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Deep Episodic Memory:
Encoding, Recalling, and Predicting Episodic

Experiences for Robot Action Execution
Jonas Rothfuss∗†, Fabio Ferreira∗†, Eren Erdal Aksoy ‡, You Zhou† and Tamim Asfour†

Abstract—We present a novel deep neural network architecture
for representing robot experiences in an episodic-like memory
which facilitates encoding, recalling, and predicting action expe-
riences. Our proposed unsupervised deep episodic memory model
1) encodes observed actions in a latent vector space and, based on
this latent encoding, 2) infers most similar episodes previously
experienced, 3) reconstructs original episodes, and 4) predicts
future frames in an end-to-end fashion. Results show that con-
ceptually similar actions are mapped into the same region of the
latent vector space. Based on these results, we introduce an action
matching and retrieval mechanism, benchmark its performance
on two large-scale action datasets, 20BN-something-something
and ActivityNet and evaluate its generalization capability in a
real-world scenario on a humanoid robot.

Index Terms—Learning and Adaptive Systems, Visual Learn-
ing, Deep Learning in Robotics and Automation

I. INTRODUCTION

HUMANS are ingenious: We have unique abilities to
predict the consequences of observed actions, remember

the most relevant experiences from the past, and transfer
knowledge from previous observations in order to adapt to
novel situations. The episodic memory which encodes con-
textual, spatial and temporal experiences during development
plays a vital role to introduce such cognitive abilities in
humans.

A core challenge in cognitive robotics is compact and
generalizable mechanism which allow for encoding, storing
and retrieving spatio-temporal patterns of visual observations.
Such mechanisms would enable robots to build a memory
system, allowing them to efficiently store gained knowledge
from past experiences and both recalling and applying such
knowledge in new situations.

Inspired by infants that learn by observing and memorizing
what adults do in the same visual setting, we investigate
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Fig. 1: The ARMAR-IIIa humanoid robot, see [1], recalling
previous visual episodes in a kitchen scene.

in this paper how to extend cognitive abilities of robots to
autonomously infer the most probable behavior and ultimately
adapt it to the current scene. Considering the situation of the
humanoid robot ARMAR-IIIa standing in front of a table with
a juice carton (see Fig. 1) one can ask what the most suitable
action is and how it would best be performed.

To achieve this goal, we introduce a novel deep neural
network architecture for encoding, storing, and recalling past
action experiences in an episodic memory-like manner. The
proposed deep network encodes observed action episodes in
a lower-dimensional latent space. Such a formulation in the
latent space allows robots to store visual experiences, compare
them based on their conceptual similarity and retrieve the most
similar episodes to the query scene or action. Further, the same
network leads to predict and generate the next possible frames
of a currently observed action.

To the best of our knowledge, this is the first study
introducing that vision-based cognitive abilities concerning
action representing, storing, memorizing, and predicting can
be achieved in a single coherent framework. We hypothesize
that latent subsymbolic encodings that our network generates
from visual observations are rich and descriptive enough to be
compared with those collected from previously experienced
episodes. In this way, ARMAR-IIIa can trace all previous
observations and select the most similar episode (e. g. “pushing
the juice" or “grasping the juice") in the latent space. The
robot can further generate similar behavior by adapting to new
situations based on memorized action representations.

Contribution: (1) We implement a new deep network to
encode action frames into a low-dimensional latent vector
space. (2) Such a vector representation is used to reconstruct
the action frames in an auto-encoder manner. (3) We show that
the same latent vectors can also be employed to predict future
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action frames. (4) We introduce a mechanism for matching
and retrieving visual episodes and provide an evaluation of
the proposed method on two action datasets. (5) Finally, we
demonstrate how this meachanism can facilitate case-based
reasoning for robotic object manipulation in an unstructured
real-world scenario.

II. RELATED WORK

We discuss related work from two relevant perspectives: the
role of episodic memories in cognitive architectures and action
understanding based on deep learning approaches.

A. Episodic Memory and Cognitive Architectures

In contrast to working memory where the information is
temporarily stored for a finite length of time, the long-term
memory holds the innate knowledge that enables operation of
the system and facilitates learning. The episodic memory, con-
sidered as a part of the long-term memory, persists instances of
past experiences which can be retrieved to support planning
and inference [2]. Hereby, the persisted experiences can be
represented in manifold ways.

Reinforcement learning based architectures implement
memories to store and retrieve action episodes [3], [4]. A
different approach is to persist instances of the working
memory that were involved in solving a specific problem
and subsequently retrieve previous solutions from the episodic
memory. Thereby, planning can be enhanced and even fa-
cilitate one-shot learning capabilities [5]–[9]. Predominantly,
instances stored in the episodic memory are symbolic high-
level representations [7], [10]. When restricted to a specific
context, symbolic representations and pre-specified perceptual
instances stored in an episodic memory can indeed be a
powerful approach for enhancing the reasoning capabilities of
a cognitive system, as shown in Soar [5]. However, most of
the described approaches are customized to a specific problem
domain and rely on pre-defined, problem specific representa-
tions [6], [10]. In complex real world scenarios transferring
and generalizing knowledge persisted in the episodic memory
is very limited when pre-defined symbolic representations
are used. Accounting for nuances and fuzziness may require
interpolation between concepts, demanding more flexibility
than traditional declarative memory concepts. Our proposed
episodic memory, on the other hand, derives subsymbolic
representation of actions in a data driven manner and, hence,
requires no pre-defined information.

An approach towards an episodic-like memory of video
scenes, based on subsymbolic representations, uses Fisher
Vectors of convolutional neural network (CNN) percepts to
generate encodings of temporal video segments [11]. Although
the approach is able to match conceptually related video seg-
ments, it is not possible to reconstruct perceptual information
from the Fisher Vector representations.

B. Action Understanding with Deep Neural Nets

Many deep neural network based approaches to understand
human action videos combine CNNs and recurrent neural

networks (RNNs) [12]–[14]. CNNs capture spatial information
in each video frame and aggregate it into a higher-level
representation, which is then fed through a Long Short-
Term Memory (LSTM) that captures temporal information
throughout a sequence of frames. Instead of stacking an
LSTM on top of a CNN, Shi et al. [15] combine the ideas
of spatial weight sharing through convolution and temporal
weight sharing through recurrence into a new model called
convolutional LSTMs (convLSTM).

Overall, there are three main approaches with regard to deep
learning based action understanding: 1) Supervised learning on
activity recognition corpora [16]–[18], 2) Unsupervised video
frame prediction [19]–[22] and 3) Unsupervised prediction of
visual representations [23].

Aside from human action recognition, the lack of com-
prehensively labeled video datasets makes supervised training
challenging. Another approach towards learning to understand
videos is the future frame prediction. Given a sequence of
video frames, a deep neural network is trained to predict the
next frame(s) in a video. To successfully predict future video
frames, the network is forced to generate latent representations
of the inherent structure and dynamics of videos.

Srivastava et al. [14] present a composite model consisting
of three LSTM networks, conceptually combining a sequence-
to-sequence autoencoder with future frame prediction. They
show that the composite architecture outperforms both a pure
autoencoder and future frame prediction model. However,
since input and output space are CNN features instead of raw
video frames, their model is not able to recover the video
frames from the latent representation. Our approach is inspired
by the composite encoder-decoder architecture but overcomes
the described drawback by being able to encode raw frames
in an end-to-end fashion and also reconstruct the raw frame
sequence from the latent representation.

Subsequent work aims to predict the pixel changes between
the current and the next frame [20]–[22] instead of regressing
directly into the RGB-pixel space. While such models are
shown to be useful for semantic segmentation [21], planning
robot motion [24] or generating videos [25], they do not create
a representation of an episode that can later be reconstructed.

III. METHOD

A. The Neural Network Model
In this section, we describe our neural network model

and the methods applied for comparing and matching visual
experiences in the latent space. The network architecture is
illustrated in Fig. 2.

We were inspired by the composite encoder-decoder ar-
chitecture introduced in [14]. Our proposed model concep-
tually combines an autoencoder with future frame prediction
and consists of one encoder and two decoders (see Fig. 2).
Different from the model proposed by [14], we utilize con-
volutional LSTM cells to capture both spatial and temporal
information. In our model, a visual experience is represented
as a sequence of consecutive video frames X = Xr‖Xp =
x1, .., xk‖xk+1, ..., xn, wherein Xr is the first part of the frame
sequence until frame xk and Xp represents the remaining n−k
frames.
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Fig. 2: Structure of the proposed composite encoder-decoder network. It represents the shape of an unrolled network over
multiple time steps. The encoder E receives multiple video frames as input and maps them into a latent vector space. The
resulting vector representation V (highlighted in red) is forwarded to the two decoder networks. The first decoder (Dr) is
trained to reconstruct the video frames that were provided to the encoder while the second decoder (Dp) attempts to predict
the future frames. The dashed box on the left depicts the layers of the encoder network. The label inside each layer denotes
the kernel size of the convolutional layer or the number of hidden units of the fully connected (fc) layer, respectively.

The encoder network E processes the sequence Xr =
x1, ..., xk and projects it into a latent vector space, yielding a
representation of the given frame sequence as a single latent
vector V as:

V = E(Xr) . (1)

Subsequently, the vector V , indicated in red in Fig. 2,
is forwarded to both decoders independently which receive
the latent vector representation as input and construct a
sequence of video frames in return. The first decoder, i. e.
the reconstruction-decoder Dr, attempts to recover the frames
Xr = x1, .., xk that were initially provided to the encoder.
Therefore, Dr is trained to output a frame sequence Yr =
y1, ..., yk that matches Xr, such that

Dr(V ) = Yr = y1, ..., yk . (2)

The second decoder, the so-called prediction-decoder Dp,
attempts to predict the future frames Yp = yk+1, ..., yn as,

Dp(V ) = Yp = yk+1, ..., yn . (3)

During training, Xp is employed as ground truth for assessing
how good the predictions Yp are and for also computing
the error. It is important to note that for determining the
reconstruction and prediction error during training, both image
sequences Xr and Xp are used. However, during test time,
only Xr is fed into the encoder network.

The core idea of the proposed network structure rests upon
the latent space vector V being the only linkage between
E and both Dr and Dp. The two decoder networks solely
rely on V as their only source of information to reconstruct
a given scene and predict future frames. To obtain robust
reconstructions and future frame predictions, the encoder is

forced to compress the entire video frame sequence Xr into
a comparably low-dimensional latent representation V and,
at the same time, to preserve as much relevant information
as possible. E and Dr together constitute an autoencoder
architecture, requiring that relevant information is preserved
throughout the network. However, this only involves remem-
bering the frame sequence Xr but not necessarily requires
to capture abstract concepts such as temporal dynamics of
objects or actors. By adding the frame predictor which has to
extrapolate motions into the future, the encoder must capture
higher-level concepts like the scene dynamics in Xr and
embed abstract concepts such as trajectories in V so that Dp

can properly infer possible future frames.

The input and output frames xi and yi used in this work
have a resolution of 128× 128 pixels and 3 color channels.

Since the main task of the network is to capture spatio-
temporal concepts, we make use of convolutional LSTM cells
[15]. The encoder network E is comprised of a stack of
convolution LSTM and normal convolution layers (henceforth
referred to as convLSTM and conv layers) in alternating order
(see Fig. 2). While the conv layers are operated with a stride
of 2 in order to reduce the spatial size of the feature maps,
the convLSTM layers preserve the spatial size and forward
information to the next time step through their hidden state and
cell state. After the alternating series of conv and convLSTM
layers in the encoder, we add a fully connected layer, followed
by a fully connected LSTM layer (fc LSTM) to the stack.

With the fc LSTM cell being the top layer of E and as
LSTM cell connected over time, its cell state ci and hidden
state hi represent the video frame sequence until the current
time step i. Once the entire frame sequence Xr = x1, ..., xk
is processed by the encoder, the hidden state hk and cell
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state ck of the fc LSTM cell at time step k are extracted and
concatenated, yielding the latent vector V = hk‖ck.

Both decoders have the inverted structure of the encoder,
meaning that transposed convolution layers are used to in-
crease the spatial size of the feature maps throughout the de-
coding layers until the full video frame resolution of 128×128
is recovered.

To compute the error L during the network training, we use
a linear combination of image reconstruction loss (Lmse) and
gradient difference loss (Lgd) [19] functions as follows

L = (1− η) Lmse + η Lgd , (4)

where we set η = 0.4 to trade off between the two loss
functions

Lmse =
1

n

n∑
i=1

‖yi − xi‖22 , and (5)

Lgd =
1

n

n∑
i=1

∑
u,v

‖|xiu,v − xiu−1,v | − |yiu,v − yiu−1,v |‖
2
2+

‖|xiu,v−1 − xiu,v | − |yiu,v−1 − yiu,v |‖
2
2 .

(6)

The loss is computed over all ground truth frames xi in
X = Xr‖Xp and the output frames yi in Y = Yr‖Yp which
are produced by Dr and Dp. The reconstruction loss Lmse

compares the generated images yi and ground truth images xi
in a pixel wise manner. When solely trained with Lmse loss,
neural network models that regress on images are prone to
linear blurring and unstable to small image deformations [12].
In contrast, the Lgd loss compares the horizontal and vertical
image gradients of xi and yi, thereby penalizing blurriness
and enforcing sharper edges [19].

The described neural network is trained with mini-batch gra-
dient decent using the adaptive learning rate method ADAM
[26] in conjunction with an exponentially decaying learning
rate schedule. After each network layer except the last encoder
and decoder layer (since these are the output layers), we
use layer normalization [27] and dropout with a dropout rate
between 10% and 20%. In order to force the encoder to use the
entire latent vector space and produce distinct representations
V , we add Gaussian noise N(0, σ) with σ = 0.1 to the
latent vector V during the training, before forwarding V to
the decoder networks. In all of our experiments, the vector
V has a dimension of 2000. The specifications of the neural
network model have been determined with heuristic hyper-
parameter search using train/test-splits of the original training
data of the two datasets. The source code and experimental
data are publicly available on the supplementary web page1.

B. Matching Visual Experiences in the Latent Space

One of the central contributions of our work is to com-
pare visual experiences based on their conceptual similarities
encoded in the latent space. Given a new visual experience,
we can retrieve the most similar episodes from the episodic
memory that holds the hidden representations Vi of episodes
experienced in the past. We use the cosine similarity to
measure the similarity of latent vectors. To find the best

1h2t-projects.webarchiv.kit.edu/projects/episodicmemory

matches in the latent space, we compute the cosine similarity
between the query representation Vq and each of the Vi in
the memory. Finally, the n memory instances corresponding
to the Vi with the highest cosine similarity are retrieved from
the memory.

IV. EXPERIMENTAL EVALUATION

We evaluate the hypothesis that the encoder-decoder net-
work creates latent representations that embed the inherent
dynamics and concepts of a provided visual episode.

For this purpose, we train the neural network in an un-
supervised fashion on two video datasets and analyze the
similarity structure within the latent space. We assess the
model’s abilities to reconstruct the past episode from the
latent representation and predict future frames. Subsequently,
we benchmark the proposed matching / retrieval mechanism
against other state-of-the art approaches and test its robustness
in a robotic application.

A. Datasets
For the evaluation of our methods we use the large-scale

labeled video datasets ActivityNet [17] and 20BN-something-
something (from now on referred to as 20BN) [28]. We favored
these two datasets over other popular datasets like UCF-101
[16] and HMDB-51 [29] since our emphasis is reasoning,
planning and executing of robotic tasks in indoor household
environments of which the latter two datasets contain fewer
relevant scenes.

The ActivityNet dataset [17], a benchmarking corpus for
human activity understanding, consists of 10, 024 training and
4926 validation video snippets collected from YouTube. It
is organized in 93 higher level categories that comprise 203
different activity classes involving activities such as household
work, sports and personal care.

While ActivityNet targets higher-level concepts like “vacu-
uming the floor" and “shoveling snow" that embed semantic
meaning, the 20BN dataset focuses on detailed physical prop-
erties of actions and scenes. It contains 174 classes such as
“Pushing something from left to right" and “Putting something
into something". The core challenge of this novel dataset is
that the type of involved objects as well as the background
setting of a given scene only play a neglectable role. Rather
than recognizing familiar items and scene backgrounds, the
neural network needs to understand the physical composition
and motion within the video clips. The dataset consists of
86, 017 training and 11, 522 validation videos in total.

B. Training
We train the neural network on the respective training split

of the ActivityNet (actNet) and 20BN dataset. Both models
are trained with n = 10 frames per video (selected equally
spaced). The first k = 5 frames are fed into the encoder E to
be reconstructed by Dr while the last five frames are employed
as ground truth for the future frame predictor Dp.

The choice to only use 10 frames, sampled equally spaced,
during training results from hardware constraints (i.e. GPU
RAM) while under these constraints attempting to maximize
the video length that can be captured.
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C. Conceptual Similarity and Proximity in the Latent Space

To examine our hypothesis that conceptually similar videos
are mapped into the same region of the latent space, we
compute the pairwise cosine similarities (see section III-B)
of latent vectors. To measure the conceptual similarity, we
use the class labels provided in the datasets as the proxy
value and assume that videos belonging to the same class
are conceptually similar. We generate the latent representation
for each video in the validation split of both ActivityNet and
20BN datasets and subsequently compute all pairwise cosine
similarities between the latent vectors.

In Fig. 3, the results are visualized as similarity matrices
where each row and column of a matrix corresponds to
a class label and each entry represents the mean pairwise
cosine similarity between the latent vectors belonging to the
respective classes. The class labels are arranged horizontally
and vertically in the same order, ensuring that the diagonal
elements of the matrix depict intra-class similarities and off-
diagonals represent inter-class similarities. Fig. 3 shows that
in each matrix the intra-class similarity (diagonal elements)
is considerably higher than the inter-class similarity. This is a
clear indication that conceptual similarity of videos is reflected
by the proximity of their vector representations in the latent
space. Consequently, our proposed model captures high-level
action concepts within two different datasets, although the
model is trained in an unsupervised fashion and thus has never
seen any class labels.

Since the latent representation must embed all information
for the decoders necessary to reconstruct and predict frames,
it may also encode details (e. g. colors and shapes) in the
background that are irrelevant for describing actions. To com-
pile the information embedded in the latent representation to
a subset that is more relevant for optimally separating the
different classes within the latent space, we apply principal
component analysis (PCA) on the mean latent vectors of each
class. We assume that less important features are identically
distributed in all the classes and thus share approximately
the same mean value when averaged over the class. Hence,
transforming the latent space towards the principal components
computed on the covariance matrix of the mean vectors
emphasizes relevant features and neutralizes less important
features. Fig. 3b and 3d show that transforming the latent
representations with PCA leads to a better distribution of latent
vectors, pushing conceptually similar representations closer
together while keeping representations of different classes
farther apart.

D. Frame Reconstruction and Future Frame Prediction

By reconstructing video frames and predicting upcoming
frames, the network resembles episodic memory-like capabil-
ities. Fig. 4 depicts generated video frame sequences from
both ActivityNet and 20BN for a qualitative assessment. To
evaluate the quality of the reconstructed and predicted frames,
we compute the Peak-Signal-to-Noise-Ratio (PSNR) between
the original frames X and generated frames Y as proposed in
[19]. Fig. 5 depicts the PSNR for each of the 5 reconstructed
and predicted frames, averaged frame-wise over the entire

(a) latent vector V (b) 200 PCA components

(c) latent vector V (d) 200 PCA components

Fig. 3: Cosine similarity matrices for ActivityNet (top) (93×
93) and 20BN (bottom) (174×174). PCA (right column) yields
a more favorable distribution in the latent space. The figures
are available in full resolution and with class labels on our
website1.

respective validation samples of both datasets. We additionally
compare our results to a simple baseline by computing the
PSNR between the ground truth frames and the mean of
the input frames. Results indicate that the reconstruction
quality is significantly higher than the quality of the predicted
frames. Also, the PSNR is roughly constant throughout the
reconstructed frames whereas for the predicted future frames it
decreases over time. The expected decline in prediction quality
is very much due to the increase in the uncertainty about
the future over successive time steps. Moreover, the frame
prediction results in Fig. 4 indicate that the decline in PSNR
is mainly caused by the increase in blurriness while e.g. the
object motions are still extrapolated correctly into the future.
Hence, this successive increase in blurriness predominantly
constitutes a general limitation of regression into the pixel
space and gives little to no indication about the semantic
richness of the latent representations.

E. Matching and Retrieving Visual Episodes

To investigate the matching and retrieval of visual episodes
introduced in section III-B, we compare our approach to
standard baselines as well as state-of-the-art action descriptors.
The benchmarking comprises Fisher vector encodings of CNN,
SIFT and STIP features as well as LSTM encodings to
represent and match visual experiences.

As proposed in [11], we compute Fisher Vectors based
on GMMs in order to create a visual vocabulary from CNN
features of the video frames. In particular, we select 5 equidis-
tant frames from the videos and compute VGG-fc1 [30] as
well as ResNet-50 [31] features. Furthermore, we compare
our approach against the composite LSTM network introduced
in [14]. We train their LSTM network using VGG-FC1 and
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Original

reconstruction future prediction

Generated

Original

Generated

Fig. 4: Frame reconstruction and future frame prediction of our model compared to the original frame sequence. Top: Validation
sample from ActivityNet. Bottom: Validation sample (pulling sth. from right to left) from 20BN.

Fig. 5: Peak-Signal-to-Noise-Ratio (PSNR) for each of the 5
reconstructed (blue) and predicted (green) frames generated by
the 20BN and actNet model averaged over the entire validation
dataset. The shaded regions depict the corresponding standard
deviation. Additionally using the channel-wise mean of input
frames as reconstruction/prediction is reported as simple base-
line (red/orange).
ResNet-50 features. In all our experiments we used the default
parameters coming with the publicly available source codes.

To quantitatively benchmark our approach against the base-
lines, we phrase the matching and retrieval of memorized
episodes as a document retrieval problem. Thereby, we assume
that a retrieved episode is only relevant if it originates from the
same action category as the query episode. For evaluating the
performance of retrieving relevant visual episodes, we report
the precision of the first match and the mean average precision
(mAP). Since the setting is purely unsupervised, the precisions
reported in this context are not to be confused with precisions
for a classification task. Overall, we use the ActivityNet and
the 20BN dataset to train and evaluate the different methods.
For computing the performance metrics, we split the validation
set of the respective dataset into 5 shuffled folds. In each fold,
80% of the videos are used as memory whereas the remaining
20% are used to query the memory. The results illustrated in
Table I are averaged over the 5 folds.

The evaluations were conducted with various numbers of
GMM components and two different distance metrics (i.e.

Euclidean and cosine) for matching the video encodings. We
want to emphasize that we always report the best results out
of these experimental evaluations.

As the results in Table I indicate, representations of conven-
tional descriptors such as SIFT and STIP seemingly lack the
representational capacity to capture abstract spatio-temporal
concepts in videos such as action. In contrast, using CNN
features yields significantly higher average matching precision.
Our proposed method has the highest precision values and
notably outperforms state of the art approaches with substan-
tially deeper networks such as ResNet-50. For completeness,
Table I also reports the matching precisions with 200 PCA
components. Similar to the observations discussed in section
IV-C, PCA further improves the matching. The precisions
on ActivityNet are substantially higher since it has a) fewer
categories than the 20BN dataset and b) richer features among
the categories.

In addition to the quantitative benchmark, we qualitatively
examined the matching and retrieval results. The matching
appears to be conceptually consistent, predominantly yielding
visual episodes with closely related action types and settings.
Fig 6 (a) shows sample matching results of our approach on
the 20BN dataset. In most cases of categorical mismatches,
the retrieved episode is closely related to the action type of
the query episode, e.g. "pushing sth off of sth" and "moving
sth away of sth" or "lifting sth up" and "moving sth away
from sth". However, we also observe that the background color
biases the matching results, meaning that videos with dark
background tend to be matched to videos in memory of the
same kind. The same applies to bright videos respectively.

All in all, our proposed model achieves the best matching
results among the compared approaches. The qualitative study
shows that, beyond the strict categorical setting imposed in the
baseline comparison, our mechanism predominantly produces
consistent matches. It is also important to note that our
approach is the only one that can reconstruct the visual episode
given the encoding.

F. Robot Manipulation Learned From Episodic Memory

Results in the previous section indicate that given a query
action, our proposed network provides a robot with the ability
to remember similar scenarios from a large video corpora. In
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Fig. 6: The proposed matching and retrieval mechanism evaluated on different visual episodes of object manipulations. The
figure depicts three exemplary query episodes and the corresponding 3 closest matches in the latent space of our proposed
network. The latent representations are generated by the 20BN model. While (a) shows a query on the 20BN dataset, (b) and
(c) comprise human demonstrations for the ARMAR-IIIa robot (see section IV-F ).

TABLE I: Benchmark results showing the matching and re-
trieving performance of our approach against the baselines. We
report the precision for the first match and the mean average
precision (mAP) for retrieving the 3 closest matches. Fisher
Vectors are abbreviated to FV.

ActivityNet (in %) 20BN-sth.-sth. (in %)

Model and Features Precision mAP Precision mAP

SIFT FV 5.27 3.76 1.05 0.64
STIP FV [32] 5.47 3.71 3.37 2.67
ResNet-50 FV [11] 32.31 23.23 6.08 3.98
VGG-16 FV [11] 24.30 18.19 5.56 3.62
ResNet-50 LSTM [14] 36.29 26.32 10.08 7.20
VGG-16 LSTM [14] 17.18 12.16 4.51 2.82
ours (no PCA) 44.31 26.93 11.63 8.12

ours with PCA (200) 45.55 28.18 11.81 8.32

the following, we show how our episodic memory approach
can facilitate case-based reasoning for robot manipulation in
unstructured real world environments.

For this purpose, we record 120 visual episodes in which
a human subject is demonstrating to our humanoid robot
ARMAR-IIIa [1] how to perform 10 different manipulation
actions such as “pushing two objects closer to each other"
and “putting something behind something" (see Fig. 6 (b-
c)). The reason of introducing this new dataset is twofold:
First, we attempt to evaluate the scalability of our approach
to new datasets that have much less training data. Second,
for the purpose of action execution we require the depth cue
which is missing in the ActivityNet and 20BN datasets. We
store 100 of our new visual episodes to form the memory,
whereas the remaining 20 episodes are introduced as queries to
test the matching and retrieval mechanism with ARMAR-IIIa.
The visual episodes are fed through the encoder of the
trained 20BN model, thereby receiving its respective latent
representations. The cosine similarity in the latent space is then
computed based on the first 50 principal components of the
latent representations (see section III-B). Fig. 6 (b-c) illustrate
two exemplary query episodes and the corresponding 3 closest
matches in the latent space from our recordings.

So far, the matching and retrieval mechanism is evaluated
on manipulation action videos where spatio-temporal cues are
implicitly embedded. We further investigate whether static
scene frames can trigger recalling of past episodes, which

is an even harder problem since effectively only one frame
is given as a cue. This gives a high chance to robots to
autonomously predict and even execute an action that can
possibly be performed in the observed scene. Matching results
for static scene queries can be viewed on our supplementary
website1 We conduct a pilot study to explore the use of our
method.

Fig. 7 illustrates a scenario where the robot ARMAR-IIIa is
observing a scene with a sponge on the table. Acquired images
of this static scene are sent to our matching and retrieval
mechanism which returns the matched episode where a subject
is demonstrating “pushing a green cup". Next, we apply a real-
time object detector [33] to detect and track all objects in the
recalled episode. This process yields the extracted pushing
trajectory that the subject is following. The tracked motion
is then learned by dynamic movement primitives [34] to be
further processed by the robot in order to execute the same
pushing motion on the perceived sponge. Fig. 7 depicts sample
frames from the best matched episode and detected objects
together with the computed motion profile and snapshots from
the robot execution of the recalled pushing action. See the
supplementary movie showing the entire robot execution.

This experiment clearly supports our hypothesis that the
proposed network model can help robots autonomously trace
previous observations and select the one that matches best
to the currently observed scene even without necessarily
requiring any temporal cue. The robot can transfer relevant
knowledge, e. g. the motion profile, from previous experiences
to further apply the remembered action to novel objects in
the scene. Learning comparable vision triggered behaviors

Fig. 7: Robot execution of a matched pushing action.
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through reinforcement learning would require thousands of tri-
als, while such a case-based reasoning approach only requires
one memory-instance of a similar action. Hence, these findings
play a vital role in cognitive robotics to infer possible actions,
reason about the action consequences, and even generate
actions by transferring knowledge from the past experiences
in a data efficient manner.

V. CONCLUSION

We proposed a deep neural network implementing an
episodic memory. Given a set of training data, the proposed
network first generates subsymbolic representation of action
episodes. Such a latent encoding can be used to distinguish
actions, reconstruct memorized episodes, and predict future
frames based on the spatio-temporal features extracted by
the deep architecture. We show that conceptual similarity of
videos is reflected by the proximity of their vector represen-
tation in the latent space. Using this property of the latent
space, we introduce a matching and retrieval mechanism,
which enables the recollection of previously experienced vi-
sual episodes. Benchmarking our proposed mechanism against
a variety of action descriptors, we show that our model outper-
forms other state-of-the-art approaches in terms of matching
precision. We conduct various experiments showing that the
proposed framework can help extending the cognitive abilities
of a humanoid robot such as action encoding, storing, memo-
rizing, and predicting.

Since the memory instances in our approach are purely
visual, the adaptation of stored episodes on a robot to a
new scenario is not straightforward. For instance, our robot
manipulation pilot study requires an auxiliary object detector
for trajectory extraction. In future work it would be desirable
to embed relevant action information such as trajectories into
the latent representation and directly use them for action
adaptation and execution. Another limitation of our approach
is the observed background bias. To make the model less
sensitive to different backgrounds it might be promising to
avoid pixel-level predictions and instead employ segmentation
masks as reconstruction targets.

To the best of our knowledge, this is the first comprehensive
study that attempts to encode visual experiences not only for
matching and retrieving purposes but also for prediction and
reconstruction in a longer time scale. Comparable work such
as [11], [14] can only achieve unsupervised action matching
without reconstructing the memorized video episodes. Video
prediction models, introduced in [21], [24], can only predict a
single future frame at a time. Thus, the mentioned approaches
lack key features to resemble an episodic memory. Our model
overcomes the architectural drawback of [14] and comprises
the full episodic-memory capabilities described above. Also,
we are not aware of any previous work that extensively applies
an episodic memory-like framework to such large and complex
datasets.
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