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Abstract— We present an approach for autonomous inter-
active object segmentation by a humanoid robot. The visual
segmentation of unknown objects in a complex scene is an
important prerequisite for e.g. object learning or grasping, but
extremely difficult to achieve through passive observation only.
Our approach uses the manipulative capabilities of humanoid
robots to induce motion on the object and thus integrates
the robots manipulation and sensing capabilities to segment
previously unknown objects. We show that this is possible
without any human guidance or pre-programmed knowledge,
and that the resulting motion allows for reliable and complete
segmentation of new objects in an unknown and cluttered
environment.

We extend our previous work, which was restricted to
textured objects, by devising new methods for the generation
of object hypotheses and the estimation of their motion after
being pushed by the robot. These methods are mainly based on
the analysis of motion of color annotated 3D points obtained
from stereo vision, and allow the segmentation of textured
as well as non-textured rigid objects. In order to evaluate
the quality of the obtained segmentations, they are used to
train a simple object recognizer. The approach has been
implemented and tested on the humanoid robot ARMAR-III,
and the experimental results confirm its applicability on a wide
variety of objects even in highly cluttered scenes.

I. INTRODUCTION AND RELATED WORK
The ability of a humanoid robot to adapt to situations

that it has not explicitly been programmed for is crucial
for its usefulness in future assistive tasks in human-centered
environments. Many of these not-yet-experienced situations
for a robot will arise due to the appearance of objects that
it has not encountered before but now needs to deal with.
In such situations, the robot needs to autonomously make
itself familiar with these new objects. The first two crucial
steps in this process, whatever outcome may be expected,
are to locate and segment the new objects. Once they are
segmented, a visual descriptor can be learned that allows
later recognition, and essential information for grasping and
manipulation is provided.

The focus of this work is to present our approach for
the autonomous, interactive discovery and segmentation of
textured and non-textured unknown objects in a cluttered
environment by a humanoid robot. To demonstrate its use-
fulness, we use the obtained segmentations to learn visual
descriptors of the new objects and show that they allow
reliable recognition.
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The segmentation of unknown objects from a complex
unknown background has turned out to be very difficult, if
not impossible, if a robot is restrained to passive observation.
On the other hand, individual motion of an object is a strong
cue that usually dissolves any visual ambiguities, manifests
clear object borders and thus vastly facilitates segmentation.
Usually, such helpful motion does not happen on its own
when needed, therefore the robot has to create it itself. This
fundamental idea has been pioneered by the authors of [1]
who detect the sudden spread of optical flow from the hand
of a robot when it touches and starts to move another object.
The pushing motion is pre-programmed, and the obtained
segmentation is not used for anything.

In [3], an articulated object is pushed to explore its
kinematic properties, i.e. joints and solid parts, exploiting
the observed relative 2D motion of local visual features.
Again, the robot motion is pre-programmed. In [4], an object
is pushed and segmented, which allows for the learning
of a visual descriptor. Yet this approach is restricted to
symmetric objects in simple scenes. [5] focuses on the
singulation of individual objects from a pile by pushing
them systematically, and [6] sorts colored bricks from clutter,
strongly leveraging physical interaction for separating them.
In [7] and [5] heuristics are proposed for systematically
pushing clusters of objects in order to separate them.

Fig. 1: Interactive object segmentation performed by the hu-
manoid robot ARMAR-III [2]. By pushing unknown objects,
they can be segmented from the environment based on the
induced motion.



In our previous work (see [8], [9], [10], [11]) we used local
visual features (SIFT[12] and later also color MSER[13]) to
create initial object hypotheses. Those features are grouped
based on their lying on a common regular geometric 3D
structure (planes, later cylinders and spheres) as well as
spatial proximity. One of these hypothetical objects is then
pushed, and by observing the 3D motion of the local visual
features, an object hypothesis can be verified by checking if
it moves as a rigid body. This also permits to analyze each
single local feature for concurrent motion and thus verify
the individual features of the hypothesis. Other features that
move consistently with the hypothesis are added and thus
after two or three pushes a complete object segmentation
in terms of the contained local features is achieved. We
also demonstrated that this allows for the creation of object
descriptors for recognition. In [14], we extended this concept
by using the obtained object detection and segmentation to
initialize a reactive grasping approach that enables the robot
to grasp the formerly unknown object using tactile and haptic
feedback without the need for a good 3D model for grasp
planning.

While these results are very encouraging, our approach
was always restricted to objects which have a sufficiently
textured surface that offers enough distinctive local visual
features to relocalize the object after it has been pushed.
Most of the related approaches are also based on local
visual features, with the exception of [15], where unicolored
cylinder- and box-shaped objects are segmented interactively,
tracking their edges in the image and depth data obtained
from a Kinect sensor.

Based on the idea of interactive segmentation that we
followed in our earlier work, we have now developed a
different approach that enables the segmentation of textured
as well as non-textured rigid objects, which we present in this
paper. The only remaining restrictions are that the object can
be moved by the robot, that it is not completely transparent
or looks exactly like the background, and of course that it
has an appropriate size with relation to the field of view and
resolution of the cameras of the robot.

The following section will give an overview of our ap-
proach, which will be explained in detail in sections III and
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Fig. 2: System overview: Our approach can be divided into
two main phases. First, the robot generates object hypotheses
and tries to verify one of them by moving it. If an object has
been discovered, the segmentation is improved and different
views can be learned in the course of several further pushes.

IV. In section V we present the results of our experiments on
the humanoid robot ARMAR-III, and section VI concludes
the paper.

II. PHYSICAL INTERACTION FOR
SEGMENTATION

Physical interaction enables a humanoid robot to overcome
the problems that usually arise if an unknown object is to be
segmented in a complex scene that causes visual ambiguities.
If the robot is e.g. confronted with a heap of unknown
objects, there is probably no certain and infallible criterion
to tell two objects apart that can be analyzed by observation
only (at least none has been discovered yet). However, if
an object moves, it can in principle be distinguished clearly
from its environment.

To cause such helpful motion, the robot needs to induce it
on the object somehow. The most simple and foolproof way
to do so is to carefully push the object. This requires an idea
about the existence and location of the object, which we can
not take for granted when dealing with unknown objects in an
unknown local environment. Consequently, the robot needs
the ability to discover possible objects and estimate their lo-
cation before being able to examine them. Our approach for
generating object hypotheses is described in section III-A.

When such an object candidate has been pushed by the
robot, there are two possible outcomes: If it moved, the
robot can segment it, learn its appearance and examine it
further. If it did not move, we have to assume that the
robot did not actually push an object but something else that
does not move. Thus, we implicitly define an ”object” as a
physical entity that can be moved (and seen) by the robot.
The problem of determining the motion of the object after
it has been pushed is not trivial and has only been solved
for special cases until now; we present our new and more
general solution in section IV-A.

When the motion of the object has been determined, it can
be exploited to acquire a complete and certain segmentation
of the object in the camera image. We showed in our previous
work [9] that if the object motion is known, it is simple to
check for each local visual feature if it moved concurrently.
But we do not want to rely on the existence of local features
(i.e. texture), and we want an actual segmentation that tells
for each pixel of the camera images whether it belongs to the
object or not. Section IV-B describes how this is achieved.

III. INITIAL OBJECT DISCOVERY

A. Generation of object hypotheses

The first step in our approach for interactive segmentation
is to create object hypotheses, i.e. to analyze the camera
images of the robot for possible unknown objects. One of
these hypotheses is then chosen for pushing and subsequent
verification. A criterion for finding object candidates that
has proven to be useful in our previous work is grouping
of local features that lie on a common regular geometric
structure like a plane, cylinder or sphere. Such a structure
frequently indicates an underlying object. Another indica-
tion for promising candidates are unicolored regions of a



Fig. 3: A relatively simple and a confusing scene with their
respective saliency images. As can be seen, the algorithm
for saliency computation is not of much use in scenes
where objects and background are equally rich in colors and
contrasts.

size within the dimensions we would expect an object to
have (about 5-50 cm in diameter). While these two criteria
are certainly useful, we want to be able to detect objects
independently of their appearance, therefore we complement
these criteria with the generic concept of visual saliency.

Saliency is a bottom-up trigger for attention, a psycho-
logical concept that has been applied in computer vision to
support other tasks by restraining the analysis of images
to regions that ”stand out” in a certain respect (cf. [16]
[17]). We use the saliency detector proposed in [18] to
calculate a saliency map for the whole camera image. In
that work, saliency is defined as the difference of an image
region to its neighborhood, which is calculated at different
scales using band-pass filters. The filters are realized using a
Difference of Gaussian (DoG) filter G(x, y, σj)−G(x, y, σk)
with σj > σk. Summing up all edge images at different
scales is equivalent to using a filter that is the sum of all
filters, which can be simplified as follows:
N∑

n=1

G(x, y, σn)−G(x, y, σn+1) = G(x, y, σ1)−G(x, y, σN )

Thus the resulting saliency image is calculated as S =
|G(σ1) ∗ Img −G(σN ) ∗ Img|, i.e. the difference of the
image after being filtered with a Gaussian kernel with the
lowest and highest desired standard deviation. This is done
for all three color channels of the RGB image, and the
results are added. We choose σ1 = 80px which limits the
size of detected regions to a size that corresponds to the
maximal extent we expect objects to have in the image,
and σN = 10px which smooths out the fine textures that
are already accounted for by the hypotheses generation for
textured objects.

The resulting salient image regions that are not yet
occupied by object hypotheses from the first two criteria
(unicolored regions, and local features lying on a regular
geometric structure) are used to generate additional object
hypotheses. In practice, the first two criteria covered most of
the objects we tried, but for those which do not clearly fall
into one of the two categories the saliency detection turned
out to be a useful complement.

Figure 3 shows the saliency map calculated for different
images. As can be seen, in simple scenes it does indeed
yield the regions occupied by actual objects. In contrast, if
the scene has a rather confusing background, the saliency
detection is clearly overburdened and not helpful anymore.
The two criteria based on local features and unicolored
regions also return very many hypotheses in such a scene.
In general, in a nontrivial image the separate use of all three
criteria will usually yield a large number of initial object
hypotheses.

This is not a fatal problem, as the robot could just
systematically try all hypotheses, including those that result
e.g. from the tablecloth. But it would save a lot of time to
filter the hypotheses beforehand. As we are only interested
in things that can be pushed, an additional criterion can be
applied in order to keep only those hypotheses that seem to
allow pushing. A simple heuristic for estimating if this is
the case is to check whether a candidate object is higher
than its direct neighborhood. We calculate a dense depth
map from the stereo camera images of the robot using semi-
global block matching (SGBM) [19]. The resulting 3D points
are transformed into world coordinates. The camera image
is subdivided into regular bins for which we calculate the
average height of the contained points and compare them
to their eight direct neighbor cells. Doing this at different
scales and adding up the results, we obtain a map that gives
a value for the relative local height of the image regions.
This map is used to filter the object hypotheses and keep
only those that lie in a region which is higher than its direct
surroundings. Figure 4 illustrates this relative local height
map and its effect on the hypothesis generation.

As we do not want to rely on the existence of local
visual features, we use color and shape to describe the object
hypotheses. To this end, we calculate a dense depth map
from the stereo camera images and annotate the resulting 3D
points with their color in the image. This kind of point cloud
is usually referred to as RGBD (RGB+depth) data. After the
initial object hypotheses have been generated, each one is
represented by the RGBD points in the image region that
it occupies. These point clouds will be used throughout the
rest of the paper.

B. Pushing for Verification

One of the initial hypotheses is chosen to be pushed in
order to verify that it is indeed an object and, in case of
success, to segment it. We choose the hypothesis that is
closest to an optimal location in front of the robot that allows
flexible manipulation by both arms, has at least a minimal
size, and is higher than its direct surroundings. This is a



Fig. 4: Suppression of object hypotheses that do not lie in a region that is higher than its direct surroundings. The first image
shows a complex scene that leads to the creation of very many initial object hypotheses. The second image displays the
map quantifying the relative local height of the image regions. The third image demonstrates the selective effect of applying
this criterion: the original image has been multiplied with the height map, thus the high regions are highlighted while lower
regions appear dark. The right image shows the remaining initial hypotheses that lie in high regions.

pragmatical choice if the robot does not have any other
intention than exploring the objects in front of it. If the object
is to be grasped later, it is particularly reasonable to choose
one that is higher than its local neighborhood. If the robot
is interested in a specific kind of object, other criteria may
be appropriate.

The push is planned in such a way that the object is kept
in front of the robot and within the camera images. To this
end, a central point in front of the robot is defined towards
which the object is pushed over a fixed distance to ensure
sufficient motion. The motion has to be significant enough
to be distinguishable from noise, and as the object extent is
unknown, the actual outcome is hard to predict. Therefore
the intended motion length should not be too small: values
in the range of 10-20 cm turned out to work reliably.

The arm that is better suited to execute this push is chosen
based on a reachability analysis [20]. The hand approaches
the object on a trajectory significantly above it to avoid
collisions with other objects. It is then lowered besides the
object, and the force-torque sensor in the wrist is used to
react to unplanned collisions during that phase (for details
see [14] or [11]). The object is pushed, the hand is lifted
again and moved out of sight. Afterwards, we analyze if the
object has moved and determine its translation and rotation.

C. Detection and Analysis of Change in the Scene

Now we have to find the object that moved by comparing
the point clouds before and after the push, which is the most
important and most difficult subtask within our segmentation
approach. This is due to the fact that (besides the general
difficulty of the matching of point cloud subsets) we do not
know which part of the point cloud is the object, neither for
the cloud before nor the one after the push. Thus, we have
to use the difference between them to determine both the
subset constituting the object and the transformation that it
underwent.

As a first step, we determine which part of the point cloud
changed due to the push. This can easily be achieved by
comparing the old and new camera images and calculating
the difference image. Yet that is only possible if the camera

pose before and after pushing is virtually the same. On our
robot ARMAR-III, the precision and repeat accuracy of the
joints is high enough to allow that; we only need to shift
the new image by up to four pixels in all directions when
comparing it with the old one, and choose the modified
position that causes a minimal difference. On other robots
such a precise motion might not be possible, in which case
an alternative is to align the two point clouds and find the
points that are far away from their nearest neighbor or have
a different color. Both methods yield comparable results and
enable us to divide the old and new point cloud into a part
that is unchanged and a part where a change occurred.

A first result we get immediately from this difference is an
answer to the question if anything happened at all. If nothing
changed in the scene, the robot was evidently unable to move
the potential object or did not hit anything at all. In this case,
the robot tries pushing another object candidate. If a change
in the scene is detected, all initial object hypotheses are
analyzed on whether they lie in image regions that changed.
Each object hypothesis is represented by a set of RGBD
points, and if more than half of them lie in a region that
changed due to the push, the hypothesis will be analyzed
for having moved; otherwise it is discarded. In addition to
the initial hypotheses, we create new ones from the points
that changed. This is done by determining 2-5 clusters1

amongst these points using x-means, a variant of k-means
that automatically chooses the number of clusters [21]. These
new hypotheses frequently match the actual object better than
the initial ones, although usually not perfectly either.

IV. OBJECT SEGMENTATION

A. Estimation of the Object Motion

All the hypotheses that lie in parts of the scene which
changed may correspond to the object (or one of several
objects) that moved, and therefore they are examined further.

1There have to be at least two clusters, as a moving object causes change
in the image regions of its old and new position (which may overlap though).
More clusters may be appropriate if several objects move, or if there are
false foreground regions due to errors in the background subtraction.



Each hypothesis consists of a set of 3D points with associated
color information from the point cloud recorded before the
push and has to be relocalized within the new point cloud.
The probably most popular approach for matching (also
referred to as registration) of 3D point clouds is the Iterative
Closest Point (ICP) algorithm [22]. To register a point cloud
with another, two steps are repeated iteratively:

• The nearest neighbor of every point of the first point
cloud is determined in the second point cloud

• Based on these correspondences, the 3D transformation
that minimizes the mean squared distance between all
the pairs is calculated and applied to the first point cloud

These two steps are repeated iteratively until the improve-
ment, i.e. the relative reduction of the mean square distance,
lies below a threshold, or a maximal number of iterations
has been executed. The algorithm reduces the mean square
distance between the point sets in each step and converges
to a local minimum.

In our implementation, we define the distance between two
points as the weighted sum of their cartesian distance and
their distance in normalized RGB space. The weighting is
such that the maximal possible color distance is equivalent
to a cartesian distance of 10 cm.2 As we use both shape
and color information, we avoid the problem of mismatching
in case of similar shapes which would otherwise occur
frequently, as the shapes of artificial household objects are
mostly dominated by planar surfaces.

When trying to determine the transformation that a hy-
pothetical object underwent during the push, we first try to
register the hypothesis with the new point cloud by initializ-
ing ICP with its original pose ( = position and orientation).
If a good match is found, i.e. the resulting (cartesian + RGB)
distance is small and the determined transformation indicates
that the hypothesis did not move significantly, we consider it
to be unchanged. If the determined transformation indicates
that the object has moved, or only a bad match was found,
it has to be relocalized. The one serious disadvantage of
ICP is that it converges to a local optimum, therefore its
initialization is decisive for finding the correct match of the
object hypothesis after a push. Starting the registration at
the original position frequently fails in complex scenes if
the object moved over a large distance.

Thus, we execute ICP several times with different initial
estimates of the new object pose, and keep the resulting
transformation that yields the best match. As the object
may have been moved over a large distance, finding it
again requires an appropriate choice of the initial poses for
ICP. To this end, we detect image regions that resemble
the hypothesis in terms of color histogram similarity and
initialize the alignment there. If the object surface contains
stable local visual features, those can be used to get an

2This parameter allows to balance the relative importance of color and
shape matching. The weight of the color component should not be too small
to avoid mismatching due to similar shapes. If it is set too high, the risk of
mismatches due to similar color rises. Empirically, values between 5 and
30 cm produced reasonable behavior. The choice may also depend on the
precision of the 3D sensor and the sampling density.

initial estimation of the motion, too. The necessary number
of different initial positions can be reduced by taking into
account the direction of the push, which must not be done
in a too restrictive manner as the caused object motion is
rather unpredictable.

The best transformation returned by the differently initial-
ized registration attempts is refined by another execution of
ICP on a reduced point set where all those points are left out
that still have a large distance to their nearest neighbor. The
resulting final transformation is used to decide whether the
estimated object motion is accepted, and if this is the case,
to determine the object segmentation.

B. Verification, Correction and Extension of the Segmenta-
tion

After the motion of an object hypothesis has been esti-
mated, the robot needs to decide whether the determined
match and transformation are plausible. A hypothesis is only
accepted, i.e. considered to correspond to an actual object,
if it meets the following three criteria: First, the estimated
motion has to be large enough to be sure that it is not
due to noise or a slight mismatching3. Secondly, the match
must be good, i.e. the average distance of the hypothesis
points to their respective nearest neighbors in cartesian and
normalized RGB space must be below a threshold. Thirdly,
the relocalized hypothesis must lie mostly in image regions
that have changed. This removes mismatches where by pure
chance a good alignment to some part of the scene could
be found, e.g. a part of the table surface that was matched
to another part of the table after the object has been moved
onto it.

The remaining hypotheses do most likely belong to an
actual object that has been moved by the robot. But of course
we must assume that they do not cover the object completely,
and that they also contain points that do not belong to the
object. We remove the latter ones by checking each point of
the hypothesis: After applying the estimated object motion,
a point must match its nearest neighbor in the scene point
cloud well with respect to cartesian and color distance. It
also has to lie in a region that changed due to the push. If
both of these criteria are met, the point is considered to be
verified, otherwise it is removed from the hypothesis.

After removing the false points, we try to extend the
hypothesis to cover the whole object. To this end, we add all
those points to it as candidates that lie close to the verified
points and within the image region that changed. By pushing
the object again and repeating the steps described before,
these new candidate points can be verified or discarded, and
new candidates can be added. Depending on the object size
and the quality of the initial hypothesis, it usually takes two
or three pushes until the whole object is contained in the
hypothesis and thus segmented completely.

Usually, more than one object hypothesis is verified by
the first push and the subsequent analysis. This happens

3Given the precision of our stereo calibration and a distance of 50-80 cm
between camera and object, a threshold of 3 cm turned out to be definitely
safe.



Fig. 5: Examples of object segmentations in different scenes.
The first image in each row shows the initial object hypothe-
ses, the second to fourth images show the verified hypothesis
after one, two and three pushes.

in particular when several actual objects are moved. We
choose the hypothesis containing the maximal number of
confirmed points for the second push. After that, we discard
the hypotheses that did not move again, and from the
remaining ones we keep only the one with the maximal
number of confirmed points and continue examining it as
long as desired. If the robot did indeed move several objects,
all of them can be segmented, but for the sake of simplicity
we only observed one in our experiments. As long as the
objects undergo different 3D transformation, they can easily
be separated based on their different motion. It may happen
though that two objects move exactly alike, in which case
they are subsumed in one hypothesis. Most likely they are
separated when pushed several times from different direc-
tions. Heuristics for systematical pushing to this end have
been proposed in [5] and [7]. When two objects contained
in one hypothesis are separated, the hypothesis will follow
the object that is matched better after the motion, which is
usually the bigger one.

Pushing an object several times will reveal different sides
of it, thus the creation of a multi-view object descriptor
is possible, although some sides will probably never be
observed. In section V-D we demonstrate that the obtained
segmentations are well suited to train an object descriptor
that allows for reliable recognition.

V. EXPERIMENTAL EVALUATION

A. System Setup

We have implemented and tested our approach on the
humanoid robot ARMAR-III [2]. The video accompanying
this paper shows an interactive object segmentation executed
by it. The robot has an active stereo camera system in its
head, and its arms have seven degrees of freedom each and
are equipped with force-torque sensors in the wrists. The
cameras provide color images with a resolution of 640×480
pixels. About 85% of the stereo images overlap, and after
calculating the dense depth map we use only every second
pixel in x and y direction for the point cloud, thus we obtain
around 65000 RGBD points that we work with.

The computational effort is dominated by the relocal-
ization of the object hypotheses using the ICP algorithm,
in which the computational complexity is proportional to
n log(m), with n being the number of points of the object
hypothesis and m the overall number of points in the scene.
On a 3 year old standard PC with a quadcore processor, the
computations after each push took between 2 and 5 seconds,
depending on the size and number of moved objects.

An important aspect in comparison to some related work
is that in our case the robot itself executes the object pushing,
and we do not use an artificial setup where the camera always
has an undisturbed view of the object. This is the reason
why we do not try to track the object during the push, as the
robot’s hand frequently occludes large parts of it.

B. General Observations

Our approach aims at making it possible to segment rigid
objects independently of their appearance or shape, thus we



tested it with a large variety of items. They can roughly
be classified by their visual appearance as being strongly
textured, sparsely or partially textured, multicolored but
(almost) non-textured, unicolored, reflective (e.g. polished
metallic objects or mirrors), or transparent. As far as we
know, the related work in this field (including ours) has so
far either depended on local features, i.e. texturedness, on
unicoloredness, or on a certain shape.

It turned out that our segmentation approach works very
well for all kinds of objects except the very reflective and
the transparent ones. This is due to the fact that they appear
to change their color when moved, and also tend to cause
problems when trying to obtain depth information. All other
objects were segmented successfully by our approach; for
the transparent and reflective ones a special treatment might
be necessary. Although we were able to tune the parameters
of the background subtraction and the matching so that the
segmentation worked for most of them, it does not function
reliably and the chosen parameters depend strongly on the
lighting conditions, thus we do not claim that our approach
can handle this kind of objects.

In contrast, the shape of the examined objects did not seem
to make an observable difference. While distinctive shape
features are necessary for algorithms that match point clouds
solely based on 3D data, the fact that we use color helps
to overcome ambiguities that might arise otherwise. The
combined use of shape and color information usually allows
a good alignment of the object hypothesis with the object
after it has been pushed. An exception here are symmetric
unicolored objects, but in that case it actually does not
matter if the orientation around the axis of symmetry is met
correctly as long as the match is good. The only case in
which problems occurred was when a flat, unicolored object
was placed on a table of the same color.

C. Assessing the Segmentation Quality

We examined the performance of our interactive segmenta-
tion approach by testing it with 30 objects of different shape,
size and visual appearance type (as defined above), which
have been segmented twice each. To measure the quality
of the obtained segmentations, two metrics are determined:
First, the object should be segmented as completely as
possible, i.e. in an optimal case the point cloud forming the
object hypothesis should fully cover the object. The second
metric is the size of the falsely segmented area, i.e. the part
of the scene that is segmented but does not belong to the
object. This happens when the object hypothesis includes
points that belong to the background or other objects.

Figure 6 shows these two values depending on the number
of pushes executed. As can be seen, after the first push
the object is usually not covered completely, but already
to a large part. After two to three pushes, the hypothesis
contains almost the complete object, with the exception of
small patches that newly appeared due to object rotation or
that were discarded from the hypothesis due to a change in
their appearance (e.g. reflections or bad depth estimation).
After four or more pushes, the coverage does not improve
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Fig. 6: The average segmentation quality depending on the
number of pushes that were executed. The red line shows the
segmentation ratio, i.e. the percentage of the object that is
included in the segmentation. The dashed green line depicts
the false positive rate, i.e. the fraction of the segmentation
that does not belong to the actual object.

further, but different parts of the object may become visible,
thus more information can still be gained.

The ratio of falsely segmented image regions compared
to the whole object is always quite small. It seems to grow
a bit from the first to the second push, but not any further
afterwards. Such false positives occur when the shadow cast
by the object leads to neighboring image regions being
considered to have changed, and some of them look alike
before and after the push, which frequently happens on
unicolored table surfaces. In this case, the part of the table
on which the object casts a shadow appears to belong to the
object itself. We are not sure whether there is a theoretically
sound solution for this specific ambiguity; it is probably
necessary to grasp and lift the object to dissolve it.

D. Learning of an Object Descriptor

To demonstrate that the obtained segmentations are suffi-
ciently complete and correct, we use them to train a simple
object recognition system. The available information we can
use are the image region that contains the object hypothesis,
i.e. the segmentation, as well as the 3D and color information
contained in the hypothesis point cloud itself. After each
push, the object hypothesis and thus the segmentation are
different, therefore we could generate several descriptors
for each object from different perspectives. For the sake of
simplicity, we just use the segmentation obtained after the
second push for each object, which usually yields a good
coverage, and generate only one descriptor.

To detect the learned objects in new images, we train a
color histogram based descriptor using the image region that
is occupied by the object hypothesis. The descriptor uses
Receptive Field Cooccurrence Histogram (RFCH) features
[23], [24] which are based on histograms of the colors and
their first and second derivatives in the segmented image
area.

These features allow to find image regions that have the
same color distribution as the learned object. We then try to



TABLE I: Object recognition rates.

similar point
of view

different point
of view

partly
occluded

false positive
rate

98.5 % 70.6 % 67.2 % 3.8 %

match the learned RGBD point cloud in those areas using
Iterative Closest Point (ICP) as in the motion estimation step
of our segmentation approach. The localization is accepted
if the resulting average point distance in Cartesian and color
space is below an equivalent of 1 cm (with the maximal pos-
sible color distance being equivalent to 10 cm in Cartesian
space).

Table I displays the recognition results for our set of
autonomously learned objects. They are placed in potentially
confusing scenes comparable to those shown in figure 5.
When the object is seen from approximately the same point
of view as during learning, the recognition rate is almost
100%. If the object has a significantly different orientation
with relation to the camera, or if it is partly occluded by
other objects, the recognition rate drops to around 70%. This
can be improved by using object descriptors generated from
different views, as we did in [11]. The false positive rate
is about 4%, which is entirely due to two small unicolored
objects in our test set that are sometimes fitted into blobs
of similar color. These solid recognition results demonstrate
the usefulness and quality of the segmentations obtained by
the robot following our approach.

VI. CONCLUSIONS
We have presented a new approach for interactive object

segmentation exploiting the manipulation capabilities of a
humanoid robot. The proposed method enables it to discover
and segment unknown rigid objects in an unknown, complex
scene by pushing them and analyzing the motion of color-
annotated 3D points obtained from the robot’s stereo vision
system. We have demonstrated that the provided segmenta-
tion results are of excellent quality and allow to train a well
performing object recognition system. As already shown in
[14], it is also possible to subsequently grasp the discovered
objects for further examination or manipulation.

In contrast to our previous work in this direction, the
approach proposed here works with almost any kind of rigid
object except those which are transparent, highly reflective or
impossible for the robot to move. We therefore believe that
it is a small but important step for increasing the adaptability
and autonomy of humanoid robots that will frequently have
to deal with new, unknown objects in realistic scenarios.
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