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Abstract— Building anthropomorphic robotic and prosthetic
hands is a challenging task due to size and performance require-
ments. As of today it is impossible for such artificial hands to
mimic the capabilities of a human hand. A popular approach
to reduce the complexity in hand design is the realization
of hand synergies through underactuated mechanism, leading
also to a reduction of control complexity. In this paper we
aim to find grasp synergies of human grasps by employing a
deep autoencoder. We perform a grasp study with 15 subjects
including 2250 grasps on 35 diverse objects. The emerging
latent space contains a comprehensive representation of grasp
type and the size of the grasped object, while preserving a
large amount of grasp information. In addition we report on
novel findings on couplings and grasp specific features of joint
kinematics, which can be directly applied to the control of
anthropomorphic hands.

I. INTRODUCTION

The human hand is a highly complex system with 23 De-
grees of Freedom (DOF) to perform versatile and dexterous
grasping and manipulation tasks. It includes 34 muscles and
more than three times as many tendons to conduct the broad
set of motions we perform every day. With the development
of anthropomorphic, five-fingered artificial hands, roboticists
strive to transfer as much versatility as possible into robotic
and prosthetic applications. However the complexity of the
human hand issues vast challenges for the development of
control strategies for dexterous robotic grasping.

Due to the highly constrained space requirements for
anthropomorphic hands, underactuated designs are widely
applied. Therefore one of the most urgent research prob-
lems in humanoid hands is the efficient deployment of
the available actuators to tap the highest possible amount
of its potential. Overall, task-invariant synergies are thus
widely applied for a variety of applications ranging from
hand control to mechanical design optimization through
simulation-based grasping techniques. Evidence shows that
hand movements are controlled based on synergies from both
biological and control point of view [1], [2].

A. Synergy Extraction

Since Santello et al. presented their first study on postural
hand synergies in 1998 [2], it has been an inspiration and
incentive for many researchers in robotic and prosthetic
grasping. They asked subjects to imagine grasping a wide
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Fig. 1: The five investigated grasp types (cylindrical, spherical,
disk, pinch, lateral) shown during data aquisition, from human data,
generated by the presented autoencoder and the corresponding rep-
resentation in the three-dimensional latent space; as two- and three-
finger pinch were trained as one grasp type, the grasp generation
can process a three-fingered grasp instead of a two-finger pinch
for the same object width; the data is visualized on an improved
version of the hand reference model of the Master Motor Map [6]

range of objects. Recorded postural hand poses were trans-
formed with a Principal Component Analysis (PCA). Even
the first two components accounted for more than 80%
of the information generated by performing the monitored
grasps. The existence of biological muscle synergies and
their correlation to the postural synergies found by Santello
et al. was later empirically proven in several settings [3],
[4]. Soft synergies enabled the application on underactuated
humanoid robotic hands [5].

Romero et al. compared PCA with several nonlinear
dimensionality reduction techniques [7]. Their evaluation
demonstrates, that Gaussian process latent variable models
clearly outperform the results achieved by a PCA for re-
construction and generation of grasps. However nonlinear
synergy-based models demand an even more complex se-
lection of control parameters to achieve a desired grasping
posture. This limits the intuitiveness of parameter selection
and thus grasp control. In addition, the aforementioned study
was performed with positional data describing hand and
fingertip locations instead of joint angles.



B. Synergies in control

Inspired by the fundamental findings of Santello et al.
[2], many following publications concentrated on the imple-
mentation of synergies in artificial hands. First approaches
were entirely based on control software, mapping human
synergies to an empirically or practically oriented set of
robotic ones [8], [9]. To preserve a certain degree of adap-
tivity with respect to the actual shape of the object, the
concept of soft synergies was developed [5], [10], which
allows final alignment of contact surfaces despite the rigidity
of the originally applied synergy-based posture. Additional
enhancement covered the complete grasping process by
applying temporally synchronized synergies [11]. All these
approaches on synergy-based control are capable of reducing
the number of control parameters. However, the achievement
of specific grasping postures desired to hold or manipulate
certain objects still requires an intricate selection of synergy-
based values.

C. Synergies in underactuation

Mechanical synergies were first implemented for joint cou-
pling of underactuated hands [12]. This was later extended to
include serially connected shape memory alloy actuation for
final grasp acquisition [13]. The model of adaptive synergies
was applied in the Pisa/IIT Softhand being the most promi-
nent example of a synergy-driven anthropomorphic hand
for robotic and prosthetic purposes [14]. This concept was
developed from the soft synergies exploiting the advantages
of underactuation [15], [16]. Very recently the mathematical
calculation of mechanically realizable manifolds of joint
motions was investigated [17]. It adjusts the originally found
postural synergies for their application on specific humanoid
hand systems. Such underactuated designs, as applied for
example in the KIT Prosthetic Hand [18], significantly
decrease the control complexity allowing simpler and more
robust grasp control.

Further investigation concentrated on the analytical ex-
traction of comparable synergies for human and robotic
hands. This allows the functional mapping of grasp posture
[19] and the evaluation of grasp stability in synergy-based
underactuated hands [20]. Also the existence of synergies
in grasping force and sensing was considered and examined
[21], [5]. A thorough review of synergy-based approaches to
design and control of robotic hands can be found in [22].

D. Contribution

The combined impact of both object shape and grasp type
on the resulting joint angles makes it difficult to directly
relate grasp specific information to those low-dimensional
control parameters. Selection of feasible grasps for a dedi-
cated task is therefore challenging and little intuitive.

In this paper we present a deep autoencoder network
trained with an extensive study of 2250 human grasping
postures performed by 15 subjects. The network is able to
generate object-specific grasps with four controlling vari-
ables. It is obliged to learn the concepts of different grasp
types within a clustered three-dimensional latent space, and

object width, which is encoded in one parameter. To the best
of our knowledge the developed decoder is the first method
able to explicitly distinguish several grasp types and allows
the generation of selected grasps on arbitrary sized objects as
demonstrated in Fig. 1. The developed approach thereby aims
to overcome the lack of intuition in relating existing control
parameters with the required grasp contact conditions.

We consider the novel method to generate object-specific
grasps and the derived understanding of the controlling
synergies in human hands as the major contribution of our
work. We introduce profound insights into motion coupling
and inherent properties of different grasps at joint level.
These findings provide interesting implications for the design
and control of underactuated humanoid robotic and prosthetic
hands.

II. HUMAN GRASPING STUDY

To find an intuitive set of nonlinear synergies including
grasp type and object size, we trained an autoencoder with
static human grasping data. To cover a wide range of human
postures, 2250 grasps performed by 15 subjects holding 35
different objects with 5 grasp types were considered. The
detailed information about the data acquisition is listed in
Table I. In the following we describe the technical means
of data acquisition and specify the structure of the sampled
data.

A. Data Aquisition

The hand posture during grasp is measured with a
CyberGlove III (CyberGlove Systems LLC, USA) with 18
degrees of freedom, as shown in Fig. 1. For the dimension-
ality reduction and resulting interpretation described in the
following sections we rely on the 16 DoF which describe
finger flexion and adduction as well as curvature of the palm.
The remaining 2 DoF in the wrist are omitted, as they do not
contribute to the grasping information for static postures.

To equalize similar hand postures independent of the
actual fit of the glove, we are not evaluating the raw sensory
data but use calibrated joint angles. The prior calibration
of the data glove is performed with a modified version of
the calibration procedure suggested by Gracia-Ibáñez et al.
[23]. All finger joint angle sensors are approximated by a
linear function of the sensor reading evaluating two discrete
joint angles. The same procedure is applied for the palmar
arch while the calibration of the combined carpometacarpal
joint of the thumb is more complex. As the sensors for

TABLE I: INFORMATION ABOUT THE DATA COLLECTION

grasps 2250
subjects 15 (9 male, 6 female)

age 27.0 years± 2.0 years

average hand length 180.2mm± 16.9mm

minimum hand length 144mm

maximum hand length 212mm

objects 35
grasp types 5



TABLE II: CLASSIFICATION OF APPLIED GRASP TYPES
WITHIN CUTKOSKY’S TAXONOMY [26]

Grasp Type Cutkosky’s Taxonomy Class [26]

cylindrical prismatic power large diameter (1)
prismatic power small diameter (2)

spherical circular power sphere (11)
circular precision sphere (13)

disk circular power disk (10)
circular precision disk (12)

pinch prismatic precision thumb-index finger (9)
prismatic precision thumb-2 finger (8)

lateral power lateral pinch (16)

flexion and adduction are highly coupled, the calibration is
widely enlarged by additional measurements. These ensure
correct sensor mapping despite the complex geometry of
thumb movements. In contrast to the method described by
Gracia-Ibáñez et al., we apply wooden reference blocks on
the palmar side of the fingers to avoid influencing the strain
gauge sensors by the calibration facilities.

For all visualizations of grasp postures the distal interpha-
langeal joints of the long fingers, which were not measured
directly, are approximated by the experimental linearization
reported with the calibration procedure [23].

The achieved inter-subject variability in the joint angle
measurements stays below 5◦ for all joints of the long fingers
except the middle finger adduction. However the variability
reveals some difficulties in thumb joint calibration especially
for the metacarpophalangeal joint. This is caused by the ball
of the thumb significantly impeding the formation of the
correct joint angle for calibration. The mean intra-subject
variability amounts to 2.94◦ ± 1.32◦.

B. Performed Grasp Procedure

According to widespread studies of human grasps in
common Activities of Daily Living (ADLs) [24], [25] we
choose the five grasp types, which are present among the
most frequent grasps in both works. These are a cylindrical
wrap, a spherical grasp, a disk grasp, a pinch grasp and a
lateral grasp. The subjects were asked to perform a given
grasp type for each object. This eliminates manual classi-
fication of the grasp type later. We allow some flexibility
for each subject to avoid an artificial bias of natural grasp
performance and include a wide range of common grasping
postures. Two grasps according to Cutkosky’s taxonomy [26]
are combined in each of our five grasp types, as can be
seen in Table II. By these means we intentionally leave the
final adjustment to the subject’s intuition. Only the lateral
grasp is directly represented by one grasp type of the applied
taxonomy. Exemplary executions of the defined grasp types
are additionally shown in Fig. 1.

Each of the five grasp clusters is conducted with ten
objects three times each by every participant. The grasped
objects are selected from the YCB Object Set [27] and the
KIT Object Database [28]. A data recording session is split
into the described calibration procedure and five sets. Within
each set, a flat hand calibration pose is performed first. Then

each of the ten objects dedicated to one grasp type is grasped
three times in a row. The subjects are asked to form their
grasp comparable to one of the two images of Cutkosky’s
taxonomy related to the current type. At the same time
they should grasp in the most natural and comfortable way
possible. Objects are placed directly frontal to the hand’s rest
position. At the end of each set, a flat hand calibration pose
is adopted again.

One of the subjects was left-handed and therefore per-
formed the grasping procedure with another instance of the
sensorized glove used for data acquisition. Due to the calibra-
tion procedure, differences in performance were eliminated.
A thorough examination revealed no statistically relevant
differences in grasping data compared to the right-handed
subjects.

A comparison of the different grasp types covered in
this study shows some notable similarities especially in the
spherical and disk grasp. However this similarity does not
equally apply to the finger flexion behaviour. Therefore we
deem it appropriate to treat spherical and disk grasps as
different types.

III. DIMENSIONALITY REDUCTION

We strive to encode human grasping poses in a latent
space to effectively extract and apply hand synergies. To
achieve this, we propose two main requirements on the latent
representation:
• Dimensionality Reduction The latent space should

allow for low-dimensional encoding of grasp poses.
This enables underactuated hand design and reduces
control complexity.

• Grasp Generation The latent space should be encoded
in a way that allows an intuitive generation of different
grasp types for a given object size.

Grasps of the same type should be clustered in the latent
space to allow the generation of a grasp with given type. This
is hardly possible by the means of a principal component
analysis, as already stated by Santello et al. They reported
that differences in object shape and grasp type could only
be distinguished in the higher order components carrying
little overall grasping information. Therefore we employ a
deep-learning based autoencoder approach, encouraged by
previous studies proving that autoencoders outperform PCAs
for various dimensionality reduction tasks [29], [30]. We
investigated several neural network architectures. A popular
approach for generation problems are variational autoen-
coders. Applying this approach we were able to achieve a
good dimensionality reduction. However, we were not able to
constrain the latent space in a way that enforces clustering
of the grasp types. We therefore opted for a conventional
autoencoder design. This also allowed for dimensionality
reduction, however the distribution of grasps in latent space
did not correlate with grasp type. Hence we added additional
constraints during training of the neural network to cope with
grasp type clustering.

In this section, the autoencoder architecture is described
in detail and the obtained results are discussed with regard



Fig. 2: Structure of the trained autoencoder; the decoder is applied
as a generator for human-like grasps

to the PCA being still the common, widely used method to
compute grasp synergies.

A. Autoencoder Design

The complete architecture of the applied autoencoder is
depicted in Fig. 2. The grasping joint angles are fed into the
encoder. The encoder is comprised of two layers which are
fully connected. For latent space we investigated different
sizes starting with a dimension of two as proposed by
Santello et al. for their PCA-based approach. We increased
the dimensionality to three and added the object size as an
additional input for the decoder. The decoder consists of
three layers, which are also fully connected. As an activation
function we use a hyperbolic tangent.

B. Loss Function and Training

The traditional loss function L for training an autoencoder-
based neural network is the Mean Squared Error (MSE)
based on the difference between input y and reproduced
output ŷ.

MSE(a, b) =
1

N

N∑
i=1

(ai − bi)2 (1)

L = MSE (y, ŷ) (2)

To achieve the desired clustering, samples of the same
class should be close together in the latent space, whereas
samples of different classes should be separated. Therefore
we consider additional terms for the loss function which are
based on latent space representations. In the following we
use

a = Enc(y) (3)

with a being the latent encoding and Enc(·) representing
the encoder network. A list of all used symbols can be found
in Table III.

We promote aggregation of grasps yg with the same type
g in latent space by adding an additional term penalizing
the mean squared distance between those grasps’ latent
representations ag . Separation of different grasp types g 6= h

TABLE III: SUMMARY OF USED SYMBOLS

Symbol Description

y real data sample
ŷ decoded data sample
a latent representation
Enc(·) encoder network
g, h grasp type
g̃ different sample from type g
α = 1.0 weighting parameter
β = 0.5 weighting parameter
γ = −0.15 weighting parameter

Encoder Decoder

Encoder

Encoder

yg

yg~

yh

ag

ag~

ah

yg
^

MSE

MSE

MSE

α
β

γ

Fig. 3: For training the network is provided with three samples at
the same time to define the loss function

is enforced by the negative incorporation of their MSE.
Combining these terms we obtain the loss function

L = α ·MSE (yg, ŷg)

+ β ·MSE (Enc(yg),Enc(yg̃))

+ γ ·MSE (Enc(yg),Enc(yh 6=g)) .
(4)

All three loss terms are weighted separately with the main
emphasize put on the grasp posture reproduction as primary
goal. Weighting factors are chosen as shown in Table III. The
additional sample yg̃ is randomly picked from the same class
as yg . A schematic drawing of the loss function structure
is depicted in Fig. 3. For training an Adam optimizer with
a learning rate of 10−2 is used. To avoid overfitting and
to spread out the latent space representations, we apply a
normally distributed noise with a standard deviation of 0.1
on the latent space during training. This noise increases the
size of the grasp type clusters and the utilization of the latent
space by the encoder.

In addition to the latent variables, the decoder is provided
with the object size at the grasping position. However, the
size of the hand significantly influences the joint angles
needed to enclose the same object. The smaller the hand,
the less finger flexion is needed. Therefore the object size
ranging from 1mm to 140mm is normalized according to
the subject’s hand length. This object to hand size ratio is
then mapped to a span from -1 to 1 to align with the range
of the original latent variables.

The data is split into training and test set with a percentage
of 90% and 10% respectively. To ensure representable
validation results, a stratified 10-fold-cross-validation is per-
formed with all reported accuracies being the mean of the
ten iterations of independent training.



Fig. 4: Angular root mean squared error in the reproduction of
human grasps for PCA and autoencoders with two variables in
latent space with and without an additional parameter for object
size compared to the presented autoencoder with three variables in
latent space and object size

IV. EVALUATION AND INSIGHTS

The trained decoder described in the previous section
possesses the ability to generate new, human-like grasps with
a specified grasp type for a dedicated object size. For this
purpose, the decoder has to be provided with the desired
normalized object size and latent parameters. These are
contained in the respective area connected with the desired
grasp type in latent space. We provide a numerical evaluation
of the grasps synthetically generated by the decoder. Also
we come up with additional insights into human grasping
behavior gained throughout the process of data acquisition
and training.

A. Autoencoder Validation

Fig. 4 shows the overall reproduction error of the pro-
posed autoencoder compared to a state-of-the-art PCA with
two components and an autoencoder with only two latent
variables with and without additional information on object
size. It proves that an autoencoder outperforms the PCA
for this dimensionality reduction by ∼5◦. Moreover, the
introduction of object size information further reduces the
overall reproduction error by 26%. The application of three
latent variables compared to a two-dimensional autoencoder
provides minor improvement regarding the reproduction er-
ror. However, the grasp specific distribution in latent space
is more distinct for three dimensions. We therefore deem
the implementation of a third latent variable appropriate to
include important grasp type information into the synergy
variables in a comprehensive manner. The efficiency of our
efforts enforcing a partition of grasp types is visible in the
ample distribution in latent space shown in Fig. 5.

The reversed autoencoder architecture applied herein
yields a notably lower overall reproduction error of 5.7◦

compared to 7.7◦ with the classical mirrored design. This
clearly shows that the mirrored decoder is less suited for
the present case of a regression problem with enforced
reinterpretation of the meanings of latent variables.

(a)

(b)

Fig. 5: Distribution of colour-coded grasp type samples in latent
space (a) and the mean position of the grasp type representations
(b); both visualizations show a distinct clustering of grasp types in
the three-dimensional latent space allowing an intuitive generation
of similar grasps by sampling the latent space near a reference
grasp.

B. Quality of Generated Grasps

The generated grasps possess enough similarity with the
desired human grasp type to be clearly identified as such by
visual means, as shown exemplary in Fig. 1 and Fig. 6. The
adaptation of object size for one grasp type is mainly notable
in the metacarpophalangeal joints of the four long fingers.
A clear inversely proportional correlation is identifiable by
a Pearman’s Correlation Coefficient (PCC) of -0.63 for
the index joint. This pattern conforms with natural human
grasping behaviour with a comparable PCC of -0.52. It
proves that the association between object size and grasping
joint angles is generally learned by the presented neural net
as visualized in Fig. 6.

However the generated grasps also show a tendency to



η = 0.01 η = 0.24 η = 0.48

η = 0.72 η = 0.88 η = 0.97

Fig. 6: Series of generated cylindrical grasps with the ratio η of
object size to hand length

correlate finger adduction and grasp size which is not present
in human cylindrical grasps. The reason for this discrepancy
lies in the direct neighbourhood of cylindrical and disk
grasps in latent space. It causes the decoder to transfer
some of the finger adduction applied in disk grasps to the
object size information. An additional challenge in grasp size
reproduction is the variability in hand sizes for the human
subjects. The necessary amount of finger flexion needed
to enclose an object is dependent of the object size and
the length ratio of the finger phalanges. As the decoder
is trained with grasping data for a wide range of hand
sizes, this causes a notable variance in actual grasp width
of generated grasps. To overcome these challenges in grasp
stability the generated grasps are handled as soft synergies,
thereby providing additional flexibility also to non-static
object size.

C. Latent Distribution

Similar to the principal components obtained by a linear
analysis, the latent variables of the trained autoencoder reveal
valuable insights into positional couplings of human grasp
postures. However, the influence of each individual variable
on the overall position is less apparent due to the nonlinear
coding, which in turn allows the stringent partition of grasp
types in the first place. The three latent variables will be
further denoted as l1, l2 and l3 for brevity. Considering the
distribution of the mean latent description of each grasp
type depicted in Fig. 5, the two pairs of spherical and
disk grasp and pinch and lateral grasp clearly share the
same activation respectively in l2. A third similarity becomes
apparent between disk and pinch grasp in l1.

The synergy described by l1 is the only one controlling the
thumb interphalangeal joint in its full range of motion and
thereby allowing an entire extension of the thumb. This is
mainly required in pinch grasps, where the thumb is needed
as rigid support the object is pressed against by the fingers.
But also in disk grasps the thumb itself is left nearly straight
as proven by the similar activation of l1. For a lateral grasp
on the contrary a high thumb flexion is fundamental. The
metacarpophalangeal joints of index, middle and ring finger
are also mainly - but not only - controlled by l1.
l2 primarily controls the finger adduction joints, causing

the mentioned segmentation in open, adducted grasps as

spherical and disk in opposition to compact, abducted grasps
like pinch and lateral.

Fine tuning of proximal interphalangeal joints is mainly
performed by the third synergy. Within this parameter,
cylindrical and spherical grasp are more closely resemblant
than compared to the disk grasp, as the former types both
enclose a round surface with the fingers. The disk grasp
on the contrary directs them along the longitudinal axis of
the object. A notable tendency to completely close all long
fingers when grasping laterally is reflected in l3.

D. Control Implications

Reviewing the joint angle regulation by the three latent
variables and the behaviour of different grasp types for
varying object width some general observations for static
grasping postures can be derived. The tendency in the latent
variables to mainly control one type of joints can be proven
in human grasping data especially for cylindrical, spherical
and disk grasps. Mean of PCC in metacarpophalangeal joints
are 0.69, 0.68 and 0.49 for the index compared to the other
three long fingers in human data. The same applies to the
correlation in proximal interphalangeal joints with 0.68, 0.55
and 0.42 and adduction joints with 0.59 for middle finger
compared to both ring and little finger. Generally it can be
noted, that correlation becomes weaker to the ulnar side of
the hand. In comparison to the thumb as opposing part, the
positioning of the index and middle finger is more strictly
defined than the ring and index, although the latter two tend
to follow as much as object shape and grasp intention allow.

There is also an interesting correlation between the thumb
carpometacarpal joint and palmar arch, mainly notable in
cylindrical grasps with PCC of 0.69. Additional observations
reveal a gentle physical coupling between both joints, caus-
ing the whole palm to curve when the thumb is opposed
to the fingers. However, the angular measurement of this
motion by a strain gauge along the dorsal side of the knuckles
can be superimposed by a hyperextension of the little finger.
Therefore it is less prominent in the other grasp types.

V. CONCLUSION

This paper presents a study of human grasping postures
including 2250 grasps performed by 15 subjects on 35
different objects. The gathered data is analyzed by means of a
deep-learning based autoencoder approach. We demonstrated
that we are able to represent the grasps in a low-dimensional
latent space. Different neural network architectures were
evaluated regarding their performance for the dimension-
ality reduction of joint angle data and the intelligibility
of grasp properties within the latent variables. The chosen
autoencoder with three-dimensional latent space outperforms
the state-of-the-art PCA by a decrease of 47% for the
reproduction error.

The resulting latent space allows for several key observa-
tions: Grasps of the same type are clustered together. The
clusters of dissimilar types are spaced far apart in latent
space. This is most prominent for the lateral grasp type. The
grasp clusters of related grasp types are placed close to each



other with a fluent transition. This can be seen for spherical
and disk grasps, as can be expected, since both types fall
within the circular grasps according to Cutkosky [26].

Due to the intuitive layout of the latent space we are able
to generate object-specific grasps. For generation we can
specify the desired grasp type by choosing a latent sample
within one of the grasp clusters. Furthermore we can generate
the grasp for different object sizes by setting the independent
object size parameter of the decoder network.

The comprehensible grasp representation offers further
insights into joint couplings and grasp specific features in
human hand postures presented by this work. For example
the coupling of finger adduction and hand aperture is cap-
tured by the decoder. We believe that these insights are of
great assistance for further development of control algorithms
allowing an intuitive parameter selection. They also facilitate
the decision on sensible hardware simplifications by under-
actuated coupling in robotic and prosthetic hands.

In future work we are planning to further analyze the found
synergies in the latent spaceand investigate the applicability
of generative adversarial networks for the problem at hand.
Nonetheless we see the insights on synergy-related human
joint positions gained herein as a fascinating incentive for fu-
ture development of synergy-driven anthropomorphic hands.
Especially for prosthetics and lightweight humanoid robot
hands, where compact but versatile systems are required,
these findings will contribute to the design of advanced
actuating mechanisms.
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