
Grasping of Unknown Objects using Deep Convolutional Neural

Networks based on Depth Images

Philipp Schmidt, Nikolaus Vahrenkamp, Mirko Wächter and Tamim Asfour

Abstract— We present a data-driven, bottom-up, deep learn-
ing approach to robotic grasping of unknown objects using
Deep Convolutional Neural Networks (DCNNs). The approach
uses depth images of the scene as its sole input for synthesis of a
single-grasp solution during execution, adequately portraying
the robot’s visual perception during exploration of a scene.
The training input consists of precomputed high-quality grasps,
generated by analytical grasp planners, accompanied with
rendered depth images of the training objects. In contrast
to previous work on applying deep learning techniques to
robotic grasping, our approach is able to handle full end-
effector poses and therefore approach directions other than
the view direction of the camera. Furthermore, the approach
is not limited to a certain grasping setup (e. g. parallel jaw
gripper) by design. We evaluate the method regarding its force-
closure performance in simulation using the KIT and YCB
object model datasets as well as a big data grasping database.
We demonstrate the performance of our approach in qualitative
grasping experiments on the humanoid robot ARMAR-III.

I. INTRODUCTION

Grasping an object is an everyday task, which humans

and some animals perform subconsciously with both ease

and reliability. By watching adults and by gathering own

experiences, children rapidly learn how to grasp objects with-

out the need to develop complex calculation models, solve

complicated equations or remember every object encoun-

tered so far by heart. With robots becoming progressively

more intelligent in interacting with their environment, the

need for a robust solution for grasping everyday objects is

of utmost importance. Nevertheless, robotic grasping still

provides many challenges for researchers and is still among

the most demanding problems in modern robotics. Finding

a general solution would open up many new possibilities for

robots to autonomously explore their environment and would

enable them to perform better at assisting humans.

Common approaches for grasping objects with a robot

hand or gripper are to calculate a list of good grasps offline

in advance, based on full geometric information and the

physical model of the object in question, see e. g. [1], [2], [3],

[4], [5]. Those grasps are then stored in a database along-

side a representation of the object itself. Hence, the main

challenge in object grasping is reduced to object recognition

and pose estimation during online execution. The need for

a full description of the geometry of an object for grasp

generation makes this approach unsuitable for exploration

The research leading to these results has received funding from the
European Unions Horizon 2020 Research and Innovation programme under
grant agreement No 643950 (SecondHands).

The authors are with the High Performance Humanoids Technologies
(H2T) Lab, Institute for Anthropomatics and Robotics (IAR), Karlsruhe
Institute of Technology (KIT), Germany

Fig. 1. Based on a segmented depth image of the robot’s environment (top-
left), a grasp for a previously unknown object is generated (top-right) using
a Deep Convolutional Neural Network (DCNN). Based on this information,
the humanoid robot ARMAR-III executes the grasp (bottom).

of a previously unknown scenes through image and depth

sensors only, as they usually provide only partial and noisy

information. More advanced and state-of-the-art data-driven

methods are able to work on partial data [6], or even use a

form of shape completion to handle partial views, while still

handling novel objects [7].

Recognising the need for more research regarding this

topic, this work provides a bottom-up, data-driven, deep-

learning approach for unknown objects utilising DCNNs.

The pipeline uses depth-image sensor data as its only source

of input, which adequately portraits the vision of a robot



exploring a scene, and therefore does not need the full

information about the geometry and physical model of

objects. By training this DCNN with examples of good

grasps, in combination with the associated depth-images

of the scene, this technique is able to directly generate

grasping actions from depth information in one single step.

The grasp examples are generated by classic, state-of-the-art

grasp planners, while using simulated sensor data fulfils the

need for large amounts of training data for deep-learning. In

contrast to many classic grasp planners or grasping pipelines,

this approach is online-capable and is intended to be used as

an on-the-fly grasp solver rather than an offline grasp planner.

Deep-learning techniques have already shown the ability

to outperform classic approaches, without the necessity to

invest a lot of effort into modeling the system and finding

computational and algorithmic solutions [8]. One of the most

problematic requirements of deep learning lies in the large

amount of data needed to perform training. Harvesting this

data from big existing databases or datasets (e.g. Cornell

Grasping Dataset [9], [10]) can be time consuming and might

not be sufficient for the problem. Generating training data

in simulation becomes increasingly interesting for complex

problems, when only expensive hand-labeled data could be

used otherwise [11]. In image recognition and classification

tasks, DCNNs have shown up to superhuman performance

(e.g. [12], [13]) in the ImageNet challenge [14]. Those

neural networks utilise classic image features in combination

with deep neural networks. As such, they are capable of

”understanding” the structure of an object in an image and

also the spatial arrangement of geometric features. Classic

grasp planners have shown to be able to use this grasp

related local geometric information to improve the quality of

the calculated grasp [6]. DCNNs therefore have promising

preconditions for the use in grasping tasks.

In this work we show that deep learning techniques are

capable of transferring and utilising grasp knowledge, gained

in a training process, to different unknown objects only

based on a depth image of the object and the analysis of

its geometric features.

II. RELATED WORK

The survey paper [4] by Bohg et al. provides a set of crite-

ria to distinguish between the various approaches of robotic

grasping, as well as their capabilities and methodology. The

authors divide all methods into analytic and data-driven

approaches. Analytical methods most commonly assume full

knowledge about geometry and physics of the object, but

a robot exploring its environment relies on sensory input,

which generally provides only partial and noisy information.

Simple analytical approaches are therefore commonly used

to generate grasps prior to execution, establishing a Prior

Object Knowledge. Data-driven methods on the other hand

”place more weight on the object representation and the per-

ceptual processing, e.g., feature extraction, similarity metrics,

object recognition or classification and pose estimation” and

their ”parameterization [...] is less specific (e.g. an approach

vector instead of fingertip positions)” [4]. The authors further

distinguish between grasping known, familiar or unknown

objects. Following this classification, this work provides a

data-driven approach for unknown objects.

A. Classical Data-Driven Grasping of Unknown Objects

Data-driven approaches to Grasp Synthesis usually focus

on describing the sensor input of a scene in a way, which

allows for easy generation of grasps. Using 2D sensor images

[15], 3D stereo images [6] or depth-images as input, they

extract important features, like edges, surfaces, approximated

normals or even complete shape primitives. The Early Cog-

nitive Vision (ECV) System [6] works on 3D stereo image

input and segments the sensor input into a hierarchical

representation of edge and texture information. The system

extracts sparse local features and categorises them into edges,

textured surfaces and junctions. Those features get combined

to form contours and so called surflings. On this level

of segmentation, relations between those features can lead

to even higher abstractions. Many surflings, which share

similar position and orientation, might e.g. get combined

to form a surface. With this new description of the scene,

grasp synthesis becomes a matter of extracting and arranging

enabling factors for grasping, like co-planarity of surfaces.

Two different approaches are presented, using edge features

and surface information. Using this technique, the genera-

tion of two-fingered and three-fingered grasping actions is

demonstrated. While the grasping actions are tested in a

dynamic simulated environment, the input images are real

world examples to account for the noisy and uncertain input

of an applied application.

B. Deep Learning Data-Driven Grasping of Unknown Ob-

jects

Most of the effort of classic approaches lies in designing

hand-engineered features for detection of grasps. Learning

these features would reduce the amount of necessary hand-

engineering and would imply less generalisation. Lenz et

al. [10] demonstrate the use of DCNNs on RGBD im-

ages to find the optimal grasp for an object in an image

of the Cornell Grasping Dataset1. The grasping configu-

ration is fully described by a five-dimensional rectangle

(x, y, height, width, rotationangle α) in the image plane

[16] and represents the grasp a parallel gripper would per-

form in the scene. A two stage model is used, in which the

first network predicts the top T rectangles with the highest

probability of a successful grasp, before the second one con-

secutively selects the single best one. While tackling many

of the issues mentioned in the introduction, this technique

underlies certain limitations. Limiting the approach direction

for the end-effector to the normal of the image plane would

be a substantially restricting constraint for interactions with

the robot’s environment. Furthermore, the rectangle config-

uration limits the possible design types of end-effectors to

parallel grippers or similar setups, whereas a state-of-the-

art robot hand is able to perform a variety of different grasp

1http://pr.cs.cornell.edu/grasping/rect data/data.php



types. Using the Cornell Grasping Dataset, this approach also

depends on hand-labeled training data, which reduces the

effective scalability. Replacing this two stage model with a

single DCNN results in increased accuracy while lowering

computation time [9]. The approach most comparable to

ours is the one presented in [11]. In this approach, finger

contact patches are predicted for a grasp based on an RGBD

image. They also use deep learning for the prediction of

the finger contact patches, but also use segmentation and

re-meshing algorithm to produce the final grasp poses. This

approach is one of few, which does not grasp through the

image plane only. A quantitative comparison is unfortunately

not very meaningful, since they use an unknown object set

and do not provide success rates. In [7], deep learning is

used to complete the shape of object extracted from an

RGBD image to employ classical grasp planners. Another

approach learning to grasp with a gripper in the image plane

is proposed in [17]. They identify several grasp candidates

based on an input RGBD image and use a DCNN to rank

the grasp candidates. A similar approach for grasping with

a 1-DoF gripper is proposed in [18], with the difference

that their method provides 6D grasp poses. Minimising the

impact of imprecisions in the execution of planned grasps

already during planning is proposed by [19].

III. METHOD

The following sections will outline the methods used

in this work, covering the process of generating training

samples, the architecture of the DCNN and the execution

of the inferred grasps in simulation and on the humanoid

robot ARMAR-III.

A. Objects and Database

Training a DCNN requires a significant amount of training

data. Generating this large dataset in a simulation provides us

with the flexibility and scalability necessary to perform the

training process. For this purpose, our experiment uses object

models from the KIT object models database [20], the YCB

object and model set [21] and the big data grasping database

in [22]. They provide laser-scanned, textured 3-D meshes

of everyday objects which vary in shape, size and form.

Figure 3 shows a few exemplary objects of the database.

The databases provide visual meshes for rendering, reduced

models for collision detection and physics parameters to

perform simulation (e. g. close the end-effector around the

object). The collision models and physics parameters also

enable us to perform classic top-down grasp planning with

the object models, using classic, existing grasp planners. [23]

B. Grasp Generation

For grasp generation we use a grasp planner [23] of the

toolset Simox [24] to provide a set of force-closure grasps

for training data generation. Due to the modularity of our

grasping pipeline, this grasp planner is exchangeable for any

other grasp planner. We use the Simox-based grasp planner

as an exemplary setup to automate effortless generation

of grasps. Those grasps are distributed over all different

Fig. 2. Exemplary objects with results of the Simox-based grasp planner.
[23] Every marker on an object represents a different grasp. We only
generate Force Closure Grasps.

parts of the objects, which enables us to grasp them from

many different approach directions. Figure 2 shows a few

exemplary results of the grasp planner. Grasp planning is

performed for every object and the list Θ = {Θ0, ...,Θn} of

force-closure grasps is appended to the corresponding object

information in the database.

C. Generation of Training Samples

To generate training samples, the visual models retrieved

from the object databases are placed into the simulation in

front of the robot’s simulated camera and the visual models

are rotated and translated randomly, to generate different

views. The distance and distance variance to the camera

can be configured. We use a distance of 42cm, with a

distance variance of 5cm. Rotating and translating the mod-

els also transforms the corresponding precomputed grasps

in Θ accordingly. For the training process of the DCNN,

only one single suitable ground-truth grasping configuration

per sample of the grasps in Θ is selected, which would be

considered a sufficient result if inferred by the DCNN during

execution for the current random pose of the object. By

limiting the output of the DCNN to one favorite grasping

pose for a given input image, we reduce the complexity

of the planning process by limiting the application to a

specified scenario. E.g. in our case we assume that the robot

is supposed to grasp an object in a table top scenario with

the right hand. This complexity reduction makes the training

process of the network much easier, since only one grasp has

to be generated by the DCNN.

Hence, the training process gets configured with a single

pose Φ, representing the most comfortable pose for the

end-effector of the robot . Comfortable may e.g. take into

consideration a safety distance from poses of the kinematic

chain, which can are prone to IK singularities, or preferred

approach direction for the end-effector in a grasping task.

This pose is therefore a design variable and can be chosen.

For a given object pose, we select the best suitable grasp



+

Grasp Con�guration

Fig. 3. Illustration of the training data rendering process. The left part of the image displays some of the objects used in our experiments. The object poses
are transformed randomly during rendering, which results in multiple samples per object. The right side of the image shows finished training samples. Only
depth information is rendered, resulting in a single channel 200x200 image per sample. The depth information is displayed in greyscale representation.
Every sample has meta information attached, which labels it with a suitable grasping configuration. For debugging purposes and for later evaluation, object
name and pose are attached as well.

Θbest, by evaluating every grasp in the list of available

grasps Θ. Those grasps undergo the same transformation

as the object and are furthermore transformed into camera

space. After this transformation, the following penalty metric

determines the ranking:

penalty(Θi) =
‖Θi − Φ‖

θ
+

axisAngle(Θi,Φ)

ω

Θbest = Θargmin(penalty(Θ))

The function axisAngle() computes the axis-angle dif-

ference between two poses. θ and ω act as normalisers to

weight rotation and position difference against each other.

In our experiments we chose θ = 0.04m and ω = π
16 .

A rotation difference of π
16 now leads to the same penalty

as a position difference of 40mm would do. Those values

are chosen manually, are considered a design variable and

can be adjusted if necessary. The renderer now renders a

single image of the scene and extracts the depth information.

The depth image and the selected grasp combined end-up

in one sample and are added to the dataset, like shown in

Figure 3. The rendering is repeated until the required amount

of samples has been computed. One single object of the

database may lead to potentially many samples in the dataset,

due to the random transformation of the object pose and

the selection of a suitable grasp. This approach enables us

to generate large training datasets even from a rather small

amount of available objects and precomputed grasps.

Note, that this process of generating training samples and

selecting ground-truth grasps from a precomputed list Ψres

strongly depends on the complete setup used, especially the

used robot and applied task, but can generally be accom-

plished for a variety of different setups as it comes with no

restrictions or limitations. What we show with the humanoid

robot hand of ARMAR-III in the following could also be

achieved with a different robot setup, a different object

database and a different grasp planer. The system has to be

retrained though, to work in a different setup.

D. Architecture of the DCNN

The DCNN used for this experiment has a six layer

architecture, with two Convolutional Layers and three Fully

Connected Layers. The input layers size fits the image size

of 200 by 200 pixels and accepts floating point values, which

encode the depth at this position. Both Convolutional Layers

have a kernel size of 5x5 with a stride of 1x1 and each include

64 independent convolutions. Pooling and Normalisation is

used after each Convolutional Layer. The Pooling Layers use

Max-Pooling with a kernel size of 3x3 and a stride of 2x2.

The Normalisation parameters are α = 0.001/9.0, β = 0.75,

bias = 1.0 with a depth radius of 4. See [13] for additional

information about Normalisation. The last Convolutional

Layer is followed by a Fully Connected Layer of size 384,

which subsequently connects to another Fully Connected

Layer of size 192. The final output layer connects the last

Fully Connected Layer as a linear combination (Wx+b) with

6 output neurons. The 6 output neurons encode the grasp in

camera coordinates, using a Roll-Pitch-Yaw representation.

The network is trained with a batch size of 128. All

together, the DCNN contains approximately 61.5 million

trainable weights, which results in a memory size of 246MB

for network parameters. During training, a specialised loss

function is used. Similar to the selection of the best grasp in

subsection III-C, rotation and position get normalised against

each other. Assuming a batch size S:

Inference Tensors: ΘPos
i=1...S and ΘRot

i=1...S

Ground Truth Tensors: ΨPos
i=1...S and ΨRot

i=1...S

Normalisers: θ = 0.02m and ω =
π

16



Input Layer Convolutional Layer I Convolutional Layer II Fully Connected Layer I Fully Connected Layer II

Pooling & Normalisation Pooling & Normalisation

64

64

100

100 50

50

200

200

1

5

5

5

5

384

192

Output Layer

X

Y

Z

Roll

Pitch

Yaw

Fig. 4. The network architecture contains 6 different layers. The input layer contains the input image of size 200x200x1. Both Convolutional Layers
have a kernel size of 5x5 with a stride of 1x1 and each include 64 independent convolutions. Pooling and Normalisation is used after each Convolutional
Layer. The Pooling Layers use Max-Pooling with a kernel size of 3x3 and a stride of 2x2. The last Convolutional Layer is followed by a Fully Connected
Layer of size 384, which subsequently connects to another Fully Connected Layer of size 192. The final output layer connects the last Fully Connected
Layer as a linear combination (Wx + b) with 6 output neurons. The 6 output neurons encode the grasp in camera coordinates, using a Roll-Pitch-Yaw
representation.

∆Pos =

(

1

S

S
∑

i=1

(

‖ΘPos
i −ΨPos

i ‖

θ

)

)2

∆Rot =

(

1

S

S
∑

i=1

(

‖ΘRot
i −ΨRot

i ‖

ω

)

)2

Loss = ∆Rot+∆Pos

E. Training

For training, we use 19 different objects of the databases

and generate approximately 250 grasps per object with the

Simox-based grasp planner. Generating 5,000 samples per

object leads to 95,000 total samples and a training dataset

size of 14.4 GB. Our network needs approximately 36 hours

to finish training on a single Titan X (Pascal) GPU.

F. Execution

During execution, few basic pre-processing and post-

processing steps are applied to increase accuracy. Training

images in the data generation process are rendered in a

fixed distance of 42cm to the camera, only applying a

random distance variation of 5cm. Evaluation and real-world

application images usually leave these boundaries, unsur-

prisingly leading to bad grasp accuracy on objects farther

away or closer to the camera. Z-Compensation normalises

input images before they are being fed into the DCNN.

For this purpose, it computes the average distance in the

input image and shifts all pixels with a single subtraction

operation by the difference to the desired average distance

of 42cm. The resulting grasp for the image in question is

adjusted accordingly, by adding the same amount onto the Z

component. As the grasp configuration is encoded in camera

coordinates, this just moves the grasp farther away or into

the cameras image plane. This technique enables the network

to be trained on real, non-normalised distance values, while

still delivering robust results for out-of-bound distances.

To further increase the grasp quality, without relying on

additional information other than the sensor input, we in-

troduce a technique called Approach Vector Post Processing

(AVPP). Using the camera lens physics (focal length, field of

view, etc), a single pixel in a two-dimensional depth image

can be mapped back into the three dimensional camera space.

By placing small collision primitives, like cubes or spheres,

at the positions of the mapping, collision detection with the

robot hand can be performed. This assumes full knowledge

about the geometry of the robot hand, which in contrast

to geometric models of the objects to grasp, is known and

available prior to the exploration of the scene. In Figure 5 (2)

the Grasp Center Point (GCP) of the robot hand is shown.

The orientation of the GCP was chosen intentionally, aligning

the Z axis of the GCP with the estimated optimal grasping

approach direction (see [25]). The AVPP technique uses the

inference result of the DCNN to position the robot hand into

the scene and checks for collisions with the mapped collision

primitives of the sensor input image. In case of a collision,

the robot hand is shifted along the negative Z axis of the

GCP, by a small configurable distance, and the collision gets

re-evaluated. This is repeated, until the collision is finally

resolved.



1

2

3

4

Inverted 

Approach 

Vector

Approach 

Vector

Fig. 5. Approach Vector Post Processing (AVPP) Illustration. (1) The left
image in the top row shows the the object Spraybottle in the scene. The
image in the middle shows the respective depth-image input of the DCNN.
By mapping every pixel in the depth image back into camera space, an
approximated collision model of small cubes can be generated, which is
shown in the right image. The object model itself is not used for the AVPP
technique! (2) The GCP of the ARMAR-III robot hand. The blue Z-axis
of the GCP represents the approach direction of the TCP during a grasping
task. (3) In case of a collision between the generated collision mesh and
the preliminary inference of the DCNN, the end-effector is shifted along
the inverted approach vector, which is the inverted Z-axis of the GCP, until
the collision is resolved. (4) The final grasping configuration can now be
executed and evaluated.

Figure 5 illustrates the process and shows the relation

between robot hand and object before and after this post-

processing step. We would like to emphasize again, that this

technique does not use any information other than the raw

sensor input, except the collision model of the robot hand

and a valid GCP definition, which we presume as available

and given prior to execution.

IV. EVALUATION

Evaluation is performed on objects, which have not been

used for training before. The objects are therefore unknown

to the DCNN. Similar to the process of generating training

data, the evaluation objects are transformed randomly before

getting rendered. Additionally saving the resulting pose of

this transformation in the meta-data of the samples enables us

to place the respective object into the simulation and match it

with the current sample image. Using the full model of the

object and the tool set Simox [24], force-closure analysis

Fig. 7. ARMAR-III grasping the oil can and lifting it.

can now be performed. The meta-data of the sample is

not accessible by the DCNN, which still performs inference

solely on the depth-image. Table I shows the results of this

evaluation on different objects with 256 executed grasps per

object. We consider the grasp a success, if it is a force-closure

grasp.

Since it is not practically possible nor useful to evaluate

grasps in the simulation, which are in collision with the

object in the first place, any inference of the DCNN with

subsequent AVPP, which places the end-effector in collision

with the object is consequently evaluated as non force-

closure and therefore unsuccessful. This state of collision

between object and end-effector is only possible because

the AVPP does not work on the full object model, but

only the mapped depth image collision mesh. The evaluation

shows, that the approach performs very well on round objects

like the tennisball or softball, which are easy to align the

orientation of the end-effector with. On more box-shaped

objects like salt, oil or apple tea, it is still able to achieve

up to 70% force-closure performance. On more cylindrical-

shaped objects, like the bleach, the approach even achieves

up to 92%. Figure 6 illustrates some of the evaluation

samples and the generated grasps.

To demonstrate real world application, we wrote a full im-

plementation for the ArmarX-Framework [26] and executed

it on the robot ARMAR-III. By using the already existing

mapping of depth pixels into camera space of the AVPP

with the information about the global pose of the camera

on the robot, segmentation of e.g. the table under the objects

becomes trivial. Objects can be separated from the table they

stand on by cutting away every pixel with a global frame

height coordinate less than the height of the table. Despite

the camera noise of a real-world depth-camera, which was

never included in the training data, the network generates

grasps which allow the robot to grasp objects and lift them

off the table. Figure 7 shows ARMAR-III grasping the oil

can, a previously unknown object.



Force Closure Grasps

Non Force Closure Grasps

Fig. 6. Exemplary evaluation samples. The left part of every sample shows the input of the DCNN. The right part shows the resulting grasp. This
illustration clearly shows, that the network has learned to align the end-effector with the objects. It simultaneously takes the reachability of this pose for
the robot into account, by trying to select grasps which are similar to the grasping configuration Φ, representing the most comfortable grasp in camera
space during training data generation.

TABLE I

RESULTS OF THE EVALUATION

Object Name Grasp is valid Average Force Closure Quality AVPP necessary

bottle3 82% 40% 0,12 42%
salt 94% 63% 0,29 57%
oil 91% 74% 0,19 40%

hammer10 91% 37% 0,11 75%
cup 100% 78% 0,32 51%

appletea 81% 50% 0,20 59%
apple 100% 90% 0,35 6%

cheerios 66% 12% 0,04 89%
bottle4 96% 80% 0,36 32%
bottle5 93% 82% 0,32 22%
banana 96% 43% 0,15 53%
bleach 96% 84% 0,32 18%

hammer11 93% 46% 0,10 68%
spraybottle 88% 58% 0,13 48%

softcake 66% 22% 0,11 85%
hammer8 89% 27% 0,06 83%
softball 95% 74% 0,27 37%

spam12 oz 81% 63% 0,18 54%
hammer7 89% 26% 0,06 78%

A grasp is valid, if the end-effector is not in collision with the full geometric object model after AVPP. If it is in collision, it is evaluated as non force-closure
(force closure 0), no matter how good the evaluation of this grasp might be. The Average Force Closure column is the average score for the robustness
evaluation of the metric described in [23]. We evaluate 300 slightly and randomly displaced grasps for each grasp solution of the network and evalute how
many of those have force closure property. Higher scores indicate a more stable grasp. Grasp quality scores are explained in [24]. AVPP is not applied,
if there is no initial collision between the end-effector and the mapped depth-image pixels. The last column therefore evaluates, how many grasps were
post-processed.



V. CONCLUSION

This work introduces a data-driven robotic grasping ap-

proach for unknown objects using only depth-image percep-

tion as input for grasp synthesis. Motivated by the success

of DCNNs in image classification tasks, we leverage similar

existing techniques for grasping tasks. By training in a

simulated environment, with grasps generated by classic,

analytical grasp planners, the approach automatically learns

grasping-relevant features. In contrast to previous work on

applying deep-learning techniques to robotic grasping, this

approach is not restricted to grasp through the image plane,

which results in only a single approach direction. On the

contrary; it is able to handle full end-effector poses and

therefore arbitrary approach directions. Furthermore, it can

be applied to generic end-effector setups, instead of only

parallel grippers, and uses a flexible and scalable training

process, without the need for hand-labeled training data. By

only selecting specific suitable grasps, we are moreover able

to take preferred approach direction and pose of the end-

effector into account during training, to allow for flexible

application of subsequent tasks, like e.g. inverse kinematics.

Our approach currently only generates a single-grasp solu-

tion, binding the geometry of an object to a single grasp. By

training more than one network with different approach di-

rection setups, this limitation could be circumvented. Future

work will pick up this idea and evaluate its viability.

Using ARMAR-III’s right robot hand as an exemplary

setup, we evaluated our work on its force-closure perfor-

mance by grasping objects in simulation. We also demon-

strated the real-world application on the robot ARMAR-III

as can be seen in the video attachment. Both experiments

show the capability of the approach to apply training expe-

rience to unknown objects while generating quality grasps.

For future work, we will take advantage of the scalability

of our approach and extend the training by more objects

and grasps, and conduct further experiments with different

DCNN architectures and hyperparameters for increased and

fine-tuned performance.

REFERENCES

[1] V.-D. Nguyen, “Constructing stable grasps,” The International Journal

of Robotics Research, vol. 8, no. 1, pp. 26–37, 1989.

[2] K. B. Shimoga, “Robot grasp synthesis algorithms: A survey,” The

International Journal of Robotics Research, vol. 15, no. 3, pp. 230–
266, 1996.

[3] A. Morales, E. Chinellato, P. Sanz, A. Del Pobil, and A. H. Fagg,
“Learning to predict grasp reliability for a multifinger robot hand by
using visual features,” AISC proceedings, 2004.

[4] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesisa survey,” IEEE Transactions on Robotics, vol. 30, no. 2, pp.
289–309, 2014.

[5] K. Huebner, K. Welke, M. Przybylski, N. Vahrenkamp, T. Asfour,
D. Kragic, and R. Dillmann, “Grasping known objects with humanoid
robots: A box-based approach,” in Advanced Robotics, 2009. ICAR

2009. International Conference on. IEEE, 2009, pp. 1–6.

[6] M. Popović, G. Kootstra, J. A. Jørgensen, D. Kragic, and N. Krüger,
“Grasping unknown objects using an early cognitive vision system
for general scene understanding,” in Intelligent Robots and Systems

(IROS), 2011 IEEE/RSJ International Conference on. IEEE, 2011,
pp. 987–994.

[7] J. Varley, C. DeChant, A. Richardson, A. Nair, J. Ruales, and
P. Allen, “Shape completion enabled robotic grasping,” arXiv preprint

arXiv:1609.08546, 2016.
[8] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van

Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, and Others, “Mastering the game of Go with deep neural
networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,
2016.

[9] J. Redmon and A. Angelova, “Real-time grasp detection using convo-
lutional neural networks,” in 2015 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, 2015, pp. 1316–1322.
[10] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic

grasps,” The International Journal of Robotics Research, vol. 34, no.
4-5, pp. 705–724, 2015.

[11] J. Varley, J. Weisz, J. Weiss, and P. Allen, “Generating multi-fingered
robotic grasps via deep learning,” in IEEE International Conference

on Intelligent Robots and Systems, vol. 2015-Decem, 2015, pp. 4415–
4420.

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2015, pp. 1–9.
[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in neural

information processing systems, 2012, pp. 1097–1105.
[14] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, and Others, “Ima-
genet large scale visual recognition challenge,” International Journal

of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.
[15] Y.-H. Liu, “Computing n-finger form-closure grasps on polygonal

objects,” The International journal of robotics research, vol. 19, no. 2,
pp. 149–158, 2000.

[16] Y. Jiang, S. Moseson, and A. Saxena, “Efficient grasping from rgbd
images: Learning using a new rectangle representation,” in Robotics

and Automation (ICRA), 2011 IEEE International Conference on.
IEEE, 2011, pp. 3304–3311.

[17] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” arXiv preprint

arXiv:1703.09312, 2017.
[18] M. Gualtieri, A. ten Pas, K. Saenko, and R. Platt, “High precision grasp

pose detection in dense clutter,” in Intelligent Robots and Systems

(IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016,
pp. 598–605.

[19] E. Johns, S. Leutenegger, and A. J. Davison, “Deep learning a grasp
function for grasping under gripper pose uncertainty,” in Intelligent

Robots and Systems (IROS), 2016 IEEE/RSJ International Conference

on. IEEE, 2016, pp. 4461–4468.
[20] A. Kasper, Z. Xue, and R. Dillmann, “The KIT object models

database: An object model database for object recognition, localization
and manipulation in service robotics,” The International Journal of

Robotics Research, vol. 31, no. 8, pp. 927–934, 2012.
[21] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M.

Dollar, “Benchmarking in Manipulation Research: The YCB Object
and Model Set and Benchmarking Protocols,” IEEE Robotics and

Automation Magazine, pp. 36–52, Sept. 2015.
[22] D. Kappler, J. Bohg, and S. Schaal, “Leveraging big data for grasp

planning,” in Robotics and Automation (ICRA), 2015 IEEE Interna-

tional Conference on. IEEE, 2015, pp. 4304–4311.
[23] N. Vahrenkamp, E. Koch, M. Wächter, and T. Asfour, “Planning

high-quality grasps using mean curvature object skeletons,” CoRR,
vol. abs/1710.02418, 2017. [Online]. Available: http://arxiv.org/abs/
1710.02418

[24] N. Vahrenkamp, M. Kröhnert, S. Ulbrich, T. Asfour, G. Metta, R. Dill-
mann, and G. Sandini, “Simox: A robotics toolbox for simulation,
motion and grasp planning,” in International Conference on Intelligent

Autonomous Systems (IAS), 2012, pp. 585–594.
[25] T. Asfour, P. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum,

K. Welke, J. Schröder, and R. Dillmann, “Toward humanoid manip-
ulation in human-centred environments,” Robotics and Autonomous

Systems, vol. 56, pp. 54–65, 2008.
[26] N. Vahrenkamp, M. Wächter, M. Kröhnert, K. Welke, and T. Asfour,

“The robot software framework ArmarX,” Information Technology,
vol. 57, no. 2, pp. 99–111, 2015.

http://arxiv.org/abs/1710.02418
http://arxiv.org/abs/1710.02418

	INTRODUCTION
	RELATED WORK
	Classical Data-Driven Grasping of Unknown Objects
	Deep Learning Data-Driven Grasping of Unknown Objects

	METHOD
	Objects and Database
	Grasp Generation
	Generation of Training Samples
	Architecture of the DCNN
	Training
	Execution

	EVALUATION
	CONCLUSIONS
	References

