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Abstract— We present an approach for visually detecting
collisions between a robot’s hand and an object during grasping.
This allows to detect unintended premature collisions between
parts of the hand and the object which might lead to failure
of the grasp if they went unnoticed. Our approach is based on
visually perceiving that the object starts to move, and is thus a
good complement for force-based contact detection which fails
e.g. in the case of grasping light objects that don’t resist the
applied force but are just pushed away.

Our visual collision detection approach tracks the hand in
the robot’s camera images and analyzes the optical flow in its
vicinity. When a collision is perceived, the most probable part
of the hand to have caused it is estimated, and a corrective
motion is executed. We evaluate the detection together with
different reaction strategies on the humanoid robot ARMAR-
III. The results show that the detection of failures during grasp
execution and their correction allow the robot to successfully
finish the grasp attempts in almost all of the cases in which it
would otherwise have failed.

I. INTRODUCTION AND RELATED WORK

Grasping objects is an indispensable competence for hu-
manoid robots. While grasp planning is a challenging prob-
lem that (for good reason) received and still receives a lot
of attention, the actual execution of the planned grasps on
a real robot frequently poses serious problems too. Those
difficulties are due to imprecision in object localization,
hand-eye calibration and execution of the planned grasping
motion, as well as the planned grasps themselves which
may sometimes be inappropriate. The authors in [1] and [2]
have actually showed that the currently used grasp quality
measurements often lead the grasp planners to solutions that
are not reliable in the real world despite seeming good in the
used mathematical models. The problem of grasp plans that
are not or only approximately suitable arises in particular
when no precise object model is available or an unknown
object is to be grasped based on heuristics (like e.g. in [3]
and [4]).

Visual servoing [5] is an important technique that helps to
greatly reduce the effects of imprecise hand-eye calibration
and inexact arm motion by localizing both hand and object in
the same camera images. The position and orientation (pose)
of the hand relative to the object is thus determined visually
in the camera frame, and as long as the kinematic model is
good enough to allow for an approximately correct motion,
the hand can be visually guided towards the intended pose
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Fig. 1: The humanoid robot ARMAR-III grasping an object.

by continuous correction [6]. The degree of exactness that
can be achieved using visual servoing is essentially limited
by the precision of the perception components.

Thus, when we apply visual servoing, the remaining
causes of imprecision are the object localization algorithm,
the limited resolution of the vision system, the configuration
of the fingers, and the grasp planner, especially when no
perfect object model is available. In reality, these errors may
be small but will always be present, and a frequent result is
that the hand prematurely touches the object and moves it,
which may cause the grasping to fail. Therefore, whenever
the required accuracy of the grasp can not be guaranteed
by the planning, perception and kinematic components, the
robot should be aware of possible errors during the grasp
execution and be able to detect and correct them.

Collision detection during grasp attempts has mostly been
applied in the context of blind or reactive grasping, e.g. in
[7], where objects from a box are grasped blindly. The torque
detected by a force-torque sensor in the wrist of the robot
arm is used to determine which finger touched the object
and to correct the hand position accordingly. In [8], we
reactively grasp unknown objects that have previously been
segmented by vision and pushing actions. There, we use a
force-torque sensor in the wrist, tactile pads in the fingers and
the palm, and finger joint angle measurements to determine
the contact location during the grasping approach and correct
the hand position if necessary. In [9], tactile sensors in fingers
and palm are used to adapt the hand position and finger
configuration to the object pose and shape during the grasp



execution. In [10], the tactile sensors in the fingers are used
to reactively adapt the finger configuration while closing the
hand during grasp execution.

However, all approaches based on force or tactile feedback
require that the object resists the robot hand sufficiently so
that a force can actually be measured. For top-down grasps,
this is usually unproblematic as long as the object is not too
easily deformable, but when light objects are grasped from
the side, the sensitivity of the currently available sensors is
far from being sufficient. One way to circumvent this is to
use proximity sensors as in [11], another way is to use visual
information, which is what we propose in this work.

To the best of our knowledge, the only other attempt to
visually detect collisions in the context of grasping is [12].
They obtain an RGBD point cloud from a static depth camera
observing the scene which consists of a table surface with
only the object on it and the robot arm, of which a geometric
model is available. The arm is tracked in the depth image
and the object is segmented by removing the table surface.
When the object moves while the arm is near it, a collision
is assumed to have occurred. The most probable part of
the hand to have caused the collision is determined based
on the geometric model. This information would allow to
implement a reaction strategy, although this has not been
done yet in that paper. It is not obvious though how this
approach could be generalized to more complex scenes and
a non-static camera.

Our approach is related to [12] in the sense that it is also
based on the idea of visually detecting the motion of the
object when a collision occurs. We took some inspiration
from [13], where a static camera observes a scene in which
the robot arm approaches an object and, in the moment it
collides with it, causes a sudden spread of optical flow in the
image area occupied by the object. In our case the situation
is more complex though, as the camera is located in the robot
head and moves during the execution of the grasp.

II. OVERVIEW

The execution of a grasp in general comprises the mo-
tion of the robot’s arm, hand and fingers from an initial
pose to a configuration in which the object is held firmly
inside the hand. Collision-free motion planning in this high-
dimensional space is challenging [14]. A common approach
is to separate the grasp and the motion planning step by using
precomputed grasp tables which are applied on localized
object poses in order to allow for efficient processing. Such
grasping pipelines (see e.g. [15] or [16]) usually comprise
a motion execution component which is responsible for
moving the end effector along a planned path.

Within this work, we assume that a grasping pose pg to-
gether with a corresponding pre-grasp pose ppre are available
for the target object. Further, we assume that the straight
trajectory between ppre and pg is collision-free. For our
experiments, ppre and pg were defined manually, but in
general this approach can seamlessly be integrated as a grasp
execution module within the robot’s grasping pipeline. In
that case, the grasping poses will be computed by grasp
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Fig. 2: Schematic overview of grasping with collision detec-
tion and correction: First, the robot moves the hand to a pre-
grasp pose relative to the object. Then the actual grasp pose
is approached while continuously checking for collisions. If
a collision is detected, a corrective movement is executed
and the grasp pose adapted. When the grasp pose is reached,
the fingers are closed.

planning components, and the pre-grasp pose is equivalent to
a point on the approach trajectory. Fig. 2 shows a schematic
overview of the proposed grasp execution procedure. During
the critical last part of the approach, we continuously check
for collisions and if one is detected, a corrective reaction is
performed.

Fig. 3 shows the processes running during the critical
approach phase. The hand is guided towards the grasp pose
by visual servoing. At the same time, our visual collision
detection continuously checks for indications that the hand
has unintendedly collided with the object, in which case the
approach is interrupted.

The details of the collision detection algorithm are ex-
plained in the following section III, and the different reaction
strategies we implemented are described in section IV. The
detection and the different strategies are tested on our robot
and quantitatively evaluated in section V.

III. VISUAL COLLISION DETECTION

The main idea of our approach is to detect the motion of
the object that is caused by the unintended collision with the
hand. To this end, we track the hand in the camera images
and observe the optical flow next to it in the direction in
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Fig. 3: Visual servoing with collision detection: The intended
grasping pose relative to the object is approached using
visual servoing, i.e. the robot continuously localizes object
and hand visually, calculates the required relative motion
of the hand in Cartesian space and an appropriate joint
motion to realize it using inverse kinematics. Concurrently,
it checks for collisions, and if one is detected, the approach
is interrupted and a correction initiated.



which it is moving. The individual components are described
in the following subsections.

A. Hand Tracking

Visual tracking of the robot’s hand is necessary for both
the visual servoing and the collision detection. For the
visual servoing, we use a simple and very fast method in
which we localize the red spherical marker fixed to the
robot’s wrist which can be seen in fig. 1 (see [6]). The
orientation is obtained from the forward kinematics. For
collision detection, we use a tracking algorithm based on
the particle filter approach [17] which estimates the position,
orientation and finger configuration of the hand. This com-
prehensive information is particularly important when trying
to determine which part of the hand has collided with the
object.

The end effector of our humanoid robot ARMAR-III [18]
is a five-finger hand which is pneumatically actuated (i.e.
with air pressure), has two DoF in each finger and one in
the palm. Tactile sensor pads are installed in each finger
tip and the palm, and a force-torque sensor in the wrist.
However, these sensors are not used in this work1. The head
is equipped with a stereo camera system.

The particle filter estimates the position and orientation
of the hand, and a reduced set of the finger DoF, which
results in a 12-dimensional state space. The particles are
initialized with the position from the localization of the
spherical marker, the orientation from forward kinematics,
and the measured finger joint angles. In each iteration of the
particle filter algorithm, the particles are perturbed by adding
random Gaussian noise, and then the plausibility of the hand
configurations defined by the particles is evaluated based on
the current camera images. In the next iteration, particles
are redrawn with a probability proportional to their rating,
the relative hand motion since the last iteration is applied
to them, random noise is added and they are evaluated
again. Robustness of the tracking is enforced by only al-
lowing particle configurations that are within an empirically
determined interval around the configuration obtained from
forward kinematics and joint value sensor readings.

The key component of the particle filter is the rating
function which estimates for each particle si the conditional
probability p(z|si) that the input z (the camera images)
was caused by the hand configuration defined by si. This
probability is calculated based on five different cues, which
are each determined in both of the stereo camera images. The
first cue is q1(si) = 1/d, where d is the distance between
the positions of the red spherical hand marker in the model
and in the camera images. The other four cues are based
on the blue fingertips: They are projected into the images
given the hand configuration of particle si. The cue q2(si)
gives a rating proportional to the number of pixels in the
area covered by the fingertips that have the correct color,
q3(si) rewards if a large part of the area has the correct

1We used these sensors for reactive top-down grasping of unknown
objects in [8].

color2. The cue q4(si) checks for intensity edges in the
image that correspond to those of the projected fingertip, and
q5(si) takes the edge directions into account. The conditional
probability of a given particle si is then

p(z|si) = ϑ e
∑5

j=1 ωj qj(si)

where ϑ is a scaling factor and the ωj are weights for the
different cues.

On each pair of stereo camera images, two iterations of
simulated annealing are performed to enhance the precision
of the final localization result, which is the average of all
particles weighted with their probability.

B. Optical Flow

Concurrently with the hand localization, we calculate the
optical flow between the current camera image and the
one taken at the last iteration of the collision check. The
optical flow is determined using the algorithm proposed by
[19] which is implemented in OpenCV. The idea of the
algorithm is to approximate the neighborhood of each pixel
by a quadratic function. If a quadratic function undergoes
a translation, the displacement can be determined in closed
form. By iteratively determining these translations first on
a coarse and then on increasingly finer scales, larger dis-
placements that exceed the direct neighborhood of the pixel
can also be determined and refined. The algorithm provides
a dense estimation of the optical flow between two images,
although in larger monotone image regions it does not return
any values. This is not a problem in our case, as we are
interested in the image region around hand and object which
offers enough visual information for the algorithm.

C. Collision Detection

In [13], the moment of the collision between robot arm
and object is recognized by the fact that an area of significant
optical flow appears next to the hand. In our case, the
cameras are on the robot and moving with it during the
grasp, and consequently there is optical flow throughout the
whole image. Therefore we have to solve the more general
problem of discovering if an object next to the hand moves
in a way that is inconsistent with the rest of the scene. Note
that for the static part of the scene, its projected motion is
not equal throughout the image but depends on the distance
to the camera.

To overcome this problem, we cluster the pixels of the
camera image by their optical flow values. To this end,
we apply x-means, a variant of k-means that automatically
determines an appropriate number of clusters given a param-
eter that balances the number of clusters and their in-class
variance [20]. The idea is to detect if there is a cluster of
similar optical flow next to the hand which is different from
the optical flow in the rest of the scene, which would indicate
that an object is being moved by the hand.

2This way, we assure that the rating is not too good if the projected
fingertips are extremely small or large, which would be the case if only one
of the two criteria was used.



Fig. 4: Visual collision detection in the moment when the robot’s hand touches the object: The left column shows the scene
from the robot’s cameras immediately before and after the collision. The central column visualizes the optical flow, the
right column the clusters of similar optical flow, where each cluster has been marked with a distinct color. The darker area
is occupied by hand and arm and therefore ignored. The white box marks the area next to the hand where we expect a
possible collision to occur. If we find a cluster of optical flow that exists mostly within this area but not outside of it, this
observation indicates that the hand collided with an object and caused it to move.

The image area that is checked for such an outstanding
cluster is determined by taking the hand position, adding a
translation into the direction into which the hand is currently
moving, and projecting this point into the image. A quadratic
area around that point which has roughly the size of the
object is then analyzed3. For each cluster of similar optical
flow ci, we count the number ni of pixels belonging to it in
the whole image, and the number ai of pixels belonging to
it in the area in front of the hand. If for one of the clusters
the ratio ai

ni
is more than 0.5, i.e. most of the pixels of the

cluster occur inside that small area, this is a strong indication
that this unique motion has been caused by an object that is
being moved by the robot hand.

It is very probable (yet not certain) that the object will
move in a similar way as the robot’s hand and parts of its
arm. Therefore the image area covered by hand and arm,
which is determined based on the results of the hand tracking,
is not taken into account when the values ni and ai are
determined. Fig. 4 visualizes the optical flow, its clustering
and the relevant image regions just before and during a
collision.

Note that due to the restricted area in which we expect
collisions to happen, individual motion in the background
(which most of the time moves as a whole due to the
camera’s motion) can theoretically cause false collision de-

3The size of the object in the image can be estimated from its model and
the distance to the camera.

tections, but only when it occurs within the image area next
to the hand in the direction into which it is moving as
described above.

IV. CORRECTIVE REACTION

When the robot detects an unintended collision during
the grasp execution, it should react in a way that allows
to successfully complete the grasp. Optimally, the robot
would have all relevant information about shape and pose
of the hand and the object and could just re-plan a collision-
free grasp trajectory. But obviously this information is not
available, otherwise the collision wouldn’t have occurred in
the first place. Thus we have to use robust heuristics that can
deal with incomplete and uncertain information and create a
reaction that has a good chance of correcting the execution
error that the robot committed.

A. Collision Localization

One piece of information that is necessary for a reasonable
corrective reaction is which part of the hand collided with the
object. A random change of the hand pose may sometimes be
successful, but as shown in our experiments in section V the
informed reaction strategies are clearly superior to random
modifications of the grasp.

The information which part of the hand touched the object
is immediately available when one uses tactile sensors, but
if the collision was detected visually it has to be determined
in another way. Although this depends on the kind of hand



that is used, one can assume that for a majority of grasping
motions the fingers and in particular the fingertips are the
primary causer of premature collisions. In the case of the
conducted experiments, they are virtually always caused by
the fingertips. We therefore obtain their positions from the
hand localization and check which fingertip is closest to the
object. This measurement is of course subject to errors in
the perception of hand and object, but seemed to be always
correct in our experiments.

B. Reaction Strategies

We implemented and evaluated different reaction strate-
gies to correct the hand pose in the case of a premature
collision. We limited ourselves to modifying the position and
orientation of the whole hand, although we are aware that
there are cases in which it would be necessary to correct the
configuration of individual fingers.

The general reaction scheme is the same for all our
proposed strategies: When a collision is detected, the hand
retreats 2 cm into the direction that it came from with
an absolutely straight motion to avoid disturbing the ob-
ject any more. A corrective offset for the hand pose is
calculated according to the respective strategy. The hand
retreats another 2 cm during which half of the corrective
offset is already applied, to make sure that the reaction has
already taken effect before approaching the object again. The
corrective offset is then permanently applied to the grasp
pose definition. From that point on, the robot moves towards
the intended grasping pose again as usual.

If the robot collides with the object again, another correc-
tive reaction takes places. Thus, the corrective offsets add
up, and the robot repeatedly tries to grasp and corrects the
hand pose as often as necessary until the grasp is successful.
In practice it would probably make sense that if the grasp
doesn’t succeed after a certain number of corrections, a
totally different grasp is planned.

Within our reaction scheme, the key to a helpful correction
is to determine an appropriate corrective offset. As a baseline,
we implemented a strategy where the orientation of the
hand is modified by a small random rotation. Such a purely
exploratory approach would probably be the only possibility
if there were no further information available about the
collision, and there is a certain chance that the grasp will
eventually succeed after one or more random modifications
of the hand pose.

As in our case the information which finger collided with
the object is available, we can determine a more constructive
correction offset. The obviously useful kinds of motion are
to either translate the hand into the direction of the finger
that caused the collision, thus aligning the palm with the
closest part of the object, or to rotate the hand such that the
finger is turned away from the object, or a combination of
both. We implemented all three variants and comparatively
evaluate them in section V.

In the case of the hand of ARMAR-III, the thumb opposes
the four other fingers, therefore we only need to distinguish
whether the thumb or one of the other fingers collided with

TABLE I: Collision detection rate depending on the distance
that the object has moved

2 mm 5 mm 10 mm

76 % 92 % 96 %

TABLE II: Collision detection rate depending on the angle
between image plane and direction of movement (over a
distance of 5 mm)

0◦ 45◦ 70◦ 90◦

92 % 96 % 84 % 72 %

the object. Thus, our results can directly be transferred to
simple grippers or precision grasps with two fingers. For
more general hand configurations the reaction strategies have
to be adapted to the individual hand geometry following the
above principles.

V. EXPERIMENTAL EVALUATION

We evaluated our approach on the humanoid robot
ARMAR-III [18]. First, we tested the sensitivity of our visual
collision detector by manually moving the object over a fixed
distance while the robot hand was close to it. Table I shows
the detection rate for the object to have moved, depending
on the distance over which it moved. As can be seen, even if
the object was shifted only by 2 mm, this is already detected
most of the times, and when the translation is 5 mm or more
the detection rate is clearly over 90%. The rare cases in
which the object motion is still not detected when it moved
more than 5 mm occur when less than half of the object lies
within the observed area in front of the hand (see section III-
C). We did not observe significant differences in the detection
rate between the robot head being static or in motion, or
when people were moving in the background.

One concern we had about our approach was whether it
would be able to detect the object motion when it occured
in the direction perpendicular to the image plane. As we
are using optical flow, motions within the two dimensions
spanned by the image plane should create the clearest signal,
while e.g. a motion straight away from the camera would
only cause the object to shrink in the image. Therefore,
we tested moving the object by 5 mm in different angles
relative to the image plane. The results can be found in
table II, the experiment at an angle of approximately 0◦

is identical to the one for 5mm in table I. At 45◦ there
seemed to be no difference, at an angle of around 70◦ the
detection rate dropped slightly to 84%. This is the biggest
angle that may occur in practice on our robot, as the tables
etc. on which objects might be placed are lower than the
cameras, therefore a motion on the table plane can never
be exactly perpendicular to the image plane when the robot
looks approximately towards the object. For the sake of
completeness, we also tested a motion exactly into the depth
direction and still obtained a reasonable detection rate of
72%.



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1  2  3  4

a
c
c
u
m

u
la

te
d
 g

ra
s
p
 s

u
c
c
e
s
s
 (

%
)

number of correction movements

Position correction
Orientation correction

Position + orientation correction
Random rotation

Fig. 5: Percentage of successful grasps after a certain number
of correction movements, depending on the applied strategy.
E.g., for the orientation correction strategy, in 56% of the
cases one corrective motion was enough, another 36% of
the grasps were successful after two corrections, and the
remaining 8% of the attempts required three corrective
movements.

In the actual grasping experiments, we had virtually no
problems with undetected collisions. However, although the
experiments above suggest that a very small motion is
sufficient to detect the collision between hand and object,
the objects were usually pushed a few centimeters. The
two reasons for that are that our detection algorithm runs
only at 2-3 frames per second on a standard PC due to the
relatively high computational intensity of hand localization,
optical flow calculation and clustering. More importantly,
when a collision is detected, it takes some time until the hand
actually stops moving forward. For these reasons, depending
on the speed of the arm motion, the objects were usually
pushed over 1-4 cm. Therefore, when for some reason the
impact on the object position has to be kept minimal, the
approach speed would need to be relatively slow, depending
on the responsiveness of the used robot arm and, when this
is very good, also on the available computational capacity.

Finally, we tested the performance of the overall system
with the collision detection and the different reaction strate-
gies we proposed in section IV-B4. We used five different
test objects, and for each of them manually defined a grasp
that seemed reasonable but failed in the real world when
executed on the robot. We evaluated every reaction strategy
by placing each of the five objects at five different reachable
poses in front of the robot. We ignored grasp attempts that
were immediately successful, so every strategy was tested
with 25 grasps during which at least one collision with the
object occurred.

Fig. 5 depicts the results of these trials. It shows how many
of the grasping attempts had succeeded after a given maximal
number of corrections. The baseline strategy where after a
collision the hand hand pose was modified by a random
rotation of 25◦ performs rather badly, as was to be expected.

4A video of the experiment is submitted with the paper, a high quality ver-
sion can be found on https://www.youtube.com/watch?v=MkNIFWth5D4.

In only one case a single correction movement lead to a
successful grasp, and another attempt succeeded after three
and four corrections respectively.

The proposed strategies that take into account which finger
seems to have caused the collision perform significantly
better. The one where the position is modified by a translation
of 25 mm towards the finger that caused the collision
manages to successfully grasp the object after one correction
in 16% of the cases, and in another 24% two corrective
movements are sufficient. In 32% of the attempts three
corrections were necessary. The overall success rate after
at most four corrections is 88%, which is already quite an
achievement regarding the fact that without the reactions all
those grasps would have failed. In two of the remaining three
cases the object was still grasped after further correction
movements, but in one case it was finally pushed out of
reach of the robot.

However, the two reactive strategies where the orientation
of the hand was changed by 25◦ to turn the colliding finger
away from the object, or the orientation changed by 15◦ and
the position by 10 mm, turned out to be very successful.
Both managed to grasp the object after one correction in
about 60% of the attempts, and had an overall success rate
of around 90% after one or two and 100% after at most three
corrective movements.

We believe that the reason why the strategies that apply
a rotational correction are so much more effective than the
one that corrects only the position is that in our implemen-
tation of visual servoing, only the position of the hand is
visually corrected, but its orientation is obtained from the
forward kinematics of the robot. Thus, the orientation error
during execution is much bigger than the position error.
Additionally, when localizing an object, its position is usually
determined more reliably than its orientation. Therefore, it
is entirely possible that on other robotic platforms, or when
the visual servoing can also correct the hand orientation,
the comparison between the three strategies might turn out
differently.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an approach for visually detecting
undesired premature collisions between a robot’s hand and
the object that is being grasped. The detection is based on
analyzing the optical flow next to the hand in the direction
into which it is moving, and detecting when the optical flow
there is different from the rest of the scene, which indicates
that the robot has caused the object to move.

We also proposed different strategies how to react to such
a collision, which take into account an estimation of which
finger has caused it and correct the hand position and/or
orientation appropriately. Experimentally we showed that the
detection works very reliably and that the proposed reaction
strategies allow to correct a failed grasp attempt and virtually
always conclude it successfully.

As the next step, we plan to complement this visual
collision detector with classical tactile and force feedback
sensors to cover both the cases in which the object is moved

https://www.youtube.com/watch?v=MkNIFWth5D4


by the push and in which it resists it. How to combine these
different sources in a constructive way to faster and more
reliably detect collisions, and to determine the part of the
hand that caused them, will be the central question here.
This is of particular interest when executing more complex
grasps or manipulative actions.
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