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Abstract—This paper reports on a new approach for segmen-
tation and learning of new, unknown objects with a humanoid
robot. No prior knowledge about the objects or the environment is
needed. The only necessary assumptions are firstly, that the object
has a (partly) smooth surface that contains some distinctive visual
features and secondly, that the object moves as a rigid body. The
robot uses both its visual and manipulative capabilities to segment
and learn unknown objects in unknown environments. The
segmentation algorithm is based on pushing hypothetical objects
by the robot, which provides a sufficient amount of information
to distinguish the object from the background. In the case of a
successful segmentation, additional features are associated with
the object over several pushing-and-verification iterations. The
accumulated features are used to learn the appearance of the
object from multiple viewing directions. We show that the learned
model, in combination with the proposed segmentation process,
allows robust object recognition in cluttered scenes.

I. INTRODUCTION

Autonomous learning of the visual appearance of unknown
objects from camera images requires that the robot is able
to detect and segment new objects in the acquired images. If
no prior knowledge about the object and the environment is
available, it is in general very difficult to segment it accurately
and reliably based on visual information only. Although hu-
mans are usually very successful at this task, it is not easy
to replicate the equivalent ability in artificial (passive) vision
systems [1][2]. The main reason for this is that no clear and
comprehensive definition for the concept “object” has been
found so far. For each principle that could be used to define
the concept of object, e. g. closure, connectedness, etc., coun-
terexamples can be found. Thus in general a sufficient criterion
to decide if some part of an observed scene constitutes a part
of an object is not known.

Even though simple principles are not sufficient to define the
concept of object, they can give hints to generate hypotheses
about the existence of objects. The generated hypotheses must
then be tested using stronger criteria. When a robot is not
constrained to passively observing a scene, but can use its
manipulation abilities to physically interact with the scene,
it can observe the outcome of its own actions to provide an
additional source of information. Like humans, the robot can
use its (partial) control over the objects and the resulting visual
input to observe - and learn about - the effects of its actions
[3]. For example, moving an object can help to extract its
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boundaries [4]. In [5], the kinematic properties of an unknown
articulated object are obtained by moving its parts.

If the robot can grasp an object it is interested in, it can
move it in a controlled way. In this case, the object can be
segmented reliably and its visual appearance from multiple
viewing directions can be learned [6][7]. But grasping of a
completely unknown, unsegmented object is in general very
difficult, and in some cases it may be impossible anyway
because of the size or shape of the object. A simpler alternative
is to just push the object. This will result in rather uncontrolled
object movements, but has been shown to be sufficient to
acquire affordances of unknown objects [3].

In our previous work [8] we showed that pushing can be
useful for object segmentation. Here we extend this initial
work by providing a methodology to discover more candidate
surfaces that give hints about the existence of the object. More
importantly, we developed a new approach that allows for
reliable feature accumulation across a number of different
snapshots. Based on these results we developed an object
recognition system, which supports both autonomous object
learning and object recognition. The developed system has
been tested in a number of experiments that involved both
object learning and recognition.

II. OVERVIEW

Our method for learning new objects consists of the follow-
ing four procedures:

o Generation of object hypotheses: Visual features that
seem to lie on a smooth surface patch are detected and
grouped together.

o Verification by pushing: The hypothetical object is
pushed. The resulting feature motion allows to verify
which features belong to the object. Additional features
are added if they move concurrently.

o Feature accumulation: The above step can be repeated
arbitrarily many times to accumulate object features from
multiple viewpoints.

o Learning of a classifier: Since it is often difficult to
reliably extract and track the same feature point across
multiple views, we based our recognition system on a
bag-of-features approach, which does not require that all
features are tracked and matched across different views.
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Fig. 1. The Karlsruhe Humanoid Head [9], which is equipped with two pairs
of stereo cameras.

III. HYPOTHESIS GENERATION

The first step of our approach for segmenting and learning
unknown objects is to form hypotheses about possible objects.
They are generated using only the visual information that the
robot perceives from its cameras (see Fig. 1). As pointed out
in the introduction, the visual information may be misleading,
and therefore these hypotheses can only be a starting point and
must later be examined further by pushing the hypothetical
object and observing the induced feature motion.

The intended scenario for our system is a household envi-
ronment. Most objects in such environments consist of planar
or curved surfaces. Hence it is reasonable to look for planar or
cylindrical surface patches, which are mathematically simple
to describe, to generate hypothesis about the existence of the
objects.

We apply the Harris corner detector [10] to choose interest
points that can be used both for hypothesis generation and
object learning and recognition. The points determined by this
detector are usually distinctive enough to allow for reliable
matching in the two images from the stereo cameras. We can
calculate the position of the corresponding 3-D point using
the calibration of the camera pair [11]. The calibration also
allows to use epipolar geometry which reduces the matching
problem to a search along the epipolar line. There may still
be some incorrect points due to mismatches, but they are too
few to affect the hypothesis generation.

Given a set of 3-D points, our goal is to find planes and
cylinders that contain as many of these points as possible. For
each surface patch, we have to expect that only a rather small
part of all features belongs to it. To enable the detection of
surface patches among many outliers, we apply the RANSAC
algorithm [12], which enables us to find the parameters
defining the surface patch that contains maximal subsets of
feature points belonging to the parametric surfaces. RANSAC
achieves this by randomly selecting a minimal number of
points, which is sufficient to calculate the parameters of the
sought for surface, and then counting how many points of the

whole set lie within a tolerance of the defined surface.

The plane or cylinder containing the largest number of
points is added to the list of hypotheses and its points are
removed from the set. RANSAC can then be run again on the
remaining points. This is repeated until no surface with more
than a minimal number of points can be found. The specific
approaches to finding planes and cylinders using RANSAC
are described in more detail in the following two subsections.

A. Plane detection

A 3-D plane is defined by the equation ax+by+cz+d =0
and contains all points (z,y, z) that fulfill this equation. The
vector (a, b, c) is the surface normal. If it has unit length, then
the above equation gives the distance of the point (z,y, z)
to the plane (a, b, c,d). A plane is uniquely defined by three
points that are not collinear. With this in mind, the implemen-
tation of RANSAC for planes is straightforward:

e repeat IV, times:

— select 3 different points at random

— calculate the plane parameters

— check for each point if it lies within tolerance ¢, of
the plane, count the inliers

o return the parameters of the plane with maximal number
of inliers

It can occur that a hypothesis extends to two or more objects
which by chance contain points lying in the same plane. To
avoid misled attempts of pushing in this case, we group the
features of each plane using X-means clustering [13], which
is a k-means based algorithm that also estimates the number
of clusters. Single points that are far away from the cluster
centers are discarded, because they are with high probability
outliers. Sometimes a hypothesis containing a large object is
accidentally divided by the above clustering process. However,
this is not a serious problem for our system because the initial
hypothesis will be expanded after the push (as other feature
points on the object will move in unison with the initial
hypothesis).

B. Cylinder detection

Finding cylinders in a point cloud is more complicated
because the parameters of a cylinder can not be determined
so easily from a few points on its surface. We applied the
algorithm proposed in [14], which uses a 2-stage RANSAC
approach, first estimating the cylinder axis and then the
appropriate radius and offset from the origin for that axis.

In the first stage, the algorithm uses local surface normals to
find promising candidates for possible cylinder axes. To this
end, for each 3-D point a local surface normal is estimated
using the point and its nearest neighbours. The set of normal-
ized surface normals lies on the unit sphere and is called the
Gaussian image of the points, as it is the result of applying the
Gaussian map operation to the set of points. Points belonging
to an arbitrary cylinder are mapped to a great circle on the
Gaussian sphere. A great circle on the sphere is equivalent
to the intersection of this sphere with a plane which passes
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Fig. 2.

Hypotheses generation: The left image shows all detected Harris interest points, the other images display the generated hypotheses for each scene.

Usually, the hypotheses correspond to a textured region on an object’s surface. When objects are close to each other and points on their surfaces lie on a
common plane or cylinder, it may happen that these points are subsumed in one hypothesis.
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Hypotheses generation for cylindrical surfaces. The left image shows all Harris interest points, the central and right images show the generated

cylindrical hypotheses. Although the two objects in the central image do not have an exactly cylindrical shape, a large part of their surfaces can be captured

by the cylinder hypotheses.

through its origin. Therefore, we only need to find the plane
passing through the origin that contains the maximal number
of points on the Gaussian sphere. This problem is identical to
that of finding a plane, where one of the three sample points
is always the origin. The normal of the resulting plane is the
sought cylinder axis.

Once the cylinder axis has been detected, we still need
to find the radius of the cylinder and its offset from the
origin. This problem can be reduced to finding a 2-dimensional
circle: all points are projected onto the plane orthogonal to the
cylinder axis and we need to find a circle with the maximal
number of points lying on it. Three non-collinear 2-D points
(2;,y;) define a circle, its center coordinates (.., y.) are given
by

_ (=)@ + 7)) + (1 —y3) (@3 4+ 3) + (y2 — y1) (23 + 43)

c

26
_ (z3 — z2)(#? 4+ y) + (z1 — 23) (23 4+ ¥3) + (v2 — x1)(z3 4 v3)
Ye 26
where

d=z1(ys —y2) +x2(y1 — y3) +z3(y2 — v1)

and the radius is simply the distance of one of these points to
the center. Finding an optimal circle can therefore easily be
done by another application of RANSAC. Here we need to
consider only the points that contributed to the great circle on
the Gaussian sphere that defines the examined cylinder axis.

The radius of the resulting circle is the radius of the cylinder,
and the cylinder axis passes through the center of the circle.

When the number of points lying on a cylinder candidate is
being determined, only those points are accepted which would
lie on the side of the cylinder that is turned towards the camera.
To test if a point fulfills this criterion, we check if it lies on
the correct side of the plane spanned by the cylinder axis and
the vector that is orthogonal both to the cylinder axis and
the viewing direction of the camera. This turned out to be
very helpful for reducing the number of incorrect hypotheses
because sometimes objects are arranged in a way that their
sides form a half cylinder opened towards the camera. To
further reduce the number of false hypotheses, only cylinders
with a rather small radius are accepted, which again avoids the
“fusion” of several objects into one big cylindrical surface.

In every iteration of the outer RANSAC loop, a new possible
cylinder axis is determined. After a fixed number of iterations,
or when no new axis with more than a minimal support in
the Gaussian sphere can be found anymore, the parameters of
the cylinder with the maximal number of inliers are returned.
Just like in the case of planes, we next discard all points
that lie far away from the others to reduce the probability
that outliers are included. In our experiments, the clustering
of points belonging to one of the detected cylinders was not
necessary.
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IV. HYPOTHESIS VALIDATION BY PUSHING

Additional information need to be provided to verify or
discard the generated object hypotheses. By inducing the
object to move, visual features can be analyzed for coherent
motion, which is a very strong evidence for deciding if they
belong to the same object or not. Such information could
not be obtained by passive observation. The most common
assumption, which we also make, is that the object moves as
a rigid body. A more general model of motion would be, for
example, an articulated motion [5] or a deformable motion.

Inducing motion on the object, even if it is rather un-
controlled, resolves most of the ambiguities about object
segmentation. We use simple pushing movements to verify
the initial object hypotheses and to extend them to features
that move coherently with the initial features. The initial
hypotheses serve as a cue for promising points and directions
of pushing. An obvious choice for the hypothesis on which a
push is attempted is the one that contains the largest number
of features because a large number of features usually result
in a more robust estimation of object motion.

A necessary prerequisite for the estimation of feature point
motion is to be able to match the features before and after the
push. For its descriptiveness and robustness to small rotations,
we use SIFT descriptors [15] to find matches of the features
in the images before the push and after it. For all initial
features for which a corresponding feature is found, the new
3-D positions are calculated using stereo images.

Due to occlusions or too large rotations caused by the
induced object motion, some features may not be found again
after the push. There may also be mismatches, especially if
the object contains non-unique features. Again, RANSAC is a
good choice to get a robust estimation of the object motion.
The parameters of a transformation associated with the rigid
body motion can be obtained from three different pairs of
corresponding points before and after the push [16]. If x,
is the initial position of a point, then its new position x,, is
given by the transformation x,, = Rx,+t, where Risa 3x3
rotation matrix and t a translation vector.

After the object has been pushed, the initial hypothesis is
evaluated to confirm whether the hypothetic feature points
have moved as a rigid body or not. RANSAC is applied to
estimate the transformation with which most of the points of
the hypothesis concur. The norm of the translation vector t
and the angle of rotation ¢, which can be calculated from R,
give a measure for the amount of motion resulting from that
transformation. The hypothesis is considered confirmed if the
weighted sum of ||t|| and ¢ is above a threshold. In this case,
the features that moved coherently are considered validated
and those who did not are discarded. The hypothesis is ignored
if the estimated parameters suggest that the hypothetical
features did not move. If none of the generated hypotheses
moved, another attempt to push one of them is made. If at
least one of the hypotheses has moved, and it still contains
a sufficient number of features, we assume to have found an
object whose appearance needs to be learned.

V. OBJECT LEARNING AND RECOGNITION

To learn the appearance of the segmented object from mul-
tiple viewpoints, the object must be moved, e. g. by pushing,
several times. At every step, new points are added to the
hypothesis if they seem to belong to the object, and can be
verified after the next push. The accumulated set of all verified
points, as well as the set of only those verified points that
are visible at a given instant, are admissible candidates for
representing the appearance of the object. As we use SIFT
descriptors for feature matching between stereo image frames,
it is an obvious choice to use these features for describing
the object. However, it is possible to use any other desired
local descriptor at the locations of the confirmed points. Object
recognition based on SIFT descriptors, especially when their
spatial relationships are incorporated, has been shown to be
very successful and reliable [15][17]. Another possibility is
the “bag-of-features” approach [18]. Here a so-called “visual
vocabulary” is learned first by clustering a large number of
training features. When working with descriptors later, each
of them is assigned to the most similar “visual word”, i.e.
cluster center. A histogram of the occurrences of each visual
word on the object is calculated and stored in a database of his-
tograms. To recognize an object, its bag-of-features histogram
is calculated for the current, segmented image and matched to
the histograms in the database of known objects. We use the
bag-of-features approach to memorize the object appearances
from different viewpoints and, as we have several histograms
for each object, we can apply a k-nearest-neighbours decision
for recognition.

A. Object learning

The object needs to be pushed several times to acquire
snapshots from different viewpoints. This data can be used to
learn a multi-view representation of a successfully segmented
object. In this process, the already verified features are tracked
as long as they are visible, which enables the system to
estimate the underlying object motion. At every step, new
Harris interest points are detected in the image, and they are
added to the object model if

o they moved in unison with the object during the last
pushing action, which implies that they belong to the
same rigid body, or

« they lie “inside” the object, i.e. their distance from the
object center is small compared to the extent of the object.

In both cases, the new features have to be verified after the next
push before they are confirmed and included in the learned
object description. To estimate the object’s motion caused by
the push, we use only the confirmed features.

After every push, two bag-of-features histograms of the
object are created and saved. One contains all confirmed
descriptors that have been accumulated up to the last push.
The other histogram contains only the confirmed features that
are visible after the last push. While the intent of the first
histogram is to have a more comprehensive description of the
object, the second one has a snapshot-like character and is
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Fig. 4. An object is learned by accumulating verified feature points on its surface during repeated pushing. At each step, new candidate points are added to

the object hypothesis and verified after the next push.

more specific to the appearance of the object from the current
viewpoint. In our experiments, both types of histograms turned
out to be helpful for recognition.

Although the SIFT descriptor is robust to minor viewpoint
changes, feature matching fails once the rotation in depth
becomes too large, which normally happens after a few pushes.
Therefore after each push new descriptors are calculated from
the current image for each of the visible, verified feature
points. A new descriptor is added to the list of descriptors
associated with the feature point if it is significantly different
from the old descriptors.

When a confirmed feature becomes invisible, there is a
possibility of a mismatch, resulting in an assignment to a point
in the image that does not belong to the object. To avoid
problems that may arise from such mismatches, confirmed
points that do not follow the object’s motion two times are
not used for the motion estimation anymore. If they do not
move in unison with the object four times in succession, they
are discarded completely.

The learning process can be continued as long as required.
Due to the uncontrolled character of the object motion, there is
no guarantee that a complete description of the object will ever
be obtained. Still, the chances are good that with a moderate
number of pushes a large part of the possible view directions
onto the object will be covered.

B. Object recognition

To recognize an object using the bag-of-features approach,
its features have to be segmented in the image. Then each
of them is assigned to the most similar word of the visual

vocabulary and the histogram of word occurrences is calcu-
lated. Now the corresponding known object needs to be found,
which can be done by comparing the current histogram with
the histograms of all known objects using the x? histogram
distance. As several histograms of each object are available,
conventional classification techniques can be applied for reli-
able recognition. We use a k-nearest-neighbours classifier to
identify the object.

The main difficulty in recognizing objects based on the
bags-of-features technique is to correctly segment the hypo-
thetical object that needs to be recognized. If the segmentation
contains only some of the object features or many features that
do not belong to the object, the histogram is distorted, which
makes a correct recognition improbable. Classical approaches
to segmentation include feature clustering with k-means or
regular and randomized windowing [19]. In our setting — since
the object segmentation problem is equivalent to the one we
face when learning object histograms — we can apply the
same active segmentation algorithm as during the learning
process. Moreover, to improve the recognition rate, we can
push the object several times, which improves the quality of
the segmentation by adding more features and by discarding
the unstable ones.

VI. EXPERIMENTAL EVALUATION

We conducted experiments to evaluate the generation of
object hypotheses in complex scenes, the segmentation and
learning of unknown objects by pushing them repeatedly, and
the recognition of objects using both our initial hypotheses
and segmentation results that were improved by pushing the
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TABLE I
QUALITY OF THE INITIAL OBJECT HYPOTHESES.

good
50 %

part of an object

39 %

wrong

11 %

object several times.

In our experiments, the number of initial hypotheses was not
limited, but a hypothesis had to consist of at least 10 points.
To find planes, 1000 iterations of RANSAC were performed,
and the tolerance was 2 mm. With around 500 3-D points,
this takes about 15 ms on a standard PC with a 2.67GHz Intel
i-7 CPU. For cylinder detection, the local surface normals for
the Gaussian sphere were computed by fitting a plane through
each point and its 4 nearest neighbours. To find a cylinder
axis in the Gaussian sphere, 500 iterations of RANSAC were
executed. At most 30 different axes were evaluated, where for
each axis at most 10000 RANSAC iterations were executed
to find the optimal cylinder radius and offset from the origin
(less iterations if there are only few candidate points). The
tolerance for deciding if a point lies on a hypothetical cylinder
surface was 4 mm. Finding a cylinder in a set of 500 3-D
points takes about 150-200 ms. When the first (and largest)
planes or cylinders are found and their points are removed, the
computation time is reduced significantly. On the average it
takes around 350 ms to find all hypotheses. As RANSAC can
easily be parallelized, this time can be reduced considerably
on a multicore CPU.

The generated hypotheses can fall into three categories
of correctness: Firstly, the hypotheses can be approximately
identical with an object or at least those parts of it that contain
visual features. Secondly, it can contain a part of the object,
which frequently happens in the case of large objects. This is
acceptable because such a hypothesis still allows a successful
manipulation of the underlying object. Thirdly, the hypothesis
may span over more than one object. This can lead to failed
manipulation attempts unless the majority of the points lie on
the pushed object. We carried out a number of experiments
in different complex scenes, each containing 5-8 objects that
stand close together and partly occlude each other. Table I
shows the quality of the hypotheses in such scenes. “Good”
means that the hypotheses approximately coincided with an
object, “’part of object” indicates that they contained a part of
an object, and the "wrong” hypotheses contained parts of two
or more objects. In simple scenes the hypotheses are usually
correct or contain a part of a large object.

We applied our system to the learning of 15 different
objects. The number of features contained in each initial object
hypothesis varied strongly between the different objects. For
the initial hypotheses, the numbers of features ranged from 21
to 153, the average was 53. During the learning process, after
each pushing movement 20 - 150 new candidate points were
added to the hypothesis, where the actual number strongly
depended on the object (54 on average). The percentage
of candidate points that were confirmed with the next push

TABLE I
OBJECT RECOGNITION SUCCESS RATE OF THREE EXAMPLE OBJECTS, AND
THE AVERAGE OF ALL 15 OBJECTS THAT WERE LEARNED.

’ H init. hyp. ‘ 1 push ‘ 2 pushes ‘ 3 pushes ‘ 5 pushes ‘

Book 57 % 54 % 77 % 85 % 90 %
Tea 65 % 77 % 91 % 93 % 97 %
Bottle 69 % 68 % 73 % 78 % 81 %

| Average | 8% | 65% | 9% | 86w | 929% |

appeared to be approximately the same for all objects, on
the average 32%. The percentage of feature points of the
initial hypothesis which were validated after the first push was
approximately the same.

For the evaluation of the object recognition system, in
addition to the 15 test objects mentioned above, another 25
objects were learned from presegmented images. Thus the
complete database contained 40 objects. We tried to recognize
the learned objects in complex scenes containing 5-8 objects.
For the bag-of-features, a visual vocabulary of 1000 words
was learned from 50000 features that were extracted from 25
images, each containing several objects. For each object, 15-
20 histograms were learned, and we used 3-nearest-neighbours
classification with y? distance for recognition.

For three exemplary objects and the average of all 15 tested
objects, table II shows the recognition results for the initial
hypotheses and after n iterations of pushing and validation. On
the average, the initial hypotheses lead to a recognition rate
of 68%, which also gives an idea about their usefulness for
segmentation. While hypotheses that approximately contain
an object (compare table I) are usually classified correctly,
those hypotheses which contain only a part of an object are
frequently rejected or misclassified. Hypotheses that contain
two or more objects are usually rejected.

After the first push and the subsequent verification of the
hypothetical feature points, the average recognition rate is
65%, which is — somewhat surprisingly — slightly lower than
for the initial hypothesis. As now only the confirmed points are
used for recognition, the effect of this first push was mainly
to remove the features from the object hypothesis that did not
move in unison with the majority of feature points, or were
not found in the next image. By that, the number of features is
reduced to around 32% of the size of the initial hypothesis (see
above). Apparently, this affects the recognition so strongly that
the positive effect of eliminating the false features is voided.
But after the second push, new confirmed features are added at
each iteration, and now the positive effect is significant. The
recognition rate immediately rises to 79% after the second
push, 86% after the third and 92% after the fifth. It finally
converges to a value between 92% and 95%.

This general tendency is also visible when looking at the
particular objects. As the book is frequently divided into two
or three initial hypotheses, it profits significantly from the
accumulation of more features from the first to the second
push. The tea can be recognized very reliably, while the bottle
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has only very few features and is therefore more difficult to
identify even with a good segmentation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a method for the segmentation
and learning of unknown objects in unstructured environments.
We generate initial object hypotheses from 3-D points, which
were obtained through stereo vision, by detecting planar and
cylindrical surfaces amongst them. The hypotheses are then
verified, corrected and extended by pushing them repeatedly.
Objects are learned using bag-of-feature histograms based on
the SIFT descriptors of the points belonging to the object.
We have shown experimentally that the objects learned this
way can later be recognized, and that the segmentation by
pushing can serve as a powerful methodology for recognition
in complex scenes.

One possibility to extend our method would be to allow
other and more complex geometrical shapes for the initial
hypothesis, like spheres, ellipsoids, superquadrics, geons etc.
But since many common household objects can roughly be
modeled by planes and cylinders and since the accumulation
of features after the pushing movements is independent from
the shape of the initial hypothesis, the benefit would probably
be very limited. A more promising enhancement would be
to additionally use different local descriptors. Especially the
use of color information could prove to be helpful in com-
plementing the greyscale-based SIFT descriptors. It is also an
interesting question if our approach can be adapted to deal
with more uniformly colored objects, e. g. by using maximally
stable extremal regions (MSER) [20].
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