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Abstract—Learning the visual appearance and physical prop-
erties of unknown objects is an important capability for
humanoid robots that are supposed to be working in an open
environment. We present an approach that enables a robot
to discover new, unknown objects, segment them from the
background and grasp them. This gives the robot full control
over the object and allows its further multimodal exploration.

In order to discover an unknown object in a cluttered scene
and segment it from the (likewise unknown) background, we
generate hypotheses based on visual input and try to verify
one of them by pushing it. The induced motion solves visual
ambiguities and allows a clear object-background segmentation.

The acquired estimation of the object position and extent
allows the robot to try grasping it. As we do not have exact
shape information, we apply a reactive grasping approach.
Based on tactile sensor feedback of the hand, we execute
correction movements until the object can be grasped in a stable
manner.

I. INTRODUCTION

Humanoid robots that are supposed to work in a human-

centered, uncontrolled environment need to be flexible and

adaptive in many different respects. One key prerequisite

to their usefulness in everyday tasks is the capability to

manipulate and interact with common household objects. In

particular, they need to be able to deal with objects that

they have not encountered before. This requires the ability

to autonomously acquire knowledge about at least some

important properties like the visual appearance, and sufficient

information about their shape and extent to manipulate them.

To this end, several problems have to be solved: First,

the unknown object must be discovered. Second, it must

be segmented from the rest of the environment. This will

already allow the robot to learn its visual appearance, at

least from one side. The third step is to grasp the unknown

object. Once this has been done, the robot has full control

over it and can explore it completely, learning all its visual

and physical properties. Thus, it will have become a known

object allowing all kinds of interactions that the robot is able

to perform.

In this paper, we describe our integrated approach that

enables the humanoid robot ARMAR-III [1] to solve these

three problems consecutively, i.e. discover, segment and

grasp completely unknown objects in full autonomy, using

its visual, manipulative and haptic capabilities. First, the

robot generates hypotheses of possible objects based on the

camera images of its active stereo vision system. To test these

hypotheses and reliably segment them from the background,

it then tries to move them. If thereby an object is discovered,

its motion relative to the rest of the scene is exploited to

segment it exactly and completely. Based on the now known

object position and an estimation of its extent, we initiate

an attempt to grasp it. The grasping itself is realized in a

reactive manner using haptic feedback, allowing it to correct

the grasp and adapt it to the actual shape of the object. Figure

2 gives a schematic overview of our approach.

The following section will give a short synopsis of pre-

vious research work concerning the subproblems of the

our task. Section III describes our interactive approach to

discovering and segmenting unknown objects, and section IV

the reactive grasping exploiting the knowledge that has been

obtained up to that point. In section V we test the validity

of our approach with experiments on ARMAR-III, and finish

with a conclusion and a perspective for future work in section

VI.

II. RELATED WORK

Some research efforts have been focused on learning

the visual appearance of beforehand unknown objects. Be-

sides creating an appropriate visual description, the central

problem here is the segmentation of the unknown object

from the rest of the observed scene. In [2], the authors

Fig. 1: The humanoid robot ARMAR-III in a kitchen, push-

ing an unknown object to segment it from the rest of the

scene.
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Fig. 2: System overview showing the different stages of our approach for discovering, segmenting and grasping completely

unknown objects.

demonstrate that pushing an object does in principle allow

such segmentation. This idea has been followed in [3] where

object hypotheses are generated by detecting planar surfaces

amongst local features. These hypotheses are pushed and the

features tracked. In [4] and [5], this has been extended to

allow for almost arbitrary shapes of the initial hypotheses

and different types of local features, and the completely

autonomous learning of object representations has been

demonstrated on different humanoid platforms. The basic

idea from [2] has also been pursued in [6], assuming the

initial position of the object is known, and in [7], which is

restricted to symmetric objects.

Another approach to the problem of segmentation and

learning of unknown objects is to assume that the robot has

already grasped them, so they can be moved in front of the

camera. This idea has been pursued e.g. in [8], [9] and [10].

The method presented in [11] aims at the same objective

as we do; the main difference is that they use a 3-D range

sensor to detect the novel object assuming that it is standing

solitary on a flat table, and grasp it based on the resulting

3-D point cloud. The focus of that work is rather on learning

a large variety of object properties (visual appearance, haptic

properties, sound) once it has been grasped by the robot.

Several approaches have been tried in the field of reactive

grasping using different sensors to adjust the grasp trajec-

tory during grasp execution. Hsiao et al. [12] presented an

approach using IR proximity sensors to adjust the position

of the hand to the object, while other approaches use haptic

information, such as tactile sensors [13] or tactile and force

information [14] to adapt the grasp. These methods increase

the success rate of the grasp by dealing with the uncertainties.

In this work we use a similar approach.

To ensure that a grasp was successful, a grasp stability

check can be executed after execution of a grasping attempt.

There have been several approaches for analyzing the grasp

stability in an analytical way, which are reviewed in detail

in [15]. Other approaches are using machine learning tech-

niques to estimate the stability of a grasp [16]. In this work

we use the method presented in [17], which extends this

approach to check the grasp stability continuously instead of

just checking it once after the hand is closed.

III. OBJECT DISCOVERY AND SEGMENTATION

A. Hypothesis generation

The question of what exactly is an object is subject

to ongoing discussions since many centuries [18], and no

satisfying definition has been generally agreed on up until

today. Throughout this work, we pragmatically define an

object as a rigid coherent physical body that is not fixed

to anything else and has an appropriate size and weight so

that a humanoid robot can move it.

The first step in discovering unknown objects is to hy-

pothesize which parts of an observed scene might constitute

one. We do that based on the images provided by the stereo

vision system in the head of ARMAR-III. We determine

Harris Interest Points [19] and Maximally Stable Extremal

Color Regions [20] [21] as (relatively) local features in the

whole camera images and, based on a stereo calibration, use

epipolar geometry [22] to reliably match them in the stereo

images and determine their 3D positions. Thus, we obtain a

set of 3D points covering most parts of the observed scene.

Based on these points, we generate hypotheses of possible

objects. We hereby follow the intuition that points belonging

to the same object will lie on a (at least partly) smooth

surface and be relatively close to each other. Therefore, we

search for regular surfaces amongst the 3D points. As we

have to expect that only a small subset of all points belongs

to one regularly shaped surface patch, we use Random

Sample Consensus (RANSAC) [23] to find planes, spheres

and cylinders. We search for all three shapes simultaneously,

select the one that contains the maximal number of points,

and remove it from the set. We then search again amongst

the residual points until no more surface containing at least

a minimal number of points can be found (12 points in our

experiments). Details on the implementation of RANSAC for

planes, spheres and cylinders can be found in [4] and [5]. To



Fig. 3: Initial object hypotheses that have been generated based on the stereo images provided by the cameras in the head

of ARMAR-III. One of these hypotheses is then interactively validated by pushing it and analyzing its motion. The motion

allows to determine which visual features belong to the object and which do not. In the course of 3 pushes, a complete

visual description of the visible object surface is obtained.

avoid subsuming several objects into the same hypothesis, we

apply x-means [24], a variant of k-means that also estimates

the parameter k, to the resulting point sets.

This way, we obtain all regular surface patches in the set

of 3D points, and consider each of them a possible object. In

addition, we cluster the remaining points using x-means. If

we find a cluster that contains many points within a compact

area, we consider it a hypothesis too, so we can also detect

objects with very irregular surfaces but a sufficient number of

local features. The first image of figure 3 shows hypotheses

that were generated by our approach; each consists of a set

of local visual features and their 3D positions.

B. Object segmentation by pushing

Having obtained hypotheses of possible objects, we need

to verify if one of them actually constitutes an object or

is at least part of one. Although a lot of research effort

has been spent on the segmentation of unknown objects in

camera images, it seems that this problem can not reliably be

solved by passive observation only. Segmentation becomes

fairly easy when the object moves relative to the background,

therefore we let the robot try to move the hypothetical object

that is to be examined. The easiest and least fault-sensitive

way to move an object whose shape and physical properties

are unknown is to just push it. By inducing motion to the

object, we are able to segment it from the background.

When pushing the object, we want to make sure that on

the one hand it will move significantly enough to allow clear

segmentation from the rest of the scene. On the other hand,

its visual appearance should not change too much to allow

relocalizing its visual features, and it should stay in an area

where it is visible for the cameras and well reachable for

the hands to allow for subsequent pushes later (see next

subsection). We therefore define a central point in front of

the robot towards which the object will be pushed. By setting

the intended length of the push to a fixed value (10cm in our

experiments), we make sure that the object will not converge

towards this central point but rather “oscillate” around it,

which guarantees sufficient motion for object segmentation.

Initially, the robot hands are outside the field of view of

the cameras to avoid unnecessary occlusions. We choose the

hand for pushing which is better suited for the intended

trajectory by inspecting the versatility along the planned

path using the reachability analysis of the cartesian space

presented in [25]. The hand approaches the object on a

trajectory significantly above it to avoid collisions with other

objects and is then lowered to the object’s height besides it.

The push towards the central point is executed, then the hand

is lifted again and moves back to its initial pose. Unexpected

collisions of the hand with obstacles are detected using the

force-torque sensor in the wrist of ARMAR-III. If there are

other objects close to the one the robot wants to push, the

hand may collide with one of them during the lowering phase

besides the object. In this case, it is lifted again and lowered a

bit closer to the estimated object position. If there is another

collision, the robot tries a closer position again etc. If the

hand comes very close to the object position, it is lowered

over the estimated object center until contact and a sliding

movement is executed instead of a push. With this flexible

reactive approach we are able to move the object even in

very cluttered scenes.

After trying to push the object, we check all original

hypotheses for having moved as a rigid body, i.e. having

undergone a translation and rotation in 3D space. To this

end, we determine correspondences for all features between

the camera images before and after the push. We use SIFT

descriptors for the Harris Interest Points and a compact color

and shape descriptor for the color MSERs. A transformation

in 3D is (over)determined by 3 point correspondences, there-

fore we can apply RANSAC in a straightforward manner to

estimate the transformation that each hypothesis has under-

gone. If a hypothesis moved significantly, i.e. the weighted

sum of the length of the translation and the angle of rotation

is above a certain threshold (an eqivalent of 3cm or 15 in

our experiments), we consider it a validated object. If none

of the hypotheses has moved, we generate new hypotheses

and try to push one of them again.

C. Feature verification and accumulation

We can now choose one of the validated object hypotheses

for further investigation. We have to assume that our initial

hypotheses did not correspond exactly to an actual object, but



that it may have included features that do not belong to the

underlying object and, very probably, that significant parts

of the object are not included in the hypothesis yet. The

induced motion allows us to correct that: By determining

correspondences for all point and region features between

the camera images before and after the push, we can now

check for each of them if they moved coherently with the

object. Those features in the hypothesis that did not are

rejected. Other features that did not belong to the original

hypothesis but moved concurrently with it are added as

possibly belonging to it. Now the robot pushes the object

again to verify or discard these new candidate features.

This step of pushing the object and adding and verifying

features belonging to it can be repeated several times. Thus,

we obtain a complete set of all visible point and region

features as can be seen in figure 3. Based on these con-

firmed features, we can learn a visual description of the

object as shown in [4] [5]. This allows object recognition

and localization, at least from the sides of the object that

become visible during the repeated pushing. But to get a full

multiview description, and also to obtain other information

about the object like its weight, rigidity etc, we need to grasp

it.

IV. REACTIVE GRASPING

A. Determination of hand orientation

Classical grasping approaches require a complete and

exact 3D model of the object that is to be grasped. Since we

do not have that, we resort to a reactive grasping approach

instead. The fact that we already know that there actually is

an object, where it is, and which parts of the image belong to

it, gives us a significant head start compared to completely

blind grasping. Based on the positions of the features we

know to belong to the object, we calculate its center and

principal axes. We can not determine the depth of the object

in the viewing direction, but we can estimate the extent in

the two dimensions parallel to the image plane. As this is

approximately the direction from which we will approach the

object when trying to grasp it, this information is sufficient.

In fact, we essentially need the position of the object and the

direction of its maximal extent with relation to the approach

direction, so that we can grasp it around the shorter side.

To further support the grasping attempt, in the end of the

pushing stage we modify the pushing direction in such a way

that, instead of pushing the object towards a central point, we

move it to a position on the right side in front of the robot

that facilitates grasping. Once we are there, we estimate the

object position and the orientation of its largest extent and

use that information to initiate the reactive grasping.

B. Correction movements

After estimating the object position and pose, we approach

the position of the object from the top with the robot hand.

We use the methods presented in the following subsection

(IV-C) to detect a contact with the object. According to the

estimated contact point, a correction movement towards the

  

  

  

  

  

 

Fig. 4: Kinematic overview of the hand. On contact on the

yellow contact points correction movements are executed,

the hand is closed when a contact is detected on the red

point. The positions of the tactile sensors are shown as blue

rectangles.

contact point is executed. Therefore the robot lifts the hand,

corrects the position towards the assumed contact point and

starts to lower the hand again. This is repeated until a contact

in the palm is detected after which the hand is closed and

thus an attempt to grasp the object is executed. After closing

the hand the stability of the grasp is checked with an SVM

classifier using the proprioceptive and tactile information,

which is presented in [17].

C. Contact detection

To detect a contact of the hand with an object, we use

different sensors: Tactile sensors in the finger tips and the

palm, a 6DoF force/torque sensor mounted in the wrist and

the force measurement of the hand controller, which uses the

joint encoder and the air pressure to estimate the torque of the

finger joint actuators [26]. With these sensors we can detect

four virtual contact points: One between the finger tips of the

index and the middle finger, one at the finger tip of the thumb,

one at the inner side of the palm and one at the outer side of

the palm. Figure 4 shows the positions of these points. For

detecting a contact with the tactile sensors, we simply sum

up the values of the taxels and threshold the result. A contact

can also be detected by the force/torque sensors, when the

force measured in direction of the arm is above a specified

value. The contact point is then determined by evaluation of

the measured torques. The torque direction points to the most

likely point of contact. If the torques are too small or non-

existent, we assume that the contact took place in the palm

of the hand. To detect a contact with the force measurement

of the hand controller, the hand has to be slightly closed.

As the pneumatic actuators are compliant, the finger will be

bent back when a contact happens, resulting in a higher air

pressure and a decreased joint angle, which can be interpreted

as an increased torque in the actuator. By summing up the

measured torques of each finger, an approximation of the

force pushing against the finger can be made, which allows

us to detect a contact. Because of the high resolution of the

joint encoders, this measurement method is very sensitive,



especially when the contact takes place at one of the finger

tips.

By combining all these measurement methods, we can

detect contacts reliably almost everywhere on the hand, even

if the object is not touched with one of the tactile sensor pads,

although the location of the contact can not be determined

very accurately then.

V. EXPERIMENTAL EVALUATION

We evaluated the system on the humanoid robot ARMAR-

IIIb [1], which is equipped with a stereo camera system,

two arms with 7 DoF each and two pneumatic actuated an-

thropomorphic robot hands [27]. The right hand is equipped

with joint encoders and air pressure sensors which allows

us to control the joints with a force position controller [26].

Additionally we mounted six tactile pressure sensors from

Weiss Robotics [28] on the finger tips of the thumb, index

and middle finger and in the palm.

For the experiments, we positioned the robot in front of

a table on which we placed several objects. As outlined

in figure 2, the robot first looks at the table and creates

object hypotheses based on the stereo images taken with the

cameras in the head. One of the potential objects is chosen

for verification and pushed. When the hypothesis has been

validated, it is pushed again to accumulate all visible features

belonging to it. During the later pushes we also move it

towards a position that is well suited for the grasping attempt.

Using the 3D positions of the features, we estimate the object

position and the direction of its maximal extent.

The robot moves its right hand to a position above the

verified points and turns the hand according to the orientation

of the main object axis. Then it starts to move the hand

downwards towards the object, while continously checking

for a contact with the sensors. If a contact is detected, the

movement is stopped and a correction movement is executed,

after which the robot starts moving the hand downwards

again. This is repeated until a contact in the palm is detected.

After that the hand is closed and the stability of the grasp

is determined. If the grasp is stable the robot lifts the

object and moves it to a position above a box, where it

drops the object by opening the hand again. If the grasp

is detected as not stable, the robot opens the hand again,

and starts from the beginning. Figure 5 shows ARMAR-

IIIb executing the different stages of our approach. The first

three images show the object discovery and segmentation

through pushing, the other images the reactive grasping with

correction movements.

We evaluated our approach using 30 different objects.

For each trial, 3-10 of them were arranged on a table in

front of the robot. The main criterion for assessing our

approach is arguably the success rate of the overall process

of detecting, segmenting and grasping unknown objects. As

it turned out, there are essentially two points in the process

where it may fail. The first one is the verification of an object

hypothesis through pushing. Here, it sometimes happens that

after the push the object can not be relocated because it has

moved (in particular: turned) so much that a large part of

its visual features can not be rediscovered. This happens

Fig. 5: The robot ARMAR-IIIb during the different stages of

our approach: First, object hypotheses are generated based

on stereo images (picture 1). One of these hypotheses is then

confirmed, corrected and completed through several pushes

that cause it to move and allow clear object-background

segmentation (pictures 2-3). Based on the estimated object

position and extent, a grasp attempt is initiated (picture 4).

The robot reactively grasps the object using haptic feedback

from different sensors in its hand and wrist (pictures 5-10).



in about 10-20% of the cases, depending on the number

and manifestness of the local visual features on the object

surface. This problem seems to be unavoidable as initially we

have only a very rough and probably incomplete hypothesis

about the object’s position and extent, therefore the pushing

is inevitably rather uncontrolled. But as this failure is in any

case detected by the robot, we can just repeat the first step

and start over without having spent much time and effort yet,

therefore we consider this problem not a serious one.

Once a hypothesis has been validated and more features

belonging to it have been accumulated, its relocalization

becomes easier and due to the better estimation of its center

the pushes cause smaller rotations, therefore at this stage

we almost never loose track of it. Bringing it approximately

to the desired grasping position also works reliably. The

second point where our approach may fail is the reactive

grasping itself. Due to the usually good estimation of the

object position and the direction of its maximal extent, in

about 60% of the cases the grasp is successfull after 0 − 3

correction movements. In 30% of the cases, it takes more

than 3 correction movements, and in 10% the grasping fails.

This can happen either because we loose contact with the

object (e.g. because we accidentally pushed it away) and do

not find it again, or because a part of it (e.g. a corner) touches

the palm and thus triggers the grasp, but the hand does not

close completely around it and therefore it slips out of the

hand.

All in all, the whole approach turned out to be very solid.

We expect imprecisions in each step of the process, and all

algorithms are designed in a way that they can deal with it.

Thus, the system mostly recovers from unfortunate situations.

A failure in the first step is not costly and therefore does

not hurt, while a failed grasp attempt requires us to repeat

the whole process. It would probably make sense that in

such a case we try to relocalize the object and immediately

initiate another grasp attempt instead of starting all over

again. Anyways, as the implementation is now, the robot

usually completes the task successfully and otherwise can

recover from almost all failures on its own.

VI. CONCLUSION AND FUTURE WORK

We have presented an approach that enables humanoid

robots to autonomously discover, explore and grasp unknown

objects in an uncontrolled and complex environment. To this

end, we exploit the visual, manipulative and haptic capa-

bilities of the robot. A realisation of the proposed concept

has been demonstrated on the humanoid robot ARMAR-

III, showing that autonomous object exploration is possible

and that we can already achieve a high success rate at the

very difficult task of grasping these beforehand completely

unknown objects.

One serious limitation of our approach is that so far we

need the objects to be at least somewhat textured to allow the

detection of regular surfaces at the object discovery stage and

the hypothesis matching after having pushed an object. For

this reason, we can not handle unicolored objects yet, which

is something we intend to try in the near future. Promising

steps in that direction have been made in [29].

The method to grasp reactively is limited by the sensitivity

and accuracy of the contact detection. To avoid movement of

the object during grasping, we approach the object from the

top. To approach the object from the side, which would allow

grasping of more complex objects, we will need sensors

which are more sensitive and accurate, so that a contact can

be detected before the object is pushed away. This would also

allow us to improve the correction movements, by taking into

account the more precise location of the contact point.

We believe that it is only a question of time, improved

sensors and some more research effort to overcome these

limitations, and that autonomous interactive object explo-

ration is a skill that humanoid robots will soon be able to

master, which will significantly increase their autonomy and

adaptability.
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[3] E. S. Kuzmič and A. Ude, “Object segmentation and learning through
feature grouping and manipulation,” in 10th IEEE-RAS Int. Conf.

Humanoid Robots, 2010.

[4] D. Schiebener, A. Ude, J. Morimoto, T. Asfour, and R. Dillmann,
“Segmentation and learning of unknown objects through physical
interaction,” in 11th IEEE-RAS Int. Conf. Humanoid Robots, Bled,
Slovenia, 2011.

[5] A. Ude, D. Schiebener, N. Sugimoto, and J. Morimoto, “Integrating
surface-based hypotheses and manipulation for autonomous segmen-
tation and learning of object representations,” in IEEE Int. Conf.

Robotics and Automation, St. Pauls, Minnesota, 2012.

[6] J. Kenney, T. Buckley, and O. Brock, “Interactive segmentation for ma-
nipulation in unstructured environments,” in IEEE Int. Conf. Robotics

and Automation, 2009.

[7] W. H. Li and L. Kleeman, “Segmentation and modeling of visually
symmetric objects by robot actions,” Int. Journal of Robotics Research,
vol. 30, no. 9, 2011.
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