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Abstract— Grasp stability estimation with complex robots in
environments with uncertainty is a major research challenge.
Analytical measures such as force closure based grasp quality
metrics are often impractical because tactile sensors are unable
to measure contacts accurately enough especially in soft contact
cases. Recently, an alternative approach of learning the stability
based on examples has been proposed. Current approaches of
stability learning analyze the tactile sensor readings only at the
end of the grasp attempt, which makes them somewhat time
consuming, because the grasp can be stable already earlier.

In this paper, we propose an approach for grasp stability
learning, which estimates the stability continuously during the
grasp attempt. The approach is based on temporal filtering
of a support vector machine classifier output. Experimental
evaluation is performed on an anthropomorphic ARMAR-IIIb.
The results demonstrate that the continuous estimation provides
equal performance to the earlier approaches while reducing the
time to reach a stable grasp significantly. Moreover, the results
demonstrate for the first time that the learning based stability
estimation can be used with a flexible, pneumatically actuated
hand, in contrast to the rigid hands used in earlier works.

[. INTRODUCTION

The sense of touch is essential to human grasping. The
work described in this paper considers robotic tactile sense as
a biomimetic replacement for the sense of touch, especially
when estimating grasp stability. Grasp stability in analyti-
cal sense is well defined and can be readily computed in
simulation where enough data of the grasp is available, i.e.
all contacts between the robotic hand and the object that
is grasped. Additionally, using a force closure metric for
grasp stability, one can compute a grasp that sufficiently
resists outside forces, such as gravity, thus allowing the robot
to manipulate the object, for example by lifting the object.
However, when using real hardware, the tactile sensor data is
imperfect, both in the sense of detecting contacts and in the
sense of determining the actual contact forces. In some cases
the proprioceptive information, i.e. joint configuration, is also
difficult to determine accurately, thus, causing uncertainty
in ascertaining the kinematic configuration of the hand.
All these described phenomena pave a difficult road for
computing the grasp stability analytically with real hands.
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In this paper, we focus on learning the grasp stability
instead of analytically solving it. Compared to the analytical
methods, learning requires training data, which needs to be
collected beforehand. As the training data, we can use any
pertinent data that can be collected from robotic hand, in
our case we use input from all tactile sensors and the hand
finger configuration. It is also important to notice that the raw
sensor data can be used in the learning, for example, there is
no need to know the kinematic configuration of the hand to
compute the true locations of the contacts when analytically
solving the grasp stability. This feature allows grasp stability
to be learned for many different robotic hands with only
minimum changes.

There has been a number of publications on learning
the grasp stability [1], [2]. These approaches evaluate the
stability after the hand finished closing around an object.
We extend the work presented in previous papers, so that
the decision on the grasp stability can be achieved during the
grasping instead of at the end of the grasp. We also demon-
strate that the learning of the grasp stability is possible with
the ARMAR-IIIb hand [3], [4], a flexible anthropomorphic
hand operating on pneumatics.

The rest of the paper is divided into four sections. Sec-
tion II gives an overview on learning grasp stability as well
as other learning approaches that are grasp and manipulation
related. Section III introduces a theoretical background on
machine learning methods and how they can be applied to the
grasp stability problem. Section IV contains the experiments
made on data collected using the ARMAR-IIIb hand. We
conclude with discussion of the results in Section V.

II. RELATED WORK

Grasp stability analysis by analytical means is a well es-
tablished field. However, to analytically determine the grasp
stability, the kinematic configuration of the hand and the
contacts between the hand and the object must be perfectly
known. This subject has been well studied and [5] gives a
detailed review on the subject. However, the references are
useful only in cases when conditions described above are
true. When this is the case, it is possible to determine if
the grasp is either force or form closure grasp [6], which
ensures the stability. Compared to this body of work, we
wish to learn the stability from existing data, i.e. the tactile
data.

The research on use of tactile and other sensors in a
grasping context has increased in last few years. Felip and
Morales [7] developed a robust grasp primitive, which tries to
find a suitable grasp for an unknown object after a few initial



grasp attempts. However, only finger force sensors were used
in the study.

Apart from using tactile information as a feedback for
low level control [8], tactile sensors can be used to detect or
identify object properties. Jiméneza et al. [9] use the tactile
sensor feedback to determine what kind of a surface the
object has, which is then used to determine a suitable grasp
for an object. Petrovskaya et al. [10] on the other hand use
tactile information to reduce the uncertainty of the object
pose, upon an initial contact with the object. In their work, a
particle filter is used to estimate object’s pose, but the tactile
sensor used to detect contact with the object is not embedded
in the gripper performing the grasping.

Object identification has been studied by Schneider et al.
[11] and Schopfer et al. [12]. Schneider et al. show that it is
possible to identify an object using tactile sensors on a paral-
lel jaw gripper. The approach is similar to object recognition
from images and the object must be grasped several times
before accurate recognition is achieved. Schopfer et al. use
a tactile sensor pad fixed to a probe instead of a gripper or a
hand. They also study on different temporal features which
can be used to recognize objects. Similar object recognition
systems have been presented in [13], [14].

The approach used and extended here has been published
in [1]. Similar approach was used in [2]. However, in this
paper we show that we can use the described methods with
a more complex hand, the ARMAR-IIIb humanoid hand,
and that we can extend the single time instance classifier
by means of filtering.

III. SUPERVISED LEARNING OF GRASP STABILITY
A. Learning Grasp Stability

Our notation of observations follows [1]:

e D = Jo;],s = 1, ..., N denotes a data set with N
observation sequences.

e 0; = [xi],t =1, ..., T; is an observation sequence with
T; samples.

o xi = [f] ji], each sample consists of f, the features
extracted from tactile sensors and j, the joint configu-
ration.

To learn grasp stability, the training data is collected from
series of grasps, noted by the observation sequences o;.
Each recorded observation sequence is labeled with a label
indicating either a stable or unstable grasp. Then, from each
observation sequence the last sample, xLT, is used for the
training. This captures the time instant on which the decision
of stable or unstable grasp is based on. Both unstable and
stable grasp must be included in the training data so that
sufficient data is available to discern the stable grasps from
the unstable grasps.

We use a Support Vector Machine (SVM) [15] to classify
the grasp as either stable or unstable. Compared to force
closure metric from the analytical methods for computing the
grasp stability, the binary classification is not as informative
as the continuous value given by the force closure metric,
however the classification result reflects the stability criteria

in the training data directly. Another benefit of SVM is that
it is computationally efficient, so that it can be used on-line
during grasping. To train the SVM, the sample xlT from each
training observation sequence is given as an input vector and
the corresponding label as the desired output.

B. Learning Temporal Changes in Grasp Stability

In [1], the temporal information collected during a grasp
is used in conjunction with a hidden Markov model (HMM)
to decide whether the grasp is stable or not. But for the
method to be able to decide, the grasp must be completed.
The second method presented in [1] was based on the idea
depicted in III-A. We propose to extend the instantaneous
SVM-based method by applying the learned stability model
on-line to each sample z;, ...,z we obtain during the
grasp, contrary to the previous approach, where only the final
sample, zr, is is used to determine the stability of the grasp.
This extension allows quicker decision making on the grasp
quality in the case of a stable grasp.

As the method described in III-A does not remember any
of the previous time instances and does not consider the
whole grasp sequence from ¢ = 1,...,7, the classification
result over time may oscillate. One pathological example is
shown Figure 1. Through the use of filtering and threshold-
ing, the oscillations can be effectively removed.
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Fig. 1: (a): Each time instance of a stable grasp classified
with a SVM classifier; (b): The classification result filtered
with an exponential filter and thresholded.

We study two different filter types: a mean filter and an
exponential filter. The results of the experiments with the
filters are shown in Section IV. The input for the filters are
the results from the classifier, either O or 1. The mean filter
can be defined as a sliding window, with window size w. The
mean of the data in the window is then calculated, and this
result is the output of the filter. Exponential filter is described
by

y(t) = Q—a) ylt-D+a-x(t). (O

Equation 1 consists of y(¢) and y(¢t — 1), filter output at time
instances ¢ and ¢ — 1, of x(t) the binary stability at time ¢
and of o which a weighting factor. Examples of both filters
are shown in Figure 2 which depicts the same sequence as
in Figure 1.



Introducing the filters requires setting more parameters in
addition to the parameters for SVM. These include w for the
mean filter window width, and « for the exponential filter.
In addition both require the threshold, thr, for the binary
decision of stability. After the threshold has been crossed, the
grasp is deemed stable. Close to optimal parameters can be
found experimentally and we have done that for the datasets
used in this paper.

In addition to the filters, we ran experiments without
using any filters, thus, the output from the classifier is taken
directly. This approach provides a quicker response to stable
grasps but can also misclassify unstable grasps as stable
grasps more frequently than the filter based approach.

Filter output
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Fig. 2: (a): Filter output of mean filter; (b): Filter output of
exponential filter.

C. Feature Extraction

Each of the tactile sensors on the ARMAR-IIIb platform
produces a tactile image. An example image showing all six
tactile images is shown in Figure 3. This imaging property
of the sensors allows us to use image feature extraction
techniques. In this case we have chosen the image moments
as our feature extractor, which have been shown to perform
well in this task [16]. The hand comprises of two different
sizes of tactile sensors which contain 4x7 or 4x6 tactile
elements or taxels.

Fig. 3: Tactile images from ARMAR-IIIb.

Raw image moments are defined as
mpg =Y aly (), 2
Ty

where I(x,y) is the force measured by the taxel. The
moments are computed up to order two, that is (p + q) =
o, o= {0,1,2}. These are related to the total pressure, the
mean of the contact area, and the shape of the contact area,
indicated by the variance in x- and y-axes. Moments are
computed for all tactile sensors individually, thus f € R3S,

In addition to the tactile images, the joint angle sensors
provide a source of information relevant to the stability of the
grasp. However as the number of fingers and joints is usually
much less than the number taxels (tactile sensing elements)
in tactile sensors, it is reasonable to use the data from the
joints directly. In this case, 8 joint angle sensors are available,
thus j € R8. All feature vectors, xi, were normalized to zero
mean and unit standard deviation.

IV. EXPERIMENTS
A. Hardware Platform

We used the humanoid robot ARMAR-IIIb as a test
platform for the experiments with our stability classifier.
ARMAR-IIIb consists of several kinematic subsystems: The
head, the torso, two arms, two hands, and the platform. The
head has seven degrees of freedom (DoF) and contains four
cameras, i.e. two cameras per eye. The torso has 1 DoF in the
hip, allowing the robot to turn its upper body. Each of the two
7 DoF arms consists of a 3 DoF shoulder, a 2 DoF elbow and
a 2 DoF wrist. At the tool center point (TCP) of each arm a
FRH-4 Hand [17] is mounted. The hands are pneumatically
actuated using fluidic actuators. For the experiments in this
paper, we used ARMAR-IIIb’s right hand, (see Fig. 4), which
is equipped with joint encoders and pressure sensors. This
allows a force position control of each DoF [18]. The hand
has 1 DoF in the palm, and 2 DoF in the thumb, the index
and the middle finger, respectively. Apart from that, there is
1 DoF for combined flexion of the pinky and ring finger.
Furthermore the hand contains 6 tactile sensors from Weiss
Robotics [19]. One tactile sensor is mounted on the distal
phalanges of the thumb, the index and the middle finger,
respectively. Three tactile sensors are mounted at the palm,
in the area between the thumb and the index and middle
fingers. The tactile sensors have a resolution of 4 x 7 taxel
(phalanges) and 4 x 6 taxel (palm). They use a resisitive
working principle to measure the pressure applied to the
sensor. Therefore an array of electrodes is covered with a
layer of conductive foam. When a pressure is applied to the
sensor the resistance between the electrodes decreases, which
is measured by an microcontroller. Further information can
be found in [20], [21], [22].

B. Data Collection

In order to provide sensor input for the training and the
validation of the classifier, we needed to treat two distinct
cases:

o Collect data for successful, stable grasps.



Fig. 4: ARMAR’s right hand. Tactile sensors are mounted
on the palm and the distal phalanges of the thumb, the index
and the middle finger.

o Collect data for unstable grasps.

The second case also includes data for the cases where the
hand cannot close completely or not at all, due to obstacles,
and cases where the hand closes emptily, i.e. it does not
experience contact to any object at all. Yet in all these
cases one gets sensor readings that have to be considered
for training and validating the classifier. We collected data
from the following two types of sensors:

o Tactile sensor data
« Joint angle data of the hand joints

Fig. 5: The basket with our test objects.

For data collection, we executed grasps on a set of household
items located in a box (see Fig. 5). The configuration of
the objects in the box was modified between the individual
test runs in order to allow the hand to reach a large variety
of different end configurations. We used the following data
collection procecure: First, we placed the box with the
objects in front of the robot. Then we moved ARMAR’s
right hand to a pre-grasp pose near the target object. Different
possible pre-grasp poses included the following:

e Grasps from the top where the hand would move
vertically down.
o Grasps from the top, but with tilted approach directions.

o Grasps from the side.
e Varying roll angles of the hand with respect to the
approach direction, for each of the three cases above.

After moving the hand to the pre-grasp pose, we started the
data recording which means we began to read and store the
tactile sensor data and joint angle data once during every
pass of ARMAR’s control loop. All data was labeled with a
time stamp. In the next step, we moved the hand towards the
object until the tactile sensors in the palm reported contact
with the object. Then we closed the hand and waited until the
pressure on the hand’s actuator stabilized and would not grow
anymore. The finger forces are set to the maximum to create
a strong tactile image on the sensors. Due to the compliant
characteristic of the hand, the hand adapts to the shape of
the object. In this context we point out that we considered
only three-fingered grasps, i.e. we only closed the thumb,
the index and the middle finger during grasping. We did not
close the ring and small finger, as they are not equipped
with tactile sensors and thus they would not contribute to
the tactile sensor input of the classifier. After closing the
hand, we stopped the recording of the sensor data. Finally, we
tried to lift the object by moving ARMAR’s hand up. Then,
we reported the result of the experiment, i.e. whether the
grasp was successful or not. We repeated the above procedure
until enough samples had been collected. We collected two
separate sets, D; and D,. D; contained 71 stable grasps
and 94 unstable grasps. Dy comprised of 82 stable grasps
and 76 unstable grasps. By collecting two separate sets with
different grasps, we can get an idea of the generalization
capability of the classifier which was tested in the validation
tests. Figures 6 and 7 show some successful grasps from the
validation tests. The left column shows the situation after
closing the hand. The right column shows the grasps after
lifting the respective object.

C. Experimental Results

We have divided the experiments into two parts. The first
part consists of synthetic tests, which presents the reliability
and accuracy of the classification of the grasp stability and
comparisons between different filter types. The second part
is validation test, using a learned stability model with the
real ARMAR-IIIb platform.

1) Synthetic tests: In the synthetic tests, we used both
datasets D; and D,. For most experiments, the confusion
matrix is presented, showing how the classifier performs
in terms of true positives (stable, predicted stable), false
positives (unstable, p. stab.), true negatives (unstable, p.
unstab.) and false negatives (stable, p. unstab.).

In Table I, the SVM was trained with data from a corre-
sponding dataset, only the last sample from each observation
sequence was classified to enable comparison to earlier
works. The reported results are averages from 10-fold cross
validation. The results show that the performance across
datasets is similar. These results can be compared with
reported results in [1], [2], showing that the ARMAR-IIIb
hardware is able to reach similar performance as the Schunk
Dextrous Hand (SDH) or the Barrett hand in this task.



Fig. 6: Some example grasps. Left column: situation imme-
diately after closing the hand. Right column: After lifting the
object.

TABLE I: Confusion matrix for classification rates of grasps
when classifying only the last sample, for datasets D; and
Ds.

D1 P. Stab.  P. Unstab. Do P. Stab.  P. Unstab.
Stable 0.79 0.21 Stable 0.72 0.28
Unstable 0.28 0.72 Unstable 0.26 0.74

Contrary to the results in Table I, in Tables II, III and
IV the whole observation sequence was classified using the
methodology presented in Section III-B. In Table II, the
mean filter was used with a window width of 25 and with
a threshold of 0.61, Table III shows the result with an
exponential filter with « = 0.056 and threshold of 0.61.
These parameter values were searched using grid search and
produced the best results for both datasets. The results in
Table IV were obtained without using a filter.

Overall, when using a filter with the classification, the
overall classification rate is similar to the last sample classifi-
cation, but classification rate of the unstable grasps is better.
This can be explained through the use of the filter which
filters out the effect of the last sample, thus, leading to a
better classification result. In the case where no filters are
used, in Table IV, the stable grasps are predicted well, but
this translates also to falsely predicting that unstable grasps
are stable. On average, the filter based classification is better

Fig. 7: Some example grasps. Left column: situation imme-
diately after closing the hand. Right column: After lifting the
object.

in predicting the stable and unstable grasps across the two
datasets.

One interesting possibility that comes with the method
described in Section III-B is that the grasp sequence can
be stopped when the classifier decides that a stable grasp
has been achieved. Using a mean filter, the decision time
was 68.6 % of the whole grasp sequence on average, with a
exponential filter, the time was 66.9 % and without a filter
the time was 59.6 %. For example, if a whole grasp sequence
is 1000 time steps long, the classification using a mean filter
can stop the grasp at time step 686 on average, if the grasp is
a stable grasp. Without a filter, the average time goes down
as expected but with a cost of overall classification rate as
seen in Table IV.

2) Validation tests: To mimic a real world usage scenario,
the observations in dataset D were used to train the SVM
classifier. Then using the trained classifier, dataset D, was
classified. Each observation sequence in the dataset was



TABLE II: Confusion matrices for classification rates of

grasps using mean filter (w = 25, thr = 0.61).

D1 P. Stab.  P. Unstab. Do P. Stab.  P. Unstab.
Stable 0.77 0.23 Stable 0.74 0.26
Unstable 0.24 0.76 Unstable 0.16 0.84

TABLE III: Confusion matrices for classification rates of

grasps using exponential filter (o« = 0.056, thr = 0.61).

D1 P. Stab.  P. Unstab. Do P. Stab.  P. Unstab.
Stable 0.79 0.21 Stable 0.73 0.27
Unstable 0.23 0.77 Unstable 0.16 0.84

classified with mean and exponential filters and without
filtering. The results are show in Table V. Compared to
results in Table I, the number of false positives rises. This
effect might be due to tactile sensor hysteresis, i.e. the output
from the sensors changes between the collection of datasets
which in turn means that dataset D, does not represent the
data in D, and leads to worse results.

V. CONCLUSIONS

In this paper, we focused on learning grasp stability from
labeled data, similar to approaches in [1], [2]. We utilized
a well-known classifier, SVM, and trained it using grasp
data acquired from the sensors of the humanoid hand of
ARMAR-IIIb. We showed that we are able to reach similar
results with ARMAR-IIIb as previously reported on other
types of hardware, such as the Schunk Dextrous Hand or
the Barrett hand. We also extended the SVM based grasp
stability classifier with the use of filters to classify the whole
grasp sequence instead of just the end of the grasp sequence.
This allows faster decisions for stable grasps.
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