
Heuristic 3D Object Shape Completion based on
Symmetry and Scene Context

David Schiebener, Andreas Schmidt, Nikolaus Vahrenkamp and Tamim Asfour

Abstract— Object shape information is essential for robot
manipulation tasks, in particular for grasp planning and
collision-free motion planning. But in general a complete object
model is not available, in particular when dealing with unknown
objects. We propose a method for completing shapes that are
only partially known, which is a common situation when a robot
perceives a new object only from one direction.

Our approach is based on the assumption that most objects
used in service robotic setups have symmetries. We determine
and rate symmetry plane candidates to estimate the hidden
parts of the object. By finding possible supporting planes based
on its immediate neighborhood, the search space for symmetry
planes is restricted, and the bottom part of the object is added.
Gaps along the sides in the direction of the view axis are closed
by linear interpolation. We evaluate our approach with real-
world experiments using the YCB object and model set [1].

I. INTRODUCTION AND RELATED WORK
Robots become useful when they interact with their envi-

ronment in a goal-oriented manner, i.e. when they execute
practical tasks. Being able to physically manipulate the
world distinguishes them from passive artificial systems and
enables them to perform production or service tasks. In order
to grasp or manipulate objects, shape information is crucial
for a robot to plan its actions. The required completeness
and precision of the shape information varies, but better
knowledge usually leads to better results. Grasp planning
algorithms traditionally assume and require that a complete
and exact object model is available [2], although some
approaches for finding grasp locations on unknown objects
have been proposed (e.g. [3], [4], [5]).

When a robot encounters a new object, which will proba-
bly happen quite frequently in a realistic open environment,
no shape information is initially available. Assuming that
the object can be segmented from its environment, the robot
can perceive the shape of the side that is facing it using
stereo or depth cameras. Depending on the agility of the
robot and the availability of sufficient free space around
the object, it can possibly be observed from more than one
direction. However, making all sides of the object visible
would require complex manipulation, which in turn requires
comprehensive knowledge about the shape (and preferably
other physical properties like mass distribution). A shortcut
solution that circumvents this problem is to generate a

The research leading to these results has received funding from the
European Unions Horizon 2020 Research and Innovation programme under
grant agrement 643950 (SecondHands) and Seventh Framework Programme
FP7 under grant agreement 270273 (Xperience).

The authors are with the Institute for Anthropomatics and
Robotics, Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany. schiebener@kit.edu, vahrenkamp@kit.edu,
asfour@kit.edu

reasonable hypothesis about the shape of the object based
on the available information, and use it to plan the intended
manipulation. This is the motivation behind our approach.

Unavoidably, assumptions have to be made when estimat-
ing the shape of the hidden object parts. One possibility
is to use basic geometric primitives to approximate the
object. In [6], the object is classified as being either box- or
cylinder-like, and the parameters of the respective primitive
are estimated using the perceived points. Using visibility
criteria for the generated new parts, the probability of the
estimation being realistic can be quantified. In [7], [8] and
[9], a superquadric is fitted to the object. Using Levenberg-
Marquard optimization, the parameters of the superquadric
are estimated from the object points obtained from a depth
camera.

Using a database of known shapes, the authors in [10] ap-
proximate the object by nonrigid alignment and deformation
of known shapes with the perceived points. In [11], a set of
shape primitives is fitted into the incomplete observation to
fill holes.

Most artificial and natural objects are, at least to some
degree, symmetrical. Based on that observation, a popular
assumption when aiming to complete partial object shapes is
that the object exhibits some kind of symmetry. Early work
on completing perceived object shapes exploiting apparent
symmetries goes (at least) back as far as 1988 [12]. The
authors in [13] propose a hierarchy of symmetry types that
they detect efficiently, starting with simple ones and possibly
combining them to more complex ones. In [14], the authors
model the object as an extrusion, which is a 2D profile
that is moved along a trajectory to form a 3D shape. They
restrict the possible extrusions to linear or circular paths, thus
the object is assumed to be symmetric. Once the symmetry
plane is found, the appropriate extrusion parameters can be
estimated.

The authors of [15] assume that the object has a plane of
symmetry, and try to find it. Presuming that the object stands
on a table surface, they generate candidates for possible
symmetry planes orthogonal to the table, mirror the perceived
object points on them, and rate them using visibility and
plausibility criteria. The best plane is retained, and the point
cloud resulting from original and mirrored points is used
for grasp planning. In [16], first the mirroring approach
from [15] is applied and then the completed object shape
is approximated by a superquadric. While superquadrics are
a rather restrictive subset of symmetric objects, they have the
advantage of defining a complete surface without any holes,
which is a helpful property e.g. for grasp planning.

(a) (b) (c)

(d) (e) (f)

Fig. 1: (a) is the camera image of the scene, in which the yellow mustard bottle has been segmented. (b) shows the point
cloud of the object (red) and the part of the environment that is near it (gray). In (c), the estimated supporting plane and the
symmetry plane that are used for shape completion are shown (both in yellow). It can be seen clearly that only the front
side of the object was perceived. (d) shows the new points (in green) that were generated by mirroring of the original points
on the symmetry plane. In (e) and (f), the final completed model is shown after adding the sides (dark blue) and the bottom
(light blue).

In this work, we generalize and extend the approach of
of the authors in [15] in a way that allows us to generate
complete surfaces without significant holes while keeping
the full freedom and descriptiveness of symmetric shapes.
Using not only the perceived part of the object itself but also
the scene around it, we are able to gain more information for
the shape completion and also relax some of the assumptions
made in their original approach.

II. OVERVIEW

The starting point of our approach is a point cloud, i.e.
a set of 3D points, of an unknown object that the robot
has perceived. In the worst case the object has only been
observed from one perspective, which means that only its
front side towards the camera is available. Our second input
is the point cloud of the scene around the object (Fig. 1a,
1b).

Thus, we assume that the segmentation problem, i.e.
separating the object from its environment, has already
been solved. This is in general an extremely hard problem
which we solve using in our previous work ([17], [18].
Here, segmentation hypotheses are verified and corrected by
the robot by pushing objects slightly and using coherent
motion as an additional cue to obtain reliable, grounded
segmentations.

Using the partial object and the scene point cloud, we gen-
erate candidates for possible supporting surfaces on which
the object might be standing. We assume that the object has
a planar symmetry and, in order to restrict the search space,
that the symmetry plane is perpendicular to the supporting
plane1. Consequently, for each potential supporting surface,
we generate corresponding symmetry plane hypotheses (Fig.
1c).

The plausibility of these hypotheses is rated based on vis-
ibility criteria considering the perceived object point cloud.
Once the best one has been determined, it is used to mirror
the perceived points and thus obtain a back side for the
object, i.e. the side of the object that is turned away from the
camera (Fig. 1d). Additionally, we close holes on the sides
of the object and add a bottom plane using the supporting
surface corresponding to the best found symmetry plane. As
a result, we get a point cloud that constitutes a complete 3D
model of the object of interest (Fig. 1e, 1f).

In the following sections, we will explain all steps of that
process in detail, and give the information necessary for re-
implementation. We have used the point cloud library PCL

1It may happen that the object has a symmetry plane parallel to the surface
it is standing on. Mirroring on such a plane would not be very helpful for
estimating the back side of the object, which is why we enforce that roughly
vertical symmetry planes are determined.

[19], the very lightweight vision library IVT [20] and the
linear algebra library Eigen [21].

III. SYMMETRY PLANE HYPOTHESES

Assuming that the object has a planar symmetry, the main
challenge is to find it based on the available partial shape
information. We use information about the scene surrounding
the object to restrict the search space that needs to be
sampled.

A. Supporting plane hypotheses

Unless it is held by someone, the object must be standing
on some kind of supporting structure. We assume that the
robot knows the direction of gravity, which can easily be
achieved using an inertial measurement unit, and that the
structure supporting the object must be roughly perpendicular
to this vertical direction.

We search the immediate neighborhood of the object for
surface candidates on which the object is standing. We use
the scene point cloud, from which the object has been
removed, and consider only those points that lie near the
object. With the object radius robj being defined as half of
the maximal diameter of the object point cloud, we remove
all points that are further than 3 · robj away from the object
center. So with S being the complete scene point cloud, O
the object point cloud and Cobj the center of the object2, the
neighborhood point cloud N is defined as

N = {pi ∈ S \O | |pi − Cobj | < 3 · robj}.

In this neighborhood point cloud, we determine the dom-
inant planes using random sample consensus (RANSAC,
[22]). A plane is defined by three non-collinear points, and
we repeatedly draw random samples of three points from the
scene point cloud. For each of these samples we determine
the corresponding plane parameters and count the number
of scene points that lie within a tolerance margin of that
plane3. We keep the plane with the maximal number of
inliers, remove them from the scene point cloud, and repeat
the process until we find no more planes with a minimal
number of inliers4.

From these planes, we select those that are reasonable
candidates as supporting surface of the object. There are
two criteria that have to be met by each surface Si. Firstly,
the surface should be roughly horizontal, i.e. its normal ni
should not differ too much from the direction of gravity g.
Consequently, we prefer planes for which the angle

α = arccos

(
|ni · g|
|ni| · |g|

)
between ni and g is small. Secondly, as we assume that
the object is standing on it, there should not be too many

2Although one might extensively discuss how to best define the center of
an object, in this case only a rough approximation is needed and we simply
use the mean of the object point cloud.

3The appropriate value for the threshold essentially depends on the
precision of the depth perception. We set it to 3mm.

4The value of this threshold should depend on the cardinality of the
neighborhood. We set it to 3% of the number of points in the neighborhood.

object points lying below the plane. For each point pj , we
calculate its projection pPj onto the surface. The sign of the
scalar product of (pj − pPj) · ni indicates whether the point
is lying above or below the plane, so the set Obi ⊆ O of
object points lying below the plane is

Obi = {pj ∈ O | (pj − pPj) · ni < 0}.

The ratio of object points below the surface, and the angle
between its normal and the direction of gravity, are then used
to define an rating for the surface candidate, which is given
as the weighted sum of those two cues:

ri = ω1 α+ ω2
|Obi |
|O|

.

The weights ω1, ω2 are chosen so that an angle α = 90◦

between ni and g is equivalent to half of the points being
below the supporting plane hypothesis. To limit the computa-
tional effort later, we only keep the 10 best supporting plane
candidates.

B. Generation of symmetry plane candidates

Similar to [15], we make the assumption that the symmetry
plane of the object is perpendicular to the supporting surface,
with the important difference that we have several hypotheses
for that surface. For each of them, we create symmetry plane
candidates by uniform sampling. A plane can be defined by
a support vector and two orthogonal vectors that span it.
Initially, we choose the center Cobj of the object point cloud
O as the support vector. With OP being the projection of O
onto the supporting surface, we choose the principal axis of
OP which is more orthogonal to the view direction as the
first spanning vector, and the normal of the supporting plane
as the second one.

Starting from this initial symmetry plane candidate, we
generate more candidates by rotating and shifting the plane
over regular intervals. We obtain the translation axis at by
projecting the view direction onto the supporting plane. The
translational sampling along this axis is restricted to an
interval between the 0.1 and 0.9 quantile of the object point
cloud along that axis. For each position, we sample different
orientations by rotating the plane around the normal of the
supporting surface, with a maximal rotation of 45◦ in both
directions.

The required computational effort to analyze and rate all
symmetry plane hypotheses is proportional to the product
of the number of supporting plane hypotheses, translational
samples per plane and rotational samples per translation.
Thus, restricting the sampling space efficiently is the key
to having a high chance of good results within a reasonable
computation time. By testing different potential supporting
surfaces, we allow for a higher flexibility compared to [15],
for the price of higher effort - or a lower sample density
when we keep the effort similar. In section V-B, we show
how to to find a good compromise for the sampling density
parameters.

C. Calculation of points mirrored on a plane

Given a symmetry plane candidate with support vector c
and normal n, a point pi is mirrored to the point p′i by adding
twice the vector from the point to its orthogonal projection
onto the symmetry plane. With

pPi = pi −
(pi − c) · n

n · n
n

being the orthogonal projection of pi, we get the mirrored
point

p′i = pi + 2(pPi − pi) = 2pPi − pi = pi − 2
(pi − c) · n

n · n
n.

D. Rating of symmetry planes

In order to choose the best symmetry plane candidate, a
rating of its apparent plausibility is necessary. It is calculated
based on the locations of the points that are generated
by mirroring the originally perceived object points on the
symmetry plane. Depending on its position, a mirrored point
falls in one of these four categories:

1) If it is very close to an original point, this indicates
that the symmetry hypothesis is reasonable.

2) If it lies behind the original points, and thus would be
invisible for the camera, it may be a correct estimation
that introduces information about the back side of the
object.

3) If, in contrast, the point lies besides or in front of the
original object points, it would be visible to the camera
and, if it belongs to the object, should be already
included in the original point set. Therefore, it indicates
that the symmetry plane hypotheses may be incorrect.

4) If a mirrored point lies underneath the estimated sup-
porting surface, this also reduces the credibility of the
candidate symmetry plane5.

Fig. 2 shows the different possible positions of the mir-
rored points. To rate a symmetry hypothesis, each point p′i is
categorized to belong to one of them. The first check is for
the point to be above or below the supporting plane. If it is
below, its distance to the plane is added to the rating with a
negative weight. For the remaining points, we first check if
they are beside the original point cloud when seen from the
camera. This is done efficiently using a binary segmentation
mask created by projecting the object point cloud into an
image and closing it using morphological operations [23].
If the point is projected outside that segmentation area, it is
beside the object, otherwise it may be in front of, behind, or
coinciding with the original points.

In any case, the nearest neighbor of of p′i in the original
point cloud can be determined as

n(p′i) = argmin
pj∈O

|p′i − pj |.

5As the symmetry planes are perpendicular to the supporting plane, these
points are the same for all symmetry hypotheses based on the same sup-
porting surface candidate. However, they indicate that the supporting plane
candidate may be bad and are therefore helpful for preferring symmetry
hypotheses originating from different potential supporting planes.

Fig. 2: Visualization of the different regions where the mir-
rored points may lie with relation to the original object points
(black). If the new points lie amongst the original ones, they
support the symmetry plane hypothesis. If they lie behind
them (gray), they give additional speculative information
about the object shape. If they are in front of or beside the
original points (red), they would have been visible before, so
they indicate that the symmetry plane might be incorrect. The
same holds for points that lie under the estimated supporting
surface (orange).

If p′i is projected within the segmentation mask, the distances
of p′i and n(p′i) from the camera are compared to decide
whether it lies in front of, within, or behind the original
point cloud. If it lies in front of or beside of it, the distance
between p′i and its nearest neighbor is used for the rating
with a negative weight. If it lies within or behind the original
points, a positive value is added to the rating. These two
positive values can be used to balance the preference of
symmetry hypotheses that either seem plausible for having
many points that coincide with the original ones, or generate
more speculative information about the back side of the
object. We give the same weight to both categories.

The overall rating of a symmetry plane candidate is the
sum of the positive and negative ratings for all mirrored
points. As the two negative and the two positive categories
get the same weight respectively, the ratio of positive and
negative weight doesn’t matter for the outcome. We nor-
malize the rating by the number of points, which also
makes no difference for choosing the best symmetry plane
but allows for comparison between different objects (or
different perceptions of the same objects). The symmetry
plane candidate with the best rating and its corresponding
supporting plane hypothesis are selected, and all original
points are mirrored on it.

IV. ADDITIONAL SHAPE COMPLETION STEPS

When testing the shape completion based only on mir-
roring the object point cloud, we observed that there were
often significant holes left in the result. Usually, an object
perceived by the robot is seen well from the front and from
the top. The back side, and sometimes the rear part of the top

(a) (b) (c)

Fig. 3: Visualization of how the points on the sides of the
object are determined. In (a), the point cloud is subdivided
into horizontal segments. Within each segment, we find the
left- and rightmost points. They, and all points within the
segment that are near the vertical lines through them, are
considered to be edge points. This is shown in (b) for the
bottom segment. In (c), all resulting edge points are marked
in red.

when it isn’t flat, are reconstructed by the mirrored points.
But the sides, when they are roughly aligned with the view
direction, tend to be missing. This is due to the fact that
with stereo cameras as well as active depth sensors, little
reliable depth data can be perceived from these surfaces.
Additionally, when an object is segmented, the borders of
the segmentation are often imperfect.

The bottom of the object is usually invisible to the camera,
except when the object is bowl-shaped or open at the front.
Little or no information can be added here by mirroring on
a symmetry plane that is perpendicular to the supporting
surface. As we want to estimate an object model that is
as complete and hole-free as possible to allow e.g. grasp
planning algorithms to work on it, we perform additional
shape completion steps to overcome these two frequent
deficits.

A. Sides of the object
To define what are the sides of the object, we consider its

points in the camera coordinate system. Here we are looking
for its roughly vertical edges, i.e. the minimal and maximal
values along the horizontal image plane axis for any existing
value on the vertical axis. As the object is given in the form
of a discrete point cloud and not as a filled spatial region,
we have to approximate its outline.

First, we project all points into the image plane, i.e. the
two dimensions perpendicular to the view direction. One
possibility would be to use the two-dimensional convex hull,
but this would lead to great errors on concave shapes. Instead,
we subdivide the point cloud along the vertical direction to
get horizontal segments, in each of which we determine the
left- and rightmost point. Here the size is crucial, as too large
intervals would eliminate details, while too small ones would
carve into the object when no point on the actual border lies
within the segment.

We determine the mean distance d̄ of a point in the original
object point cloud O to its respective nearest neighbor:

d̄ =
1

|O|
∑
pi∈O

min
pj∈O/{pi}

|pi − pj |.

The point cloud, projected into the camera plane, is subdi-
vided vertically into equal intervals between its highest and

lowest point, such that the height of the subdivision segments
is greater or equal to 2 · d̄. This gives a high certainty that
actual edge points are contained in each segment, while still
maintaining a reasonable degree of precision (see Fig. 3a).

In each segment, we determine the minimal and maximal
point in horizontal direction. These points, and all points in
the segment that are within a distance of d̄ from the vertical
line through the minimal or maximal point, are considered to
be part of the edge (see Fig. 3b). Each of these edge points
is connected with its mirrored counterpart on the back side
of the object. Along the straight line connecting the original
and the mirrored point, we add points in regular intervals of
length d̄.

B. Bottom of the object

The bottom part of an object standing on something else
is usually not visible, so it is a very common case that it is
missing in the perceived object point cloud. We rely mostly
on the estimated supporting plane to add a bottom part in
the last step of our shape completion approach. We estimate
the area where the object touches the supporting surface,
and close it there. To this end, we select all points of the
model generated so far, i.e. original as well as mirrored and
side points, that are very close to the supporting plane. The
threshold is set to 3 · d̄.

These points which seem to be close to the bottom of the
object are projected onto the supporting plane. We calculate
their convex hull and fill it with a regular grid of points at
intervals of d̄. It is important that only the low object points
are used to estimate the bottom area, because otherwise we
would create artificial planes under object parts that spread
out in higher parts of the object, e.g. the handle of a cup.

There are still cases in which this approach would create a
too large bottom part. This occurs when the part of the object
that is in contact with the supporting surface is not convex,
or even unconnected, e.g. when the object has legs like a
table. To limit this effect, we remove all bottom points that
would have been visible from the camera, similar to what
we do in the rating of the symmetry hypotheses in section
III-D.

V. EXPERIMENTAL EVALUATION

We evaluated our approach using the YCB object and
model set [1]. Out of the overall set of 75 objects, 18 cannot
be perceived well enough by the active RGBD camera that
we use because they are transparent, reflective or too small.
Another 5 objects are deformable, and 4 have the same shape
but different sizes, so we performed our experiments using
the remaining 49 unique and well perceivable objects to
evaluate our approach.

Each object was segmented by our interactive object learn-
ing approach presented in [18], where the object is pushed
by the robot and its motion is used as an additional cue
to obtain reliable segmentations even in extremely cluttered
scenes. This allows us to go beyond the usual lonely-object-
on-empty-table setup and perceive the objects in more varied
environments (such as shown in Fig. 1a). We used the

segmentation result after performing 3 pushes on the object.
From the experimental results in [18], we expect to cover
around 95% of the visible object parts, which subjectively
seemed to hold for this new object set too.

Based on the point cloud obtained from the segmentation,
we apply our algorithm for shape completion. The result is
compared to the ground truth, which is available in form of
the scanned models of the YCB object and model set.

A. Quality measures

To quantify the accordance of our completed object shape
with the model, we first need to align them. Loading the
model as a point cloud, we match it with the completed point
cloud using the Iterative Closest Point (ICP) algorithm [24].
As this algorithm finds a local optimum, we start it with
different initial relative positionings: The two point clouds
are placed so that their centers are in the same location,
and one of them is rotated so that it takes all six possible
orientations that can be reached by rotations of 180◦ around
the three axes. We keep the ICP result with the smallest mean
error, thus avoiding to use an alignment that got stuck in a
local minimum far off the correct matching of the two point
clouds. However, the alignment may be imperfect, therefore
our ratings for the completed point clouds may sometimes
be a bit worse than they deserve.

One measure is the mean distance of each point in one
point cloud to its nearest neighbor in the other point cloud.
We calculate this score in both directions, i.e. we determine
the nearest neighbor for each point of the completed shape
in the ground truth model, and vice versa, to make sure the
rating penalizes missing or added object parts. This gives
a good measure of the distance between estimated and real
shape, however it is also influenced by the pixel density and
precision of the camera.

Therefore, we also calculate a measure that is intended to
quantify the shape similarity in a way that gives a robust and
dimensionless correlation value. To this end, we project the
completed shape and the model into an image, thus getting
a binary silhouette. We do this from all three directions
along the coordinate axes. We calculate two measures for
the silhouette similarity: The zero-mean normalized cross
correlation (ZNCC), and the ratio of the size of the region
that is occupied by both to the size of the region occupied by
at least one of the two silhouettes, i.e. |S1∩S2|

|S1∪S2| . Both measures
give a value in [0, 1] that is 1 for perfect correspondence and
0 for none. We give the average of these values for the three
projections from different directions.

B. Quality depending on the sampling density

The main tradeoff to be made in our approach is between
the required computation time and the quality of the resulting
completed object shape. With |O| being the number of points
in the original object segmentation, the expected effort is
in Θ(|O| log |O|) for the nearest neighbor search, all other
calculations are linear in |O|. The objects are segmented at a
resolution of 320× 240, and the original object point clouds
contain between 100 and 900 points, on average 312. The

 0

 5

 10

 15

 20

 25

 30

 600 1000 2000 4000

av
er

ag
e

po
in

t d
is

ta
nc

e
(m

m
)

time (ms)

model - object
object - model

 0

 0.2

 0.4

 0.6

 0.8

 1

 600 1000 2000 4000

si
lh

ou
et

te
 o

ve
rla

p

time (ms)

ratio intersection/union
ZNCC

Fig. 4: The upper graph shows the mean distance of a point
in the completed object shape to its nearest neighbor in the
ground truth model, and vice versa. The lower graph shows
two measures for similarity of the projected silhouettes of
the completed shape and the ground truth. One measure is
the zero-mean normalized cross correlation (ZNCC), and the
other gives the ratio of the image region covered by both
silhouettes to the image region that is covered by at least one
of the two silhouettes. The solid lines show the average for
the whole test set, and the striped regions show the standard
deviation over the different objects.

resulting completed models contain on average 1251 points,
which is about 4 times the initial size.

As we don’t want to downsample the object point cloud,
the most effective factor with which we can influence the
computational effort is the number of samples for the po-
sition and orientation of symmetry plane candidates. We
leave the number of potential supporting planes fixed at
10, but vary the number of positions and orientations of
the symmetry plane candidates that are tested for each of
the supporting surfaces. Fig. 4 shows the dependency of the
shape quality on the invested computation time. As can be
seen, the quality reaches a certain saturation when more than
one second is spent testing symmetry plane candidates. This
corresponds to a sampling density of 20 different positions
per supporting surface and 10 different orientations per
position.

Table I shows the computation times for the different steps
of the shape completion using this sampling density. The
computationally intensive steps are parallelized, and we run
our experiments on a PC with an Intel Core i7 CPU with
8 virtual (4 physical) cores at 3.6 Ghz. There is certainly
potential for some more speedup, but we considered the
required time to be acceptable for our intended future use
as a prerequisite to grasp planning.

TABLE I: Computation times for the different steps of our
algorithm (in ms). The values are averages over the whole
test set, with the standard deviations given in brackets.

find
supporting

planes

generate and
evaluate

symmetry planes

add sides and
bottom

total

150.3 (±45.5) 535.4 (±168.3) 144.4 (±82.9) 830.1 (±425.0)

Fig. 5: Results of our shape completion approach for a spray
bottle, a cylindrical and a box-shaped package from the test
set. The first and second column show the original point
cloud, the third and fourth show the result. The original
points are red, those generated by mirroring on the symmetry
plane are green, the sides are dark blue and the bottom points
are light blue.

C. Discussion of the results

The results show that when sufficient computation time is
invested, the shape completion is able to create estimations
that robustly come close to the real object shapes. While it is
hard to judge the absolute similarity between estimated and
real shape from the average point distances, the silhouette-
based measurements indicate that the concordance is high,
but not perfect. The fact that the mean distance of a point
in the ground truth model to its nearest neighbor in the
completed shape is higher than that of a point in the
completed shape to the model indicates that our estimations
tend to lack parts of the real object.

We have identified two reasons for this: One is that already
in the segmentation that we use, the visible side of the
object is not covered completely. This error is propagated
through the shape completion, and consequently the resulting
shape estimation will be smaller than the actual object,
missing the parts whose visible side was not included in

the segmentation. Another case where our approach often
slightly underestimates the volume is when dealing with
rounded objects. Here, the depth camera tends to give no
values at the edges of the object where its curvature causes
the surface to be nearly parallel to the view axis. In those
cases, our method connects front and mirrored back sides
by straight lines, which is approximately correct, but omits
the bulge on the side. A good example to see this is the
cylindrical coffee package in the second row of Fig. 5.

Overall, the shape estimations resulting from our approach
approximate the real objects reliably without huge errors.
The approach is robust to the objects being placed in non-
trivial environments and on tilted supporting surfaces, which
is certainly a step forward compared to previous work that,
to our best knowledge, only considered objects in isolation
from their environment. However, we benefit to some degree
from the fact that the objects in the test set were all at least
roughly symmetrical. For a totally asymmetrical object, the
shape completion error would probably be larger.

In our evaluation, we have only considered the most
problematic case in which the object has only been seen from
a single point of view. In practice, a robot will usually be
able to move its cameras at least a bit and thus perceive more
than only one side of the object, to which we informally refer
as the ”front side” here. Any additional points on the sides
and on the back side of the object will make the estimation
of the symmetry plane significantly easier and more stable.
When different points of view are taken into account for
the visibility criteria in the rating of the symmetry plane
hypotheses, that rating becomes much more meaningful, and
the potential volume of misestimations of the back side
would effectively be restricted to the remaining region that
can not be seen from any of the points of view.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an approach for estimating complete
3D shapes of objects that have only been observed partially.
Focusing on the worst case, and probably the most common
one, where only one side of the object was perceived, we
propose robust heuristics that allow to construct a complete
model from this limited information. The main assumption
is that the object has a symmetry plane that can be used to
estimate its back side.

We extend the approach of [15] in several respects: By
considering several potential supporting surfaces, we allow
for the objects to be placed in nontrivial scenes, instead of
requiring them to be placed on an empty table. We also
use the estimated supporting plane to close the object at the
bottom, and additionally fill the frequently occurring holes
at the sides of the object which arise when the sides are
roughly aligned with the view direction of the camera. Thus
we obtain a complete object surface without sacrificing the
flexibility of the approach as compared to e.g. superquadric
based approaches. The method has been evaluated using the
extensive YCB object and model set [1], and the results
indicate that in most cases a very good approximation of
the actual object shape can be obtained.

Fig. 6: Two grasps planned on the completed point cloud of
the spray bottle, which is one of the rather difficult objects
from the test set (see also first row of Fig. 5).

The next step is to use the estimated object model to run a
grasp planning algorithm (see Fig. 6) and perform grasping
experiments based on the obtained object shape information
on a real robot. It will be interesting to evaluate how much
the grasp success rate is affected by deviations in the object
model, and if and how grasp planning needs to be modified to
provide solid grasp configurations under these circumstances.
For performing these grasps on a real robot, we hope that
a robust grasp execution component that reacts to occurring
problems (e.g. as presented in our previous work in [25])
will allow us to compensate for slightly imperfect grasps.

REFERENCES

[1] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. Dollar,
“The YCB object and model set: Towards common benchmarks
for manipulation research,” in IEEE International Conference on
Advanced Robotics (ICAR), 2015.

[2] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis - a survey,” IEEE Transactions on Robotics, vol. 30, no. 2,
pp. 289–309, 2014.

[3] G. Kootstra, M. Popovic, J. Jørgensen, K. Kuklinski, K. Miatliuk,
D. Kragic, and N. Krüger, “Enabling grasping of unknown objects
through a synergistic use of edge and surface information,” Interna-
tional Journal of Robotics Research, vol. 31, no. 10, pp. 1190–1213,
2012.

[4] D. Fischinger and M. Vincze, “Empty the basket - a shape based
learning approach for grasping piles of unknown objects,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2012, pp. 2051–2057.

[5] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” The International Journal of Robotics Research, vol. 34, no.
4-5, pp. 705–724, 2015.

[6] Z.-C. Marton, D. Pangercic, N. Blodow, J. Kleinehellefort, and
M. Beetz, “General 3d modelling of novel objects from a single
view,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2010, pp. 3700–3705.

[7] F. Solina and R. Bajcsy, “Recovery of parametric models from range
images: the case for superquadrics with global deformations,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 12,
no. 2, pp. 131–147, Feb 1990.

[8] G. Biegelbauer and M. Vincze, “Efficient 3d object detection by fitting
superquadrics to range image data for robot’s object manipulation,” in
IEEE International Conference on Robotics and Automation (ICRA),
2007, pp. 1086–1091.

[9] K. Duncan, S. Sarkar, R. Alqasemi, and R. Dubey, “Multi-scale
superquadric fitting for efficient shape and pose recovery of unknown
objects,” in IEEE International Conference on Robotics and Automa-
tion (ICRA), 2013.

[10] M. Pauly, N. J. Mitra, J. Giesen, M. H. Gross, and L. J. Guibas,
“Example-based 3d scan completion,” in Symposium on Geometry
Processing, 2005, pp. 23–32.

[11] R. Schnabel, P. Degener, and R. Klein, “Completion and reconstruction
with primitive shapes,” in Computer Graphics Forum, vol. 28, no. 2,
2009, pp. 503–512.

[12] R. A. Grupen, T. C. Henderson, and C. D. Hansen, “Apparent
symmetries in range data,” Pattern recognition letters, vol. 7, no. 2,
pp. 107–111, 1988.

[13] S. Thrun and B. Wegbreit, “Shape from symmetry,” in IEEE Inter-
national Conference on Computer Vision (ICCV), vol. 2, 2005, pp.
1824–1831.

[14] O. Kroemer, H. Ben Amor, M. Ewerton, and J. Peters, “Point cloud
completion using extrusions,” in IEEE-RAS International Conference
on Humanoid Robots (Humanoids), 2012, pp. 680–685.

[15] J. Bohg, M. Johnson-Roberson, B. León, J. Felip, X. Gratal,
N. Bergstrom, D. Kragic, and A. Morales, “Mind the gap - robotic
grasping under incomplete observation,” in IEEE International Con-
ference on Robotics and Automation (ICRA), 2011, pp. 686–693.

[16] A. Huamán Quispe, B. Milville, M. A. Gutiérrez, C. Erdogan, M. Stil-
man, H. Christensen, and H. B. Amor, “Exploiting symmetries and
extrusions for grasping household objects,” in IEEE International
Conference on Robotics and Automation (ICRA), 2015.

[17] D. Schiebener, J. Morimoto, T. Asfour, and A. Ude, “Integrating
visual perception and manipulation for autonomous learning of object
representations,” Adaptive Behavior, vol. 21, no. 5, pp. 328–345, 2013.

[18] D. Schiebener, A. Ude, and T. Asfour, “Physical interaction for
segmentation of unknown textured and non-textured rigid objects,” in
IEEE International Conference on Robotics and Automation (ICRA),
2014, pp. 4959–4966.

[19] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011.

[20] P. Azad, “Integrating Vision Toolkit (IVT),” 2011. [Online]. Available:
http://ivt.sourceforge.net

[21] G. Guennebaud, B. Jacob, et al., “Eigen v3,” 2010. [Online].
Available: http://eigen.tuxfamily.org

[22] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” in Communications of the ACM, vol. 24,
1981.

[23] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge university press, 2003.

[24] P. Besl and N. McKay, “A method for registration of 3-D shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239–256, 1992.

[25] D. Schiebener, N. Vahrenkamp, and T. Asfour, “Visual collision
detection for corrective movements during grasping on a humanoid
robot,” in IEEE-RAS International Conference on Humanoid Robots
(Humanoids), 2014, pp. 105–111.

http://ivt.sourceforge.net
http://eigen.tuxfamily.org

	INTRODUCTION AND RELATED WORK
	OVERVIEW
	SYMMETRY PLANE HYPOTHESES
	Supporting plane hypotheses
	Generation of symmetry plane candidates
	Calculation of points mirrored on a plane
	Rating of symmetry planes

	ADDITIONAL SHAPE COMPLETION STEPS
	Sides of the object
	Bottom of the object

	EXPERIMENTAL EVALUATION
	Quality measures
	Quality depending on the sampling density
	Discussion of the results

	CONCLUSIONS AND FUTURE WORK
	References

