
On Force Synergies in Human Grasping Behavior

Julia Starke1, Konstantinos Chatzilygeroudis2, Aude Billard2 and Tamim Asfour1

Abstract— The human hand is a versatile and complex system
with dexterous manipulation capabilities. For the transfer of
human grasping capabilities to humanoid robotic and prosthetic
hands, an understanding of the dynamic characteristics of
grasp motions is fundamental. Although the analysis of grasp
synergies, especially for kinematic hand postures, is a very
active field of research, the description and transfer of grasp
forces is still a challenging task. In this work, we introduce a
novel representation of grasp synergies in the force space, so-
called force synergies, which describe forces applied at contact
locations in a low dimensional space and are inspired by the cor-
relations between grasp forces in fingers and palm. To evaluate
this novel representation, we conduct a human grasping study
with eight subjects performing handover and tool use tasks on
14 objects with varying content and weight using 16 different
grasp types. We capture contact forces at 18 locations within
the hand together with the joint angle values of a data glove
with 22 degrees of freedom. We identify correlations between
contact forces and derive force synergies using dimensionality
reduction techniques, which allow to represent grasp forces
applied during grasping with only eight parameters.

I. INTRODUCTION AND RELATED WORK

Throughout the recent decades, humanoid robots have
undergone great progress especially in the area of grasping
and manipulation. This is fundamentally supported by the
development of novel, anthropomorphic hands allowing com-
plex and versatile movements [1]. While a full actuation of
all degrees of freedom allows a wide range of manipulation
capabilities, it also provokes a high control complexity
necessitating extensive knowledge about the configuration
of the grasp to acquire. It requires an encompassing grasp
planning and grasp synthesis for successful grasping.

By transferring human grasp characteristics, robotic grasp
planning can profit from human intuition to increase grasp
stability and human-like appearance. This can be done by
mapping reference points among the demonstrating human
hands [2] or the transfer of grasp type and thumb contact
position [3], [4] among other methods. Especially the latter
approach demonstrated the high importance of the thumb for
grasp stability and appearance.

Analysis of human grasping behavior has however re-
vealed that natural grasps are performed on a notably lower
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Fig. 1: During different types of human grasps (left), the location
and amount of contact forces (center) exhibit coupled behavior
allowing to represent them as force synergies (right); the activation
of these synergies differs between grasp types, but also between
individual grasps

subspace of kinematically feasible grasp configurations. Cor-
relations between the finger joints of the human hand were
first observed by Santello et al. [5]. These grasp synergies
arise from the mechanical coupling of individual degrees
of freedom, but also include motion patterns tailored to the
needs of stable grasping. An overview of synergy represen-
tations in the context of grasping can be found in [6].

These synergies allow to significantly reduce the complex-
ity either of the control or the controlled hand mechanics.
The controller can be simplified based on a low-dimensional
grasp representation. By experimentally or mathematically
defining synergies for robotic hands, human grasps can be
easily transferred onto their individual kinematics [7], [8].
Conversely, the synergies can also be directly implemented in
the hand’s mechanics using underactuated mechanisms [9],
[10], [11]. Besides reducing control complexity, synergies al-
low the development of anthropomorphic hands with a small
number of actuators. By these means, significant reductions
in weight and space requirements become possible, which



are especially important in modular, lightweight robotics and
prosthetics.

While there are comprehensive studies on finger joint
configurations for both static observations [5], [12] and entire
grasping motions [13], [14], little is known about the role of
contact forces in synergy-based grasp descriptions. Santello
and Soechting proved that such synergies generally exist by
observing normal forces at the fingertips in power grasps
[15], [16]. They showed a linear covariance in the forces
of all fingertips over time by varying finger contacts and
applied forces in dedicated tasks. The work concentrates on
cylindrical power grasps on a dedicated measurement device.
It proves an influence of the grasp posture on the contact
force pattern, which we are investigating further in this paper.

Based on the consideration of oppositional force configu-
rations in palm and fingers a recognition of grasp intention
from human grasp postures and forces was proposed in [17],
[18]. While distinguishing 41 different opposition types, a
configuration of overlaid types can be derived from the
interaction forces between hand and object. As different
opposition types are applied to reach task specific goals,
the grasp intention can be recognized by a considering
the opposition configurations. An analysis of correlations
between grasp forces was also presented in [19].

Moreover, the estimation of grasp forces was also consid-
ered in relation to the concept of soft synergies by Bicchi
et al. [20]. Soft synergies are proposed to apply kinematic
synergies on physical hands. They close the gap between the
low-dimensional overall grasp control and the fine-granular
adjustments necessary to firmly enclose the object with
all fingers. As this is implemented by two counteracting
force fields, the method of soft synergies also allows to
estimate grasp forces by including a model of the mechanical
compliance of the hand, see [21], [22]. The mechanical
implementation of these concepts in robotic hands is defined
by the model of adaptive synergies [23]. Especially in human
hands having a deliberately variable compliance, the specific
consideration of grasp forces is important for grasp stability.
By varying the compliance of the human hand, several
sets of force synergies can be applied to a grasp retaining
the same grasp pose and postural synergy representation.
Thereby the grasp stability and overall force applied on the
object can be deliberately influenced by the human. Such an
encompassing direct observation of grasp forces and their
coherence regarding different grasp characteristics is still
missing.

In this paper, we analyze human grasp contact forces, as
shown in Fig. 1, for a wide range of grasping conditions.
We perform a comprehensive study of force patterns taking
into account different grasp types and object shapes. In
addition, we consider varying object weights by considering
different contents and filling levels for container objects. In
comparison to kinematic hand postures we strive to find a
universal description of force synergies. Moreover we present
novel combined postural force synergies to mutually express
all relevant characteristics of grasping. We examine our
results with respect to the interdependence of grasp forces,

the derived synergy representation and a derivation of grasp
types from those contact forces.

II. HUMAN GRASP STUDY

To get a comprehensive overview of the characteristics of
human grasping actions, we perform a large study of grasp
motions involving eight subjects executing 466 grasps on 14
objects. The demonstrations are performed by one female
and seven male right-handed subjects. In the following we
describe the technical sensor setup and the procedure of data
acquisition.

A. Data Acquisition

Throughout the grasp procedure, subjects wear a sen-
sorized data glove (CyberGlove III, CyberGlove Systems
LLC, USA) to measure 22 joint angles of the human
hand. Although all subjects describe themselves as right-
handed, half of them wear the CyberGlove on their left
hand. This setup is chosen to perform handover motions
involving grasping with the dominant and non-dominant
hand. However, according to our experience and previous
analysis in literature [16], handedness of the subjects has no
significant influence on the characteristics of grasping tasks.

The gloves are calibrated applying a procedure derived
from the scheme proposed in [24]. Wooden reference angles
are pressed sequentially against the individual joints and
a linear interpolation is provided for each sensor value.
The procedure is enlarged for the thumb circumvention,
adduction and flexion in the metacarpophalangeal joint to
capture the strong interference between the superimposed
sensors performing these joint measurements. For each pair
of sensors, the interaction is modeled by a linear interpola-
tion, allowing the elimination of influences of one motion on
the sensor readings of the other ones.

Grasp forces are measured by a Grip System (Tekscan
Inc., USA) including 18 resistive pressure sensors attached
to the palmar side of the data glove. This allows a high
spatial resolution of contact force measurements including
two sensors on the thumb, three on each finger and four
within the palm.

In addition, the poses of the object and the subjects’ wrist,
elbow and shoulder are recorded with an optical motion
capture system (Optitrack, NaturalPoint Inc., USA). As this
system captures the 6D pose of the wrist, the wrist prona-
tion/supination and flexion/extension of the CyberGlove are
not used within this study. Furthermore, the entire grasping
process is recorded by three static cameras within the room
and two first-person perspective cameras mounted on the
head of the subjects. All subjects wearing the left glove are
additionally equipped with an eye tracker. The study setup
is shown in Figure 2. In this work we only use the grasp
forces from the Grip System and the hand pose from the
CyberGlove. We focus on static grasping force at the point
the object is stably held within the hand. To extract this
position from the recorded continuous motion, the instance
of maximum overall grasp force is considered. All individual



(a) (b)

Fig. 2: Setup of the human grasp study: two subjects hand over
different objects like a softball (a) or a pitcher (b) with different
filling level, the hands are sensorized with a tactile sensor array
measuring contact forces at 18 locations within the hand

contact forces are extracted at this point and are normalized
over the size of the measured surface.

B. Performed Grasp Procedure

To record a natural and balanced set of grasps and to avoid
unnatural behavior due to the artificial situation, we record
the grasps in a task-based setting. Subjects are recorded in
pairs performing grasp motions for handover and tool use
tasks. Both subjects are standing comfortably on opposite
sides of a table with the object placed in between them.

The person wearing the measurement devices on their right
hand, presenter hereinafter, grasps the object from the table
and hands it over to the second subject, the receiver. After
taking the object with the left hand, the receiver puts it
down on the table between the subjects again. Both subjects
are asked to grasp as they would naturally yet making
sure to vary the way they grasp the object across trials.
No restrictions are made to the strategy chosen for each
individual grasp.

To understand the influence of the object’s weight es-
pecially on the grasp forces applied, several boxes, cups
and glasses are filled with liquid or granulate material up
to varying filling levels. By these means, the same object
shape is captured with different overall weights. For tools
two distinct recordings are done. First the presenter is asked
to pass the object over to be used by the receiver. In a second
trial the presenter shall use the object before passing it over
to the receiver. On each object configuration six to 14 grasps
are recorded by the same pair of subjects.

In total 14 objects from household and workshop environ-
ment are recorded. The set is selected from the YCB Object
Set [25] and the KIT Object Database [26] enlarged by
additional drinking vessels and food packagings of different
weights and shapes. A complete list of object properties can
be found in Table I.

As subjects are asked to perform different grasps feeling
natural to them without any further restrictions, a wide
variety of grasp postures is recorded on the same object. All
grasps are assigned to an appropriate grasp type manually
according to the GRASP taxonomy [27]. The majority of
grasps is performed with the thumb abducted in the cat-
egories palm power including power small diameter and

TABLE I: PROPERTIES OF THE GRASPED OBJECTS

Object Configurations Weight Object Set

Bowl E / F 163 g / 297 g YCB
Brush HO / TU 75 g KIT
Champagne Glass E / HF / F 31 g / 71 g / 138 g
Clear Plastic Cup E / HF / F 18 g / 82 g / 142 g KIT
Hammer HO / TU 796 g KIT
Mug E / HF / F 107 g / 278 g / 423 g YCB
Pasta Box E / HF / F 46 g / 324 g / 497 g
Pen HO / TU 16 g YCB
Pitcher E / HF 125 g / 715 g KIT
Plate E 87 g KIT
Red Plastic Cup E / HF / F 27 g / 225 g / 389 g
Screwdriver HO / TU 159 g KIT
Softball HO 138 g YCB
Wineglass E / HF / F 151 g / 207 g / 277 g

E: empty HF: half full F: full
HO: hand over TU: tool use

Fig. 3: Occurrence of grasp types within the human handover study;
palm power and precision pad grasps are predominant, while a wide
range of 16 grasps is incorporated in the study; the category others
contains seven grasps with less than ten demonstrations each.

power disk grasps as well as precision pad including palmar
pinch, tripod and prismatic 3 finger grasps. Yet also less
frequent grasps like the adduction grip or the fixed hook
are observed. The number of recorded grasps within each
category is shown in Fig. 3. In the following we will con-
centrate on the depicted nine most frequent grasp types. The
label others subsumes seven additional grasp types, namely
adduction grip, middle palmar pinch, tripod variation, power
sphere, power large diameter, little palmar pinch and fixed
hook. Those grasps are recorded in less than ten samples
each. The frequency of the adopted grasp postures matches
with previous studies described in [28] and [29] with small
variations due to the different selection of objects.



Fig. 4: Patterns of linear correlation between contact forces at the
individual locations; a high dependency is mainly notable within
the middle and ring finger forces and for the fingers and the palm.

III. FORCE CORRELATION ANALYSIS

To understand the occurrence of different contact locations
and contact forces, we analyse correlations between the grasp
forces obtained from the measurements. We compare the
forces taking into account the grasp type they are associated
with. In addition, we study the force trend for different object
weights.

A. Force Location Context

The overall dependencies between contact forces are con-
sidered by having a closer look on their mutual context.
The existence of force synergies is to be expected from
former research [15]. Nevertheless the similarities in force
behavior and the consideration of correlations between the
contact locations spread over the palmar side of the hand are
a necessary precondition for the extraction of synergies.

A thorough analysis of forces over the different contact
locations reveals significant correlation between the middle
and ring finger as well as the distal, proximal and ulnar palm.
We analyze the correlation between two contact forces −→x
and −→y using the sample Pearson correlation coefficient rxy:

rxy =

∑
i

(xi − x)(yi − y)√∑
i

(xi − x)2
√∑

i

(yi − y)2
(1)

The full correlation matrix is shown in Fig. 4 with the
finger contacts denoted at the proximal (PP), medial (MP)
and distal phalanges (DP). A particularly strong correlation
is notable between the index and middle finger proximal
phalanges and the distal part of the palm. These positions
exhibit a Pearson correlation coefficient r of 0.84 and 0.86
respectively. But also within middle finger contacts an r
above 0.83 is observed. The thumb however, acts mostly
individually and exposes no notable correlation with the
finger and palm contact locations. The highest correlation
of the thumb with an r of 0.40 is observed with the tip of
the middle finger.

The low correlation results for the thumb and the index
finger reflect their highly task-specific operation. As noted in
previous work [4], the thumb placement plays a central role
for grasp stability. In all grasps with the thumb abducted, it
has to oppose all other fingers involved, causing it to react as
a counterpart to the sum of all finger forces. Consequentially,
a correlation to individual finger forces is not visible due to
the changing number of fingers involved in different grasps.
In this work we did only consider the correlations between
the 18 contact forces individually, but did not analyze overall
finger forces. However, a high correlation of thumb and
opposing fingers would be expected in such an analysis. The
index finger is similarly involved in 92.7% of all grasps
and forces especially at the fingertip are subject to change
depending on the number of supporting fingers. In addition,
index finger forces are highly task specific as the index
is guiding object manipulation necessary in the tool use
recordings.

B. Force Synergies

Similar to the basic postural synergy analysis described
in [5], a principal component analysis (PCA) is performed
on the hand contact forces. In contrast to the kinematic
hand configuration, the grasp forces exhibit a higher diversity
and require a more complex representation. However, force
synergies do exist and allow to reduce the 18 contact forces
considered to eight synergy parameters while accounting
for 91.9% of the overall information transmitted. The total
variance accounted for depending on the number of synergies
is shown in Fig. 5 a). The arrangement of the recorded
grasps within the space of the first eight synergies calculated
from grasp forces is depicted using a t-Distributed Stochastic
Neighbour Embedding (TSNE) in Fig. 5 b). This method
describes the eight-dimensional data of the force synergies in
two-dimensional space by optimizing the Kullback-Leibler-
Divergence of the similarities of data points within the
two-dimensional output Q from input similarities P. The
optimization loss is therefore described by

L =
∑
i6=j

pi,j · log
(
pi,j
qi,j

)
(2)

Fig. 6 shows an overview of the mean position of the most
frequent grasp types in those first eight synergies. Similar to
the postural synergies, natural human grasps are arranged in
an oriented shape within this eight-dimensional subspace. In
both postural and force synergies there is no clear distinction
between the grasp types. However, for force synergies there
is a slight tendency for separation of power and precision
grasps identifiable. A notable distinction between the most
frequent grasp types is only visible in synergies one and four.
Other than in the postural synergies, which show a higher
selective functionality in the overall less informative, higher
order synergies, some differentiation of the palmar pinch and
power disk grasp can be seen in the first force synergy.



(a)

Grasp force synergies

power small diameter
tripod
parallel extension
palmar pinch
prismatic 3 finger
power disk
index finger extension
power palmar
lateral

(b)

Fig. 5: The first eight principal components of grasp interaction
forces account for 91.9% of the variance (a); they are visualized
in two dimensions calculated by TSNE (b); similar to the postural
equivalent, a separation of grasp types is not inherently performed,
however a slight separation between power grasps in the lower left
corner and precision grasps in the upper right corner is notable.

C. Influence of Object Weight

As the object weight force has to be counteracted by the
grasp to successfully lift it from the table, a dependency
of the overall grasp force on the object’s weight is to be
expected. This is clearly confirmed by the present grasp
study. The average force exerted by one grasp contact ranges
from 0.71N for a pen with 16 g to 14.66N for a hammer
with 796 g. The grasp force applied on average increases
linearly with the weight by a factor of 0.016. This factor is
calculated by performing a linear interpolation of the mean
contact force averaged over all measured contact locations
based on the object weight.

However, the maximum exerted grasp force shows a
quadratic dependency with the maximum contact force for
the same hammer being 48.80N in the palm within the
process of hammering. The increasing variance for heavier
objects is mainly visible when comparing different grasp
types. Thereby it can be assumed that the forces necessary

Distribution of force synergies
power small diameter
tripod
parallel extension
palmar pinch
prismatic 3 finger
power disk
index finger extension
power palmar
lateral

Synergy 1

Synergy 2

Synergy 3

Synergy 4

Synergy 5

Synergy 6

Synergy 7

Synergy 8

Fig. 6: Mean representation of grasp types in the first eight
synergies; a differentiation of grasp types is mainly notable in the
first and fourth synergy.

for grasp stability and the trust in the grasp are strongly
depending on the way of grasping and the task to be
performed. The heavier the object, the stronger the grasp
depends on an adequate amount of grasping force, making
the subjects vary their finger force significantly according to
the dynamic characteristics of the chosen grasp type.

IV. GRASP CLASSIFICATION AND FORCE DEFINITION

Understanding forces in human grasping is a crucial for
the natural, efficient grasping in anthropomorphic humanoid
and prosthetic hands. To transfer the synergies observed from
humans, this section provides further insights on grasp force
patterns and a derived classification of grasp types.

A. Grasp Force Patterns

To evaluate the capability to distinguish individual grasp
types by their force patterns, the activation of each force
sensor with a threshold of 1N is considered. As shown
in Table II, all grasp types except for parallel extension
and prismatic 3 finger have distinguishable force activation
patterns. The similarity in the two mentioned grasp types is
based on their affinity in task application. Both are used for
simple grasping and lifting tasks. Therefore there is a fluent
passage between both types, which is hardly separable in
segmentation. Very broad force activation in at least 50% of
the force sensors is notable in power grasps like power small
diameter or power palmar.

On the other hand precision grasps show a very limited
number of contact locations applying forces to the object.
Palmar pinch grasps with the index finger and thumb have
only two contact points at the tips of those fingers.

Similar to the sensorimotor efficiency index for hand
postures [5], we calculate the percentage of all possible
information that is transmitted by contact forces. This index
provides a quantitative measurement of the discriminability
of grasp types based on their contact forces as qualitatively
analysed with the force patterns. With a mean of 93.9% it
clearly indicates the feasibility to distinguish different grasps.



TABLE II: CONTACT LOCATION PATTERNS OF THE DIFFERENT GRASP TYPES
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power small diameter • ◦ • • • • • ◦ • • • • ◦ ◦ ◦ ◦ ◦ ◦
tripod • ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
parallel extension • ◦ • • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
palmar pinch • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
prismatic 3 finger • ◦ • • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
power disk • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
index finger extension • ◦ ◦ ◦ ◦ • • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦
power palmar • • • ◦ ◦ • • ◦ • • • • ◦ ◦ ◦ ◦ ◦ ◦
lateral • ◦ • • ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦

B. Grasp Classification

Motivated by the high information content of the studied
contact forces we perform a multi-class classification of
applied grasp types using decision trees with a minimal leaf
size of four and multiway splits. We develop an approach
for predicting the applied grasp type directly from the forces
and contact locations between the hand and the object. It
achieves a classification accuracy of 92.3%.

This shows the general predictability of grasp strategies
from the measured forces and therefore allows to analyse
grasping behavior by only considering the object contacts.
Furthermore, it emphasizes the correlation between both
characteristics and their mutual significance for stable, task-
oriented grasping. By implication this also indicates the
ability to define adequate contact forces for a given object
weight and grasp based on the analysed data.

V. DISCUSSION AND INSIGHTS

The force synergies in the presented data are notably
less marked than reported by Santello et al. [5] for grasps
on imaginary objects. However, these force synergies are
more widespread and broader correlations are clearly visible,
promising a force synergy representation similar to the
postural synergy description.

The presented force synergies allow an informative low-
dimensional representation of grasp characteristics empha-
sizing the balance of forces crucial for stable grasping.
Especially in the human hand, the consideration of both grasp
postures and forces is essential for an encompassing grasp
description as the human can vary the compliance of their
hand to intentionally change contact forces applied. This
allows the human to apply a wide range of force patterns
while keeping the grasp posture fixed.

Still, neither postural nor force synergies encode descrip-
tive information like the applied grasp type in an apparently
readable manner. As shown in section IV, common grasp
types can be distinguished based on their contact force
patterns. Force synergies are appropriate for the separation
of such individual contact areas. On the other hand the dis-
tribution of information among the forces is more balanced
requiring six to eight synergies to appropriately describe the
complete information available.

Combined Grasp Synergies
power small diameter
tripod
parallel extension
palmar pinch
prismatic 3 finger
power disk
index finger extension
power palmar
lateral

Fig. 7: First eight combined postural force synergies visualized in
two dimensions using TSNE.

A combined postural force synergy description derived by
calculating the PCA over the combined and normalized data
of both modalities allows to describe both characteristics in a
compact representation. Fig. 7 shows a representation of the
first eight combined postural force synergies calculated by
TSNE. This representation enhances the selectivity of grasp
contact positions encoded in the grasp forces by the shape
information contained in the grasp posture, which eases the
interpretation of grasp parameters notably. However, Fig. 7
also shows that more complex interpretation strategies are
needed to isolate the individual adopted grasp configurations.

VI. CONCLUSION

This paper presents a study of human grasp force patterns
including 466 grasps by eight subjects on 14 objects. It
analyses the forces at 18 different contact locations within the
human hand. In addition, the grasp forces are compared with
the corresponding kinematic hand postures of the performed
16 grasp types.

This study reveals significant correlations between the
individual contact forces of the palm and the four fingers.
The thumb shows an individual force behavior being mostly
decoupled from the opposing fingers. Inspired by the pos-
tural synergy description we confirm the existence of force
synergies and to the best of our knowledge we present their
first characterization. We derive individual force synergies,
which are less related than the postural synergies but show a
higher tendency to segregate individual grasp strategies. We



present combined postural force synergies, which combine
the most important characteristics of grasping.

In addition, we characterize the dependency of grasp
forces and object weight presenting a linear approximation
for the average grasp force applied. While this relation
between weight and applied force is to be expected, a key
observation is the notable increase of grasping force variance
with object weight. The task dependency of contact forces
therefore evolves with the overall weight. By analyzing the
patterns of applied contact forces, a clear discriminability
between individual grasp types can be shown. These findings
on grasp-related force patterns provide the basis for force
controlled grasping algorithms exploiting the full potential
of humanoid robotic hands while applying human grasp
characteristics. Conversely, we also show the capability to
classify individual grasp types from the contact forces. This
enables the association and influence on grasp types based
on finger force sensors in a humanoid robotic hand.

We believe that these analyses bring us a significant step
further in the understanding of human grasp behavior, allow-
ing the design of human-inspired control schemes for robotic
and prosthetic hands. In continuation we are planning to
compare postural and force synergy representations in detail
and further analyze the combination of their informational
content. The study presented herein encourages us to further
enhance the integration of contact forces into the human
grasp synergy description as part of the controllable variable
space for humanoid robotic and prosthetic hands.
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[8] T. Wimböck, J. Reinecke, and M. Chalon, “Derivation and Verification
of Synergy Coordinates for the DLR Hand Arm System,” in IEEE Int.
Conf. on Automation Science and Engineering, 2012, pp. 454–460.

[9] C. Brown and H. Asada, “Inter-Finger Coordination and Postural
Synergies in Robot Hands Via Mechanical Implementation of Principal
Components Analysis,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2007, pp. 2877–2882.

[10] T. Chen, M. Haas-Heger, and M. Ciocarlie, “Underactuated Hand
Design Using Mechanically Realizable Manifolds,” in IEEE Int. Conf.
on Robotics and Automation, 2018, pp. 7392–7398.

[11] K. Xu, Z. Liu, B. Zhao, H. Liu, and X. Zhu, “Composed continuum
mechanism for compliant mechanical postural synergy : An anthropo-
morphic hand design example,” Mechanism and Machine Theory, vol.
132, pp. 108–122, 2019.

[12] J. Starke, C. Eichmann, S. Ottenhaus, and T. Asfour, “Synergy-based,
data-driven generation of object-specific grasps for anthropomorphic
hands,” in IEEE/RAS International Conference on Humanoid Robots
(Humanoids), Beijing, China, November 2018, pp. 327–333.

[13] J. Romero, T. Feix, C. H. Ek, H. Kjellström, and D. Kragic, “Extract-
ing Postural Synergies for Robotic Grasping,” IEEE Transactions on
Robotics, vol. 29, no. 6, pp. 1342–1352, 2013.

[14] A. A. C. Thomik, S. Fenske, and A. A. Faisal, “Towards Sparse
Coding of Natural Movements for Neuroprosthetics and Brain –
Machine Interfaces,” in International IEEE EMBS Conference on
Neural Engineering, Montpellier, France, April 2015, pp. 938–941.

[15] M. Santello and J. F. Soechting, “Force synergies for multifingered
grasping,” Experimental Brain Research, vol. 133, no. 4, pp. 457–467,
2000.

[16] M. P. Rearick and M. Santello, “Force synergies for multifingered
grasping : effect of predictability in object center of mass and
handedness,” Experimental Brain Research, vol. 144, no. 1, pp. 38–49,
2002.

[17] R. De Souza, S. El Khoury, J. Santos-Victor, and A. Billard, “Towards
comprehensive capture of human grasping and manipulation skills,” in
Proceedings of the 13th International Symposium on 3D Analysis of
Human Movement, 2014, pp. 84–87.

[18] R. De Souza, S. El-Khoury, J. Santos-Victor, and A. Billard, “Rec-
ognizing the Grasp Intention from Human Demonstration,” Robotics
and Autonomous Systems, vol. 74, pp. 108–121, 2015.

[19] S. Sundaram, P. Kellnhofer, Y. Li, J.-Y. Zhu, A. Torralba, and W. Ma-
tusik, “Learning the signatures of the human grasp using a scalable
tactile glove,” Nature, vol. 569, pp. 698–702, 2019.

[20] A. Bicchi, M. Gabiccini, and M. Santello, “Modelling natural and
artificial hands with synergies,” Philosophical Transactions of the
Royal Society B: Biological Sciences, vol. 366, no. 1581, pp. 3153–
3161, 2011.

[21] D. Prattichizzo, M. Malvezzi, and A. Bicchi, “On Motion and Force
Control of Grasping Hands with Postural Synergies,” Robotics: Sci-
ence and Systems, 2010.

[22] M. Gabiccini, A. Bicchi, D. Prattichizzo, and M. Malvezzi, “On the
Role of Hand Synergies in the Optimal Choice of Grasping Forces,”
Autonomous Robots, vol. 31, no. 2-3, pp. 235–252, 2011.

[23] M. Catalano, G. Grioli, E. Farnioli, A. Serio, C. Piazza, and A. Bicchi,
“Adaptive Synergies for the Design and Control of the Pisa/IIT
SoftHand,” Int. Journal of Robotics Research, vol. 33, no. 5, pp. 768–
782, 2014.
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