability, we remove those parts from the inverse
reachability map that are below a threshold of 0.0235.

C. Navigation costs for heuristic
To estimate the navigation costs to the next TCP trajec-

tory, we combine both approaches presented in Section IV-A
and Section IV-B. Namely, we first compute the reachable
sets of robot placements Ri+1,j within Ri+1 and identify
connected regions as depicted in Fig. 4.

Fig. 4: The computation of the navigation costs for a place-
ment ri. It consists of the navigation costs from the last
placement ri−1 towards the goal region Ri and a heuristic
that allows us to approximate the navigation costs from an
arbitrary placement ri towards the next goal region Ri+1. In
the given case, two rectangular objects restrict the placement
sets.

These reachable sets Ri+1,j can e. g. represent the left and
right side of a table. For each of the centers of the regions
rci+1,j , we then create the navigation cost maps as described
in Section IV-A. Finally, we combine the cost maps by a
weighted sum based on the area of the region. By doing so,
we keep the bias towards any of the possible placements in
Ri+1 low.

D. Obtaining the optimal placement
Let ζn be the navigation cost map initialized from the start

position ri−1, ζm be the manipulation cost map and ζn,h be
the navigation cost map towards Ri+1 as depicted in Fig. 2,
then in Eq. 2 becomes

c ≈ c̃ = cn + cm = λnζn + λmζm + λn,hζn,h. (6)

As each cost map is associated with a mask to represent
the feasible regions, we compute the union of region to obtain
the feasible region Ri as depicted in Fig. 2d. The optimal
placement for this grasp candidate is the one that minimizes c̃.
Consequently, we are then given a set of global optimal
placements w.r.t. our cost function for objects as shown in
Fig. 5. The best placement does not only have to minimize c̃
but it has to be reachable by the bimanual arm controller. To
ensure this, we perform a reachability check and reject the
unreachable base placements for the set of grasp candidates.

Fig. 5: Exemplary optimal placements and corresponding IK
solutions found by our method. Grasping with the right hand
(left), grasping with the left hand (middle), grasping with the
right hand and flipped elbow (right).

V. EXPERIMENTS AND EVALUATION

We evaluated our approach regarding finding time-efficient
robot placements in the context of clearing the table task
with three tables as shown in Fig. 6. We conducted 1) ex-
periments in simulation to provide a quantitative evaluation
of the approach, 2) a real-world experiment with a qualitative
evaluation on a humanoid robot, and 3) a real-world experi-
ment in a dynamic environment with a quantitative evaluation
of the computation time. An accompanying video shows the
experiments.

A. System setup

We use the humanoid robot ARMAR-6 [26] for both
simulated and real-world experiments. The robot features two
8 DoF arms and five-finger hands and is equipped with a
holonomic mobile platform. The approach is implemented
within the ArmarX robot framework1 , extends our previous
work [2] as part of the robotics toolbox Simox2 and uses
the ArmarX navigation stack3 to move the platform between
the placements. The global planning step is also based on
the cost function described in Section IV-A. To generate the
arm movement, we designed a trajectory planner inspired by
RelaxedIK [27]. The quadratic program considers multiple
objectives and can jointly optimize for the desired TCP poses,
avoid joint limits and singularities, and ensures task-space
and joint-space smoothness as well as maintaining a certain
height above the tables to ensure collision-free movement.
Furthermore, for each object to be grasped, a set of grasp
candidates using a bounding-box-based grasp planner [28]
are generated and used. In this work, we only consider top
grasps. To reduce noise induced by visual object localization
and by the grasp planner, we assume fixed object poses during
every experiment. Throughout the real-world experiments and
also to measure the execution time we use a computer with
an Intel(R) Core(TM) i7-6700 CPU @ 3.60GHz and 32GB
RAM.

B. Baselines

To quantitatively assess our approach we implemented the
following baselines:

1https://gitlab.com/ArmarX
2https://gitlab.com/Simox
3https://gitlab.com/ArmarX/skills/navigation/
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1) Pre-defined placements around the table. For each of
the three pick-up tables and on each side of the table,
a centered placement is generated with the robot facing
towards the table. This yields seven possible placements
where we select the one that maximizes the extended
manipulability while reaching the grasp pose. This can
be seen as an engineered solution to cover the whole
table.

2) Inverse Reachability Maps (IRM). By setting both nav-
igation cost weights λn and λn,h in Eq. 6 to zero, our
approach is similar to the reachability inversion approach
in [2]. We use the extended manipulability measure
similar to our approach.

In addition, we perform an ablation study by comparing the
greedy single-step and our sequential approach by setting
the navigation costs for the heuristic λn,h to zero for the
first one. If applicable, we chose λn = λn,h = 1

20m and
λm = 0.002353.

C. Scenarios

We conducted the experiments in two scenarios in sim-
ulation with and without obstacles and in two real world
experiments.

Fig. 6: ARMAR-6 in a simulated scene. The objects are placed
on the tables within the green region. Placing areas for grasped
object are highlighted in blue.

1) Simulated evaluation scenario: We place the objects on
several tables that span an area of 0.8 × 2.4m as depicted
by the green area in Fig. 6. Due to the large workspace
of the arms, the robot can reach all positions on the table
from both sides. The robot’s task is to place the objects
alternating on one of the tables highlighted in blue. To reflect
the dynamic nature of a table clearing task, we vary the scene
by placing the objects randomly on the table and repeat the
experiments 45 times. To assess the time to complete the task
in simulation, we focus on the contact-free motions. As the
concrete grasping execution depends on force-feedback, it can
only be modelled insufficiently and therefore we we do not
execute the compliant grasp controller in simulation.

2) Simulated evaluation scenario with obstacles: As shown
in Fig. 7, we place obstacles around the table which are
indicated by red boxes. This restricts the set of feasible robot
placements. For each approach, we evaluate how the execution
time is affected and repeat the experiment 30 times.

Fig. 7: Simulated scene with two obstacles around the tables.
The robot has to find suitable robot placement in the free area
around the obstacles, i.e. the two red boxes, to reach and grasp
the objects.

3) Real-world robot experiment: We executed the experi-
ment described above also once on the robot with a similar
object arrangement as in one of the simulation experiments.

4) Real-world evaluation scenario in dynamic scene: To
demonstrate the applicability of our approach in dynamic
environments, we let a human enter the scene to update the
object arrangement and obstacles as depicted in Fig. 8.

The robot’s task is to plan and dynamically update the
optimal placement for a top grasp with the right hand.
Therefore, we integrate sensory feedback online: 6D object
pose estimation [29] is used to update the object-centric
manipulation cost maps. In addition, a laser-scanner-based
obstacle detection founds the basis of the dynamic navigation
cost maps. All cost maps are combined according to Eq. 6
to obtain the optimal robot placement. We record both the
initial planning and online update times for 10 different scene
configurations while the robot is observing the scene from its
initial pose for 2 minutes each.

Fig. 8: Dynamic real-world evaluation scenario. During the
experiment, the human moves around and varies the pose of
the object that the robot is about to grasp. In addition, the
human can move the chairs and boxes on the floor.

D. Results

1) Simulated evaluation scenario: The quantitative evalu-
ation results are shown in Fig. 10, for the simulated scenario
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(a) (b) (c) (d)

Fig. 9: Real-world experiments with ARMAR-6. Our method allows for time-efficient robot placements to increase the robot’s
utility. Pictures (a)-(d) are selected at different times during the experiment. The accompanying video shows the complete
experiment.
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Fig. 10: Execution time for the simulated evaluation scenario.

described in Section V-C1. As can be seen, our approach out-
performs all baselines. Compared to the fixed set of possible
robot placement and IRM, we achieve a reduction of the time
to clear the objects from the table by 21% and 18.6% for the
simulated scenario without obstacles.

2) Simulated evaluation scenario with obstacles: For the
simulated scenario with obstacles, we observed a reduction
of 18.4% in comparison to the fixed set placement and a
reduction of 17.7% compared to IRM as shown in Fig. 11.

Fixed set IRM ours (greedy) ours (sequential)
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Fig. 11: Execution time for the simulated evaluation scenario
with obstacles.

3) Real-world evaluation: When executing the experiment
on the real robot, we recorded the following execution times as
shown in Tab. I. We include the estimated time from the simu-

lation as a reference. It can be seen that the simulation slightly
underestimates the corresponding execution time on the robot.
Furthermore, the assumption of a constant grasping time holds

method simulation real (navigation) real (full)

IRM 152.9 s 163 s 202 s
ours 132.3 s 135 s 176 s

TABLE I: Execution time for the real experiment and its
simulated counterpart. The simulated experiment does not
include the grasping and should ideally be similar to the
navigation time of the real experiment.

which is about 40 s for both approaches. The qualitative results
of the real experiment are shown in Fig. 9. The used bimanual
arm controller is able to successfully execute the pick-and-
place actions from the placements generated by our approach.
It can be summarized that by using our approach, the robot is
able to clear the table fully autonomously.

4) Real-world evaluation (dynamic): Tab. II reports the
planning time to obtain the manipulation and navigation cost
maps without any CPU parallelization. The computation time

computation step time [ms]

navigation cost map 1.39 ± 0.18
manipulation cost map 1053.94 ± 48.83
navigation heuristic cost map 58.20 ± 5.92
combined cost maps + best placement 4.93 ± 1.84

overall 1118.49 ± 50.87

TABLE II: Planning time for a single robot placement.

of the inverse reachability maps is the most dominant factor.
To obtain the manipulation cost map, 100 IRMs are computed,
each for a different robot base orientation.

After the initial planning phase, the manipulation cost map
can be updated without the need to recalculate the IRMs.
Tab. III lists the update time of the cost maps. As the
distance-to-obstacle cost map (Fig. 3) is updated by integrat-
ing low-level laser-scanner-based features, we also record its
computation time. It can be summarized that our approach
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computation step time [ms]

distance-to-obstacle cost map 90.25 ± 17.0
navigation cost map 1.45 ± 0.52
manipulation cost map 0.70 ± 0.49
navigation heuristic cost map 2.78 ± 1.25
combining cost maps + best placement 5.89 ± 2.39

TABLE III: Update time for a single robot placement.

can integrate sensory feedback efficiently to be applicable in
dynamic environments.

VI. CONCLUSION AND FUTURE WORK

We presented a novel approach for planning of mobile
manipulation tasks by combining navigation and manipulation
costs for time-efficient robot placements. Our method orches-
trates the robot’s holonomic mobile base as well as both arms
to arrive simultaneously with the end-effector at the object
to grasp. We evaluated our method in several simulated and
two real-world experiments. The evaluation shows an overall
reduction of the time to complete the task. Especially, the nav-
igation time compared to a baseline approach using classical
reachability inversion. The conducted run-time analysis in a
dynamic environment shows that our method can integrate new
sensor data online to update both navigation and manipulation
related costs. Future work includes more refined and reactive
whole-body control in which the base placement generated by
our approach can serve as a prior to overcome local minima.
We will also integrate success and failure prediction to make
our system more robust.
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