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The human hand is a complex, highly-articulated system, which has been the source

of inspiration in designing humanoid robotic and prosthetic hands. Understanding the
functionality of the human hand is crucial for the design, efficient control and transfer

of human versatility and dexterity to such anthropomorphic robotic hands. Although

research in this area has made significant advances, the synthesis of grasp configurations,
based on observed human grasping data, is still an unsolved and challenging task. In this

work we derive a novel, constrained autoencoder model, that encodes human grasping

data in a compact representation. This representation encodes both the grasp type in
a three-dimensional latent space and the object size as an explicit parameter constraint

allowing the direct synthesis of object-specific grasps. We train the model on 2250 grasps
generated by 15 subjects using 35 diverse objects from the KIT and YCB object sets.

In the evaluation we show that the synthesized grasp configurations are human-like and

have a high probability of success under pose uncertainty.

Keywords: Grasping; Anthropomorphic Hands; Hand Synergies.

1. Introduction and Related Work

The human hand is a versatile and complex system containing 23 degrees of free-

dom (DOF)1,2,3. It provides robust and sensitive grasping capabilities and allows

dexterous manipulation of diverse objects. Improving the understanding of human

grasp control is a necessary condition to foster the transfer of such grasping abili-

ties onto anthropomorphic robotic hands. To reduce the complexity in design and

control of anthropomorphic hands, researchers addressed the question of finding a

low-dimensional representation of grasp postures. To that end, couplings within the

grasp posture configuration space have been observed during natural human grasp-

ing motions. These couplings have been referred to in the literature as grasping

synergies. The synergies allow the description of grasping postures in a significantly

lower dimensional space while preserving their functional characteristics. However,

1
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a direct, intuitive understanding of a grasp based on its synergy is usually not

possible. On the one hand, individual dimensions of synergies cannot be mapped

directly to descriptive parameters such as aperture or object size. On the other

hand, a dimension in the synergy space often encodes several properties of a grasp

simultaneously.

The existence of postural hand synergies in static grasp poses was first described

by Santello et al.in 19984. They could show that only two dimensions extracted by a

Principal Component Analysis (PCA) are sufficient to account for more than 80 % of

the postural information contained in a grasp configuration, being an inspiration for

many further studies on synergy representation and implementation. However, the

authors also showed that descriptive grasp type classifications or object properties

were not directly visible in the low dimensional synergies. While these observed

postural synergies can be partially explained by muscular joint couplings, Weiss

and Flanders showed that muscular and postural synergies are not identical5. They

found that rougly a third of all postural synergies was significantly involved in the

execution of one muscular synergy based on electromyographic (EMG) activation.

This was confirmed by Castellini and van der Smagt6 performing a PCA on 18 joint

angle values and ten EMG readings. While the first two muscular synergies and the

first three postural synergies accounted for more than 70 % of the total variance,

both sets of synergies did not correlate for the same grasps.

Regarding static postural synergies, Bicchi et al.introduced the model of soft

synergies to increase the flexibility of synergy-based grasping regarding the shape

of the object7. By temporally sampling from a space of postural synergies, Romero

et al.introduced a fundamental concept for kinematic synergies to describe the en-

tire pregrasp motion8. A comparison of several linear and nonlinear dimensionality

reduction methods was carried out, showing that the nonlinear nature of human

grasping data cannot be entirely described by linear reduction techniques like the

mainly applied PCA. Other approaches regarding kinematic synergies include the

interpolation of joint trajectories9 and the description as a combination of short

and basic eigenmotions extracted from human grasping data. With a non-linear

representation, the reproduction error of hand postures was notably decreased, but

the proposed model still did not contain intuitively understandable information

describing the resulting grasp.

In control, highly articulated robotic hands offer a large amount of individually

adjustable degrees of freedom, thereby enabling versatile motion capabilities. Nev-

ertheless the subspace of sensible posture configurations resulting in feasible grasps

or gestures is considerably smaller than the configuration space of such hands. Cio-

carlie and Allen first applied the synergy findings from neuroscience to the control

of several robotic hands ranging from three fingered grippers to a model of the fully

actuated human hand10. Two eigengrasps dividing the available joint space into

two main sets of correlating joints were defined for each robotic hand individually.

Thereby, a low-dimensional subspace for computational grasp optimization was cre-

ated. An application of the eigengrasp control scheme on a fully actuated humanoid
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robotic hand was presented by Wimböck et al.11. In addition to a simplification of

the postural hand control, Gabiccini and Bicchi showed that synergies can also be

applied to estimate and monitor grasp forces taking into account a dynamic model

of the humanoid robotic hand12.

Besides easing the coordinated control of individually actuated joints, the me-

chanical adaptive coupling of several degrees of freedom in underactuated mech-

anisms is widely applied in humanoid hands. Brown and Asada first presented

a tendon-based, underactuated distribution based on a synergy representation. It

allows the exact implementation of eigenpostures as a representation of the syn-

ergy based coupling of joints13. This was later extended with additional actuation

capabilities for adjusting movements14. The concept of adaptive synergies by Cata-

lano et al.transfers soft synergies to a mechanically implementable, space-optimized

mechanism15 and paved the way for several robotic16 and prosthetic17 hands syner-

gistically driven by a single motor. Further synergy-inspired underactuation mech-

anisms include the findings of synergy manifold optimization9 and adaptive, para-

metric coupling of finger closing behaviour18. Exploiting the force controllability of

synergy-based posture descriptions, Gabiccini et al.developed a kinostatic charac-

terization for underactuated power grasping19, which was later extended to cover

precision grasps20. The existence of individual force synergies describing hand con-

tact forces independent of finger posture was shown by Santello and Soechting21

followed by a broad overview on synergy-based approaches for human grasping de-

scription and the underlying correlations22.

While the merit of postural grasp synergies is well documented, the synthesis

of new grasp configurations with a specific grasp type remains challenging. The

main contribution of our work is the ability to synthesize human-like grasping con-

figurations which (1) are derived from human grasping data, (2) contain implicitly

encoded grasping parameters, (3) enable explicit parameterization of the grasp aper-

ture, and (4) have a high grasp success probability. To our best knowledge, such a

representation is novel and has not been proposed in the literature before. In detail,

the four main aspects of the contribution can be broken down as follows:

(1) We collect 2250 human grasping examples involving 15 subjects that are

tasked with grasping 35 diverse objects from the KIT23 and YCB24 object sets.

(2) Taking into account the non-linear nature of hand joint configurations, we

train a deep autoencoder network for synergy extraction and additionally constrain

it to provide an intuitive encoding of grasp classification.

(3) We introduce a constraint to the deep autoencoder by passing the diam-

eter of the target object as an explicit additional parameter to the decoder part

of the network. This allows the encoder to focus on encoding a grasp descriptor

independent of object size within the latent space.

(4) Compared to our previous work25, we show that the decoder of the network

can synthesize high-quality grasp configurations while respecting a given grasp type

and object size.
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Table 1: Information about the data collection

Characteristic Value

grasps 2250

subjects 15 (9 male, 6 female)

age 27.0 years± 2.0 years

average hand length 180.2 mm± 16.9 mm

objects 35

grasp types 5

2. Human Grasping Study

For the extraction of a universally applicable, general synergy model, a large-scale

study of human grasping postures was performed. Detailed information on the con-

ditions of data collection are listed in Table 1. Its characteristics and execution

are described hereafter, followed by fundamental observations extracted from the

gathered human grasping data.

2.1. Data Acquisition

A description of human grasping postures is gathered by recording angle data of

individual finger joints within the human hand while performing static grasps. The

angles are measured with a CyberGlove III (Cyber Glove Systems LLC, USA) con-

taining 18 joint angle sensors recording angular positions of metacarpophalangeal

and proximal finger joints as well as adduction/abduction, thumb circumduction

and the curvature of the palm. As hand orientation in space is only depending on

the relative object pose and not relevant for the shape of the grasp itself, the two

angles describing wrist motion are omitted within this study.

The remaining 16 joint angle parameters, whose notation is depicted in Fig. 1,

are calibrated with an adjusted version of the protocol proposed by Gracia-Ibáñez

et al.26. All finger angles are calibrated assuming a linear dependency by measuring

two reference positions captured with the help of wooden blocks. Contrary to the

cited protocol, we position the reference blocks on the palmar side of the finger

to avoid interference with the dorsally attached glove sensors. The angle of palm

curvature is measured for each participant according to their individual range of

motion. For visualization purposes, the acquired joint angle data is transferred to

the human hand model of the Master Motor Map2,3 with 23 degrees of freedom,

scaled according to a body height of 1.70 m and a mass of 70 kg. The exact derivation

of segment lengths and widths is described in the Master Motor Map2,3. However,

the trained algorithm for synergy extraction described in the following section is

designed only on the mere joint angle data.
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Fig. 1: Annotation of the considered joint angles; the abbreviations used in all following
graphs are comprised of the first letter of the finger followed by the associated joint name
(e. g. I PIP for the index proximal interphalangeal joint)

2.2. Grasp Procedure

Within the presented study, 2250 grasps by 15 subjects carried out on 35 objects

were gathered. Some exemplary human grasps are presented in Fig. 2. All subjects

gave informed signed consent before participating in the presented recordings. While

a central aim of the study was to gather natural, intuitive grasping behaviour,

the resulting grasps needed to be classified according to descriptive categories of

hand posture. Based on Cutkosky’s grasp taxonomy27 five different grasp types

were defined as listed in Table 2. While this subsumes grasps with similar finger

configurations, it is still flexible enough to allow for individual adjustments of grasp

characteristics by including power as well as precision grasps. This enables subjects

to grasp the presented objects in a natural, intuitive manner according to their

estimate of necessary grasp force and contact properties. The choice of recorded

grasp types was taken based on their frequency of occurence in activities of daily

living28,29.

For each grasp type the subjects performed grasps on ten different objects taken

from the KIT Object Database23a and the YCB Object Set24b. A list of all used

objects and their association to the considered grasp types can be found in Table 3.

At the beginning of each data acquisition set, the defined grasp type was explained

ahttps://h2t-projects.webarchiv.kit.edu/Projects/ObjectModelsWebUI/
bhttp://www.ycbbenchmarks.com/

https://h2t-projects.webarchiv.kit.edu/Projects/ObjectModelsWebUI/
http://www.ycbbenchmarks.com/
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(a) (b) (c) (d)

Fig. 2: Human grasps performed for data acquisition; cylindrical grasp on a banana (a),
disk grasp on a tuna can (b), pinch grasp on a spoon (c) and lateral grasp on a bowl (d)

Table 2: Classification of applied grasp types within Cutkosky’s taxonomy27

Grasp Type Cutkosky’s Taxonomy Class 27

cylindrical prismatic power large diameter (1)

prismatic power small diameter (2)

spherical circular power sphere (11)

circular precision sphere (13)

disk circular power disk (10)

circular precision disk (12)

pinch prismatic precision thumb-index finger (9)

prismatic precision thumb-2 finger (8)

lateral power lateral pinch (16)

to the participant with the help of the corresponding drawings from Cutkosky’s

taxonomy27. The recording then started with the subject positioning their hand

flat on the table as the reference pose. In the following, each of the objects was

grasped three times in a row and the recording ended with the hand positioned in

the flat reference pose again. All five grasp types were taken subsequently in one

session. The complete data acquisition including glove calibration lasted roughly

half an hour for each participant. All subjects performed the grasping procedure

with their dominant hand. The study contains data of 14 right- and one left-handed

participant. A comparison of grasping data for the purpose of this work showed no

significant difference regarding the variation of handedness. The resulting grasping

data, accompanied by videos of the study’s procedure, are publicly available on the

KIT Whole Body Human Motion Database30c.

The mean intra-subject variability calculated by comparing all three demonstra-

tions on the same object by the same subject accounts to 2.94± 1.32° without taking

into account adduction of the middle finger. The inter-subject variability between

chttps://motion-database.humanoids.kit.edu/

https://motion-database.humanoids.kit.edu/


November 15, 2019 15:26 WSPC/INSTRUCTION FILE
postural˙autoencoder˙synergies

Human-Inspired Representation of Object-Specific Grasps for Anthropomorphic Hands 7

Table 3: List of objects grasped with the five chosen grasp types

Object Grasp Type Database

Spoon cylindrical, pinch YCB

Sweetener cylindrical, disk KIT

Mug cylindrical, disk, lateral YCB

Flat Screwdriver cylindrical YCB

Small Green Cup cylindrical, disk, lateral YCB

Small Orange Cup cylindrical, disk YCB

Hammer cylindrical YCB

Tomato Soup Can cylindrical, disk YCB

Ravioli Large cylindrical, disk KIT

Plastic banana cylindrical YCB

Plastic orange spherical YCB

Golf Ball spherical YCB

Raquetball spherical YCB

Plastic apple spherical YCB

Tennis Ball spherical YCB

Plastic pear spherical YCB

Mini soccer ball spherical YCB

Baseball spherical YCB

Soft ball spherical YCB

Plastic lemon spherical YCB

Washer 51 mm disk, lateral YCB

Starkist Tuna Fish can disk YCB

Amicelli disk, pinch KIT

Wine glass disk, pinch YCB

Blue Salt Cube pinch KIT

Hot Pot pinch KIT

Small marker pinch, lateral YCB

Dice pinch, lateral YCB

Bolt pinch YCB

Nail big pinch YCB

Coloured Wood Block pinch, lateral YCB

Bowl lateral YCB

Large marker lateral YCB

Credit Card blank lateral YCB

Nut lateral YCB
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(a) (b)

Fig. 3: Interdependency between the object size and finger flexion in the metacarpopha-
langeal joints for all five grasp types and the index (a) and middle finger (b)

the demonstrations on the same object by all subjects stays below 5° for all long

fingers, demonstrating the complexity in the performance of a reliable calibration

of thumb base joint motions by the higher overall variability in this finger.

Having a close look at the interdependency of human grasps compared to the size

of the object they were performed on, a strong correlation becomes apparent in most

joints. In finger flexion joints of the index and middle finger, a negative correlation

is strongly notable as depicted in Fig. 3. Over all subjects and objects this is proven

by a Pearson’s Correlation Coefficient (PCC) of −0.52 for the metacarpophalangeal

joint of the index finger and −0.31 for the middle finger.

3. Synergy Grasp Representation

To develop a synergy representation of human grasping postures, the hand’s param-

eter space containing 16 joint angles for our representation needs to be significantly

reduced while preserving crucial grasp information in an understandable manner.

As demonstrated by Romero et al., this can be notably improved by nonlinear di-

mensionality reduction techniques, since the underlying human grasps exhibit a

strongly non-linear behaviour8. We apply an autoencoder network for synergy ex-

traction due to its ability to encode complex, non-linear correlations while offering

a high flexibility to influence the underlying reasoning of the dimensionality re-

duction. The flexibility of such networks allows the elaborate design of synergies

inherently containing intuitive information on high-level grasp parameters. In addi-

tion, the decoder automatically offers an independent tool to generate new synthetic

grasp postures directly derived from human grasping behaviour. The autoencoder

is implemented by a network comprising five fully connected layers. A three-fold

loss function ensures an ordered latent space and makes use of parallel execution of

the encoder part. The detailed design of the applied autoencoder network and the
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Fig. 4: Architecture of the proposed deep autoencoder network

choice of used hyperparameters are described in the following.

3.1. Autoencoder Design

The structure of our autoencoder is depicted in Fig. 4. The encoder consists of

two fully connected layers with eight and three neurons respectively. The latter

represent the latent synergy space thereby providing a low-dimensional description

of the trained human grasps. The decoder is given more flexibility by allocating three

fully connected layers of decreasing size including 64, 32 and 16 neurons respectively.

The 16-dimensional output space describing a humanoid grasp pose can therefore

be accurately shaped based on the chosen synergy values and allow for adjustment

according to the size of the object based on an additional input parameter.

While we started with two synergy parameters according to the findings by San-

tello et al., an increase to three latent variables proved to be necessary to enforce the

additional restructuring of the synergies accounting for high-level meta-information

on the acquired grasp type. In addition, this third latent parameter helps to de-

scribe the fine-granular final pose adjustment necessary for the fingers to adapt to

the specific object surface.

A hyperbolic tangent activation function is applied. While we tested different

activation functions including a sigmoid function, a hyperbolic tangent function and

a rectified linear unit function (RELU), the hyperbolic tangent provided the best
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Table 4: Summary of used symbols and values

Symbol Description Dimensionality

y real data sample 16

ŷ decoded data sample 16

a latent representation 3

Enc(·) encoder network

g, h grasp type

gi, gj ∈ g different samples from type g

α = 1.0 weighting parameter 1

β = 0.5 weighting parameter 1

γ = −0.15 weighting parameter 1

results for this problem.

3.2. Loss Function and Training

To ensure a precise reproduction of grasps learned from human demonstration, we

apply the conventional autoencoder loss function represented by the Mean Squared

Error (MSE) calculating the difference between the input y and the corresponding

output ŷ.

MSE(a, b) =
1

N

N∑
i=1

(ai − bi)2 (1)

L = MSE (y, ŷ) (2)

A summary of all symbols used within the description of the loss term is listed

in Table 4. However, to additionally enforce an intuitive encoding of the applied

grasp type in our synergy representation, we foster an aggregation of grasps with

the same type within the latent representation calculated as

a = Enc(y), (3)

with a being the latent representation resulting from the execution of the encoder

network on input y. The aggregation is done by adding a second term to the au-

toencoder loss function penalizing the distance between two grasps of similar types

in the latent representation

Lsimilar = MSE
(
Enc(ygi),Enc(ygj )

)
(4)

By the same means, a separation of grasps with different types is promoted.

Quantified by the distance between two samples of different grasp types, this is

described by a comparable term

Ldifferent = MSE (Enc(ygi),Enc(yhi 6∈g)) (5)
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Fig. 5: Loss function for training the deep autoencoder network, taking into account grasp
reproduction, aggregation of similar grasps and separation of different grasp types

Altogether, the loss function is comprised of three individual optimization cri-

teria, thereby taking into account three executions of the encoder throughout each

training step. All three loss terms are combined with weighting factors empirically

determined according to Table 4. The complete loss L applied for training of the

proposed deep autoencoder network results to

L = α ·MSE (ygi , ŷgi) + β · Lsimilar + γ · Ldifferent. (6)

The choice of weighting parameters according to Table 4 is based on a thorough

empirical evaluation. The reproduction of human-like grasps according to the given

demonstrations is emphasized by choosing a high α. The clustering of grasps in

latent space as an additional functionality is promoted by enlarging β, while its

value is capped to preserve the predominance of functional grasp reproduction. The

segregation of distinct grasp types in latent space caused by γ is maximized within

the range, where a dominance of the basic grasp reproduction is still guaranteed.

This ensures the general validity of the resulting synthetically generated grasps,

while still allowing a sufficient separation to enable an intuitive latent encoding. A

visualization of the complete loss term is presented in Fig. 5.

For training an Adam optimizer is used31. As we aim to define a comprising,

general synergy description enabling the generation of human-like grasps, we fo-

cus on the broad representation of given grasp demonstrations covering as much

of the synergy space as possible with sensible, seen grasps. Experiments with vari-

ational autoencoders showed that they were able to encode grasping postures in

a low-dimensional space but could not include additional meta-information of the

given grasps in an intuitive, readable manner. Therefore, we opted for a conven-

tional autoencoder design while adding noise to the latent grasp representation.

This normally distributed blur enlarges the space a single human demonstration is

mapped to in the synergy representation enforcing a fluent, comprising encoding in

the latent space.

In addition, the decoder is provided with the diameter of the grasped object
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as described in subsection 3.1. However, it has to be noted that the finger flexion

angles required to stably grasp an object do not only depend on the diameter of

the object itself, but also on the hand’s kinematics. As our study contains subjects

with a wide range of hand sizes, the joint angles for the same object vary notably

according to the lengths of the subject’s finger phalanges. To consider this factor in

the proposed grasp generation, the decoder is fed with a parameter describing the

object diameter normalized over the size of the hand. By these means, the resulting

joint angles can be directly related to an object-to-hand ratio independent of the

individual finger sizing compared to the object surface.

The data was split into training and test set by a proportion of 90 % to 10 %. The

high proportion of training data is chosen to ensure a thorough coverage of distinct

possible grasp postures within the same grasp type. By performing cross-validation,

we ensured the network was tested on all available data.

4. Evaluation and Insights

The non-linear nature of the synergies derived by the presented neural network

shows a complex interaction between the complicated system of joints contained in

the human hand. Nevertheless, their interpretation gives interesting insights into

the way humans grasp and allows to transfer knowledge inherently contained in

human grasp poses to robotic applications. Here, we show a thorough evaluation

of the presented autoencoder as well as an evaluation of grasps generated with

the synergy representation. In addition, the deduced synergies and the resulting

implications are discussed in detail.

4.1. Autoencoder Validation

As the PCA is still the most applied method to extract grasp synergies, we evaluate

the grasps reproduced by our autoencoder against the first two principal components

extracted from PCA. To enable a fair comparison of both methods, an autoencoder

comprising a two-dimensional latent space is implemented. Its reproduction error

as depicted in Fig. 6a already proves the advantages of this non-linear, continuous

dimensionality reduction for the given problem, as the autoencoder outperforms

PCA on the same set of data.

The most important impact on reproduction quality, however, is achieved by

adding information on the object diameter as a scalar to the decoder. This addi-

tionally lowers the overall reproduction error by 26 %. While these two-dimensional

autoencoders perform better than a linear synergy extraction, they still do not al-

low for a discernible representation of high-level grasp information within the latent

space apart from the object size. Therefore, a third parameter was added to the

synergy space.

As shown in Fig. 6b, this additional parameter allows the spatial separation of

all five grasp types in latent space by the methods presented in section 3. While

the synergy representation exhibits a clear separation of individual grasp types, a
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(a) (b)

Fig. 6: Autoencoder evaluation in terms of the reproduction error compared to PCA (a)
and the latent representation (b) visualized in two dimensions calculated by t-Distributed
Stochastic Neighbor Embedding (tSNE)

meaningful arrangement of the grasp clusters within the space is also notable. Thus

grasps with related configurations in a subset of joints are positioned close together

while fundamental differences result in a wide distance to other grasp clusters.

Spherical and disk grasp, which mainly differ in the flexion of metacarpophalangeal

finger joints, transition fluently in the latent space while the lateral grasp following

an essentially different grasp strategy is positioned farther away from all other

clusters.

4.2. Quality of Generated Grasps

Considering the relation between finger flexion and object size, a strong dependency

is mainly notable in the flexion joints with a negative PCC. The similarity of this

measure in the human grasping dataproves the successful reproduction of grasps

for arbitrarily sized objects. The PCC of human grasp demonstrations is positive

for the adduction joints of the middle and little fingers with PCCs of 0.28 and 0.10

respectively, which is also reflected in the generated grasps with a PCC of 0.42 and

0.56 repectively. Interestingly, the human ring finger adduction’s PCC is negative

with −0.22 while the presented decoder expects a positive correlation of 0.55 similar

to the aforementioned fingers.

The general capability of the presented decoder to generate grasps for a given

object size is clearly notable. However, the hand aperture is still subject to small

deviations due to different hand kinematics and uneven objects surfaces both in

the human grasp examples and the target objects to be grasped. Complex object

shapes allow only a rough definition of the correct object diameter and while the

subject’s hand length is already taken into account, their individual hand kinematics

including finger lengths and palm sizes are not. Thereby the resulting hand aperture
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(a) (b) (c)

(d) (e)

Fig. 7: Grasps generated from the synergy representation: cylindrical grasp on a tomato
soup (a), spherical grasp on an orange (b), disk grasp on a tuna can (c), tripod grasp on
a wooden cube (d) and lateral grasp on a credit card (e)

described by an angular finger configuration slightly differs compared to a unified

human hand model.

To overcome those slight deviations in hand aperture for generated grasps and

make their execution more robust regarding prerequisites like the relative hand-to-

object pose or friction conditions, we combine our approach for human-like grasp

generation with the concept of soft synergies7. By grasping 24 objects in simulation,

we prove the quality of grasps generated with our approach. The grasps are applied

on the human hand model contained within the Master Motor Map30, which is

scaled to a body height of 1.7 m and a weight of 70 kg. A grasp is generated by the

decoder for a target object by providing a latent sample positioned one standard de-

viation around the mean of the desired grasp type. The relative object size provided

to the decoder is calculated by dividing the object diameter by the hand length of

the scaled reference model being 180 mm. This grasp is applied to the hand with the

finger angles opened by 10 % to perform a preshape around the simulated object. By

applying a soft synergy approach with the grasp as attracting synergy configuration

the object placed in the middle of the palm is grasped, making contacts between all

fingers and the object surface. For the lateral grasp type, the object is positioned

on the inner lateral side of the palm and above the index finger. Exemplary grasps

formed by this procedure are depicted in Fig. 7.

The quality of the accomplished grasps is evaluated by calculating the mean

ε-metric over 50 grasps with the hand pose perturbed in a range of 10 mm and
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10°. The ε-metric describes the radius of the largest sphere S(ε) positioned at the

object’s center of mass that can be fitted into the convex hull of all grasp contact

wrenches W 32,33.

εGWS(W ) = max
ε

[S(ε) ⊆ convexhull(W )] (7)

To get a stable, reproducible measure for grasp quality, we calculate the mean

ε for 50 perturbed grasp poses thereby diminishing the influence of small distur-

bances in the object’s mesh. For each object ten grasps are individually generated

by sampling the latent input for the decoder within one standard deviation around

the mean for the desired grasp type. The calculated grasp quality thereby results

in

εmean =
1

500

10∑
j

50∑
i

εGWSi,j . (8)

Simulation of grasp and grasp quality calculation including the described pertur-

bation is executed with the tools of the grasp planner Simox 34. The yielded grasp

quality for the simulated 270 grasps is presented in Fig. 8 (b). While cylindrical,

spherical and disk grasps all range in a stability of ε = 0.3− 0.5, the evaluation of

pinch grasps reveals a median of 0.15. This is mainly due to pinch grasps relying on

less contact points and therefore being much more dependent on a good positioning

of the object. The pinch and tripod grasps performed on the centrally positioned

object achieve grasp qualities of up to 0.40. In Fig. 8 (a), a comparison of the per-

turbed ε-metric for three known and three similar objects, which were not included

in the presented grasping study is shown. Apart from the grasp type it can be seen

that the object size also seems to be an important parameter for grasp success. At

the same time, the model copes well with unknown, but similar objects. The general

comparison over all grasp types reveals an overall force closure rate including all

perturbed grasp poses of 86.9 % with a mean of ε = 0.35.

4.3. Control Implications

Considering the three synergies resulting from the presented latent representation,

overall implications for the mutual actuation of the human joints can be derived.

While every synergy is controlling all degrees of freedom, there is a notable diversity

in the influence the synergies have on each joint. As depicted in Fig. 9, the first

extracted synergy is mainly controlling all metacarpophalangeal joints of the long

fingers, while little influence is notable on the proximal interphalangeal joints. The

opposite applies to the third synergy, which mainly affects PIP joints. Interestingly,

in both synergies a strong correspondence between the index, middle and little

finger is notable, whereas the metacarpophalangeal joint of the little finger behaves

in a noticeably distinct manner.



November 15, 2019 15:26 WSPC/INSTRUCTION FILE
postural˙autoencoder˙synergies

16 Starke et al.

(a) (b)

Fig. 8: ε-metric over perturbed poses for several cylindrical objects (a) and the mean for
each grasp type (b)

(a) (b)

Fig. 9: Joint angle configuration for the four long fingers sampled along the parametric
range of the first and third synergy

In addition, the first synergy is the only one allowing to fully open the thumb

interphalangeal joint, thereby enabling direct thumb opposition in pinch grasps. The

second synergy is mainly responsible for controlling the adduction joints of fingers

and thumb. The fine granular control of interphalangeal finger joints is enabled by

the third synergy. It highlights the similarities of cylindrical and spherical grasps

in finger flexion and reveals the main difference between spherical and disk grasps,

which are clearly detached in this third dimension of the latent space. Overall, the

extracted synergies demonstrate, that static grasping postures are less dependent

on individual finger motions and rely more on the relative deflection of similar joints

over all fingers.
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5. Conclusion

In this paper we presented an integrated approach to synthesize new human-like

grasp configurations given an initial set of observed human grasps. The grasp syn-

thesis process is learned from human grasping data and allows the generation of a

distribution of grasp configurations given a grasp aperture and the grasp type.

To acquire the necessary grasping data we performed a study of human grasps,

which is publicly available on the KIT Whole Body Human Motion Database. The

acquired dataset is comprised of 2250 grasps, performed by 15 subjects grasping 35

diverse objects.

Inspired by the linear dimensionality reduction concept of grasp synergies ex-

tracted by a PCA4, we define a non-linear synergy representation. We train an

autoencoder implemented as a deep neural network. The encoder maps the human

grasp demonstrations to a 3D latent space. The decoder is presented with the latent

representation of the grasp and the diameter of the target object. This constrained

autoencoder architecture has several key advantages over the PCA approach. First,

it allows the separation of object size and grasp encoding. Second, by introducing

additional terms to the loss function, discrete clustering of different grasp types in

the latent space can be enforced. Third, the presented approach outperforms the

PCA in terms of the reproduction error by 26 %, as shown in the evaluation. Fi-

nally the autoencoder approach allowed us to synthesize new grasp configurations

with defined grasp type and object size. To this end, we first used the encoder to

map all grasp configurations to the latent space, while preserving the associated

grasp type. This allowed us to obtain a statistical description in terms of mean and

standard deviation for each grasp type. By sampling from this latent distribution,

the decoder can synthesize new grasp configurations conforming to the given grasp

type and aperture.

The evaluation showed that the synthesized grasps are stable in 86.5 % of the

tested cases evaluated under pose uncertainty. The grasp configurations are applied

to a given object using a soft synergy approach. In particular cylindrical, spherical

and disk grasps show a high robustness to perturbations of the hand pose.

In future work we want to extend our approach by a temporal dimension to

encode not only the final grasp configuration but also the entire grasping sequence,

including the hand position and orientation. In addition we want to transfer the

acquired grasp model to humanoid robotic and prosthetic hands.
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