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Abstract— Humans can intuitively grasp objects of different
shape and weight. Throughout the grasp execution they control
and coordinate the grasp forces at all contact points between
the hand and the object to achieve a stable grasp. Dexterous
grasping with humanoid hands relies on the perfect coordina-
tion between grasp posture and force balance at the contact
points in a high dimensional space and remains a challenge.
In this paper, we present temporal force synergies describing
the change in human grasp forces during the grasp execution
in a low-dimensional space based on two new grasp synergy
models: 1) static force synergies that are derived by a Principal
Component Analysis and represent temporal grasp forces as
a sequence of time-independent synergy configurations and
2) dynamic force synergies that are learned by a recurrent
neural network and encode the temporal change of grasp forces
throughout grasp execution in a latent synergy space clustered
by grasp types. We show that both synergy spaces encode
human grasp forces with an error of less than 2% and allow the
generation of human-like grasp force patterns. Grasp forces for
stable grasps described by the dynamic force synergies achieve
a grasp quality comparable to demonstrated human grasps in
simulation.

I. INTRODUCTION AND RELATED WORK

Human hands are extraordinarily skillful in their ability
to grasp and manipulate objects. They are able to perform
versatile and dexterous grasping tasks on arbitrary objects
in a flexible and reactive manner and can seamlessly adapt
to object properties and the task’s requirements. Endowing
anthropomorphic humanoid and prosthetic hands with such
abilities remains a challenging problem. The challenge lies
not only in the complexity of mechatronics, but in particular
in the lack of knowledge of how to implement intelligent
control strategies for hand-object interactions. Promising
approaches draw inspiration from human hands to reproduce
their versatility in terms of design and control. They either
introduce taxonomies [1], [2], [3], [4] to structure the search
space for grasp synthesis or represent grasps in terms of pos-
tural synergies [5] in a low-dimensional space, the synergy
or eigengrasp space [6], [7].

The concept of grasp synergies was first revealed in neu-
roscience [8], [9]. Strong correlations have been shown be-
tween the muscle activations controlling the human hand, the
so-called muscle synergies [10]. Santello et al. showed corre-
lations also in the joint angles of hand postures for grasping
[5]. These postural synergies represent high-dimensional
human grasp postures in a low-dimensional parameter space.
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Fig. 1: Representation of grasp contact forces in a low-dimensional
synergy space, human grasp force patterns are encoded in a dynamic
force synergy space, which allows a separation of different grasp
types and the generation of human-like grasp contact forces

For static grasp postures as analyzed by Santello et al., two
to three synergy variables are sufficient to represent a wide
range of grasp postures. To define the postural synergies,
mainly linear dimensionality reduction methods such as
Principal Component Analysis (PCA) were applied.

Later, postural synergy representations were further an-
alyzed, finding that the number of synergies required to
accurately describe a grasp posture significantly depends on
the size and variance of the dataset of human grasp postures
used for synergy definition [11]. Non-linear methods such as
Gaussian Process Latent Variable Models, Kernel PCA and
neural networks were analyzed for synergy definition [12],
[13], [14]. Also the concept of grasp synergies was extended
to the motion of the fingers from the beginning of the grasp
approach phase to the stable grasp posture [15], [16], [17].
A survey on the definition and application of synergies in
grasping has been presented in [18].

Such low-dimensional grasp representations provide re-
markable insight into the simplification of robot hand design
and control. Postural hand synergies have been mechanically
implemented for the design of underactuated mechanisms



[19], [20] and entire anthropomorphic robot hands with a
small number of motors [21], [22]. The concept of Soft Syn-
ergies enables adaptive grasping based on postural synergies
[23]. It controls the closing of a robotic hand according to
the postural synergies throughout unconstrained motion. But
it allows the hand to adapt to the shape of the grasped object,
thereby deviating from the rigid postural synergies when the
fingers come close to the object surface.

The contact forces applied in a grasp are of equivalent
importance for grasp success compared to the hand posture
and finger motion. Grasp stability significantly relies on the
forces applied at the contact points defined by the grasp [24].
The amount of overall force applied to the object as well as
the equilibrium of the forces at the different contact points
determine the robustness of the grasp.

The contact points between the hand and the object as
well as the forces exerted at these contact points describe the
characteristic force configuration of the grasp. However, this
force of the stable grasp is only the final configuration of the
temporally changing force pattern applied throughout grasp
execution. This time-varying distribution of contact forces
throughout grasp acquisition will be termed as a temporal
force pattern in the following. Once contact with the object is
made, the coordination of the forces at the contact locations
influence the interaction between the hand and the object.

For robotic hands, grasp forces can be deduced from
kinematic postural synergies given compliance models of
the hand and the object [25]. However, the compliance of
the human hand is challenging to model, especially due
to the human’s ability to deliberately alter finger stiffness
while maintaining the same finger posture. The strategies
underlying human grasp force control have been thoroughly
analyzed in literature [24], [26].

For opposition power grasps, Santello and Soechting stud-
ied tangential and normal forces while grasping a dedicated,
sensorized object [27]. They show that the exertion of grasp
force is generally performed consistently at the contacts with
all five fingers. In particular, they show that correlations
in temporal force patterns, force synergies, exist that can
be applied for the control of grasp forces. A following
study showed that the coordination between forces at the
contact locations in the grasp force pattern is determined
in the early phases of grasp execution [28]. Based on the
existing correlations between grasp contact forces, force
configurations of static grasps can be described in an eight-
dimensional space of force synergies derived by a PCA [29].
Coordination between the thumb and an opposing virtual
finger, that produces forces and moments of all four fingers
combined, has been shown based on normal and shear forces
in prehensile circular grasps [30].

The contact force patterns characterize opposition prim-
itives of a grasp that are defined by the parts of the hand
opposing each other in the grasp posture [31], [32]. Grasp
characteristics as the grasp type, object shape and weight
influence the force pattern of the grasp [33]. Therefore, these
characteristics are related to the control of grasping forces.

In this paper, we present two synergy models for describ-

ing the temporal force patterns that represent the contact
forces during the grasp execution. The two models are
presented for the low-dimensional representation of human
force patterns and the generation of human-like grasp forces
as shown in Fig. 1. The first static synergy model provides an
accurate representation of force patterns in a synergy space
independent of time and grasp progress. The second dynamic
synergy model incorporates the timing information directly
into the synergy space to allow the generation of force
patterns that are human-like in terms of force distribution
and temporal grasp progress. The paper extends the findings
of our previous work on static force synergies [29] to the
entire temporal force patterns from the first contact with the
object until the stable grasp is achieved.

II. PROBLEM DEFINITION

Our goal is to study temporal change and correlation
of normal forces in human grasping and derive a low
dimensional representation of grasp force patterns during
the different phases of a grasp, i. e. from the initial contact
to the final grasp. A grasp ggg is defined by a set of n
contact points c1, c2, . . . , cn and an n-dimensional force
vector fffg = (f1, f2, . . . , fn), where fi is the normal force
applied at contact point ci. Further, fffg(t) with t ∈ [0, T ] is
a time-dependent function that describes the temporal force
patterns of a grasp. fffg(t = 0) is denoting the forces applied
at all contact points at the first object-hand contact and
fffg(t = T ) is denoting the forces of the final grasp.

In this work, we use force data from the human handover
study recorded at the École Polytechnique Fédérale de Lau-
sanne [29]. This study consists of unscripted human handover
and tool use actions on everyday objects of different weights
and shapes. The recordings include a variety of different
grasping actions. Both the grasping conditions as well as the
grasping goal vary within the study. Overall 466 grasps ggg of
16 different grasp types according to the GRASP Taxonomy
[4] were recorded on 14 objects. While all recorded grasps
are considered to create the synergy space in this work, only
seven grasp types are considered to analyze the synergy
characteristics of specific grasp types. These grasp types
are power small diameter, tripod, parallel extension, palmar
pinch, prismatic 3 finger and power disk of which more than
30 recordings are available. In addition lateral grasps are
considered with 11 demonstrations to represent intermediate
and power grasps with the thumb adducted. The combination
of grasp types was varied over demonstrations as chosen by
the subjects. The contact force between the hand and the
object was measured at 18 different locations throughout the
hand resulting in a force vector fffg of the dimension n = 18.
The grasps are normalized over time and over force to the
range of zero to one, corresponding to no contact force and
the maximum experimental force respectively.

In our previous work [29], we showed that the contact
forces in static stable grasps fffg(T ) are correlated and can
be represented by force synergies sssg in an eight-dimensional
synergy space S. In this paper, we extend the synergy
description from static grasp postures to the entire temporal



force patterns fffg(t) of a grasp. In other words, we are
interested in the identification of temporal synergies sssg(t)
that encode entire temporal force patterns fffg(t) of human
grasps including the timing of the grasp progress.

Our approach is twofold. Firstly, we define a static force
synergy space to describe grasp force configurations fff with-
out consideration of the time. Temporal force patterns are
then represented as a time-dependent trajectory in this static
synergy space. Secondly, we learn dynamic force synergies
that directly encode the time of grasp progress. The temporal
force pattern is represented directly by a synergy trajectory
in the dynamic synergy space. Both synergy models are
then evaluated regarding the reproduction and generation of
human-like grasp forces.

III. STATIC FORCE SYNERGY SPACE

We define a synergy space S as described in our pre-
vious work in [29]. This synergy space is independent of
timing and grasp progress and hence encodes static force
configurations at a certain time t ∈ [0, T ]. Each force vector
fffg,t is mapped to a static synergy vector sssg,t. Temporal
trajectories in synergy space are then defined by a series
of synergy vectors sssg(t) = (sssg,0, . . . , sssg,T ) according to
their chronology. In order to define a generalized description
of temporal force synergies for grasps of a specific grasp
type, a regression is performed on all temporal sequences of
synergies of the same grasp type.

A. Static Synergy Description

Proceeding from the static force synergies, a time-agnostic
synergy space is defined by a linear PCA taking into account
all force configurations fffg,i for all grasps ggg and all discrete
time steps i ∈ [0, T ] individually. By these means we define
a transformation

sssg,i = W · fffg,i (1)

that maps forces fff at time steps i to the synergy configuration
sss. W denotes the weight matrix obtained by the PCA.
Similar to the analysis of static grasp forces fffg(T ) for the
stable grasp, eight synergies are needed to represent the
original force configurations appropriately. Therefore, W is
truncated to 18 × 8 dimensions and maps into an eight-
dimensional synergy space S ∈ R8. Following the method
proposed by Romero et al. [12], the temporal sequences
of synergies sssg(t) can then be described by appending the
individual synergy configurations sssg,i in the chronology of
the discrete time steps.

sssg(t) = (sssg,i=0, . . . , sssg,i=T ) (2)

Trajectories in the synergy space start from the same start-
ing point sssg(0) = sssg,0, which characterizes the unobstructed
hand having not yet made contact with the object. From
there, temporal synergies proceed into different directions
depending on the grasp contact points. The first three di-
mensions of the static synergy space S are shown in Fig. 2.
Static force synergies sssg,i are connected to a trajectories
sssg(t) in synergy space based on the time t recorded with

Fig. 2: Force synergy trajectories depicted in the first three dimen-
sions of the static force synergy space S, up to 20 recorded synergy
trajectories are shown per grasp type

the force pattern fffg(t) in human grasping experiments.
For the most significant, lower-order principal components,
which represent the first synergy dimensions, connections to
meaningful grasp characteristics can be drawn by observing
the pathway of the individual grasps in synergy space. While
the first synergy describes mainly the overall increase of
grasp force, the second synergy shows a weighting of forces
applied by the index and middle finger. Grasps evolve along
a positive direction on the second synergy when a high
force is applied at the tip of the middle finger. Respectively,
a significant force on the index fingertip, as for example
generated by a pinch grasp, results in a negative trend in the
second synergy.

B. Definition of Generalized Force Patterns

To identify a general trajectory for each grasp type in
synergy space, a Gaussian Mixture Regression (GMR) is
used over all temporal sequences of force synergies as-
sociated with the same grasp type. A Gaussian Mixture
Model (GMM) with five Gaussians is calculated based on the
temporal synergies of all grasps with the same grasp type.
Gaussians are initialized by k-means clustering and learned
with expectation maximization.

The GMR then provides the general expectation EEEg(t)
and the variance varvarvarg(t) for each grasp type depending on
the time t. Human-like temporal force patterns for this grasp
type can then be generated by defining a synergy sequence
sssnew(t) contained within varvarvarg(t). The generalized temporal
synergies described by EEEg(t) are depicted in Fig. 3. Each
color represents the generalized sequences of synergies for
one grasp type. All eight synergies are plotted along the x-
axis and the synergy configurations at each time step are
connected by a line. Temporal grasp progress is denoted by
the darkness of the line color increasing with time. It can
be seen that different grasp types are not entirely separated.
However, the generalized synergy trajectories of different
grasp types in the static synergy space S vary distinguishable.



Fig. 3: Synergies generalized for different grasp types in the static
synergy space and extended with temporal information by a GMR.

This enables the classification and generation of dedicated,
grasp type specific temporal force patterns in this synergy
space.

IV. DYNAMIC FORCE SYNERGY SPACE

The static synergy space S can be used to represent
temporal force synergies sssg(t) as a chronology of static
synergy configurations sssg,t. However, the synergy represen-
tation sssg,t has no inherent notion of time and grasp progress.
This especially means that any information on the variance
in grasp execution velocity is lost throughout this synergy
description. Notably, the impact of the temporal evolution of
grasp forces on the stable grasp force configuration fffg(T )
cannot be captured by the approach. To overcome this
limitation, a deep autoencoder network is trained to represent
a dynamic, non-linear force synergy space S̃ in latent space.

A. Network Architecture and Training

Encoder and decoder are designed as long-short term
memory (LSTM) networks [34] and trained with entire
temporal force patterns fffg(t). By doing this, the information
on the time of grasp progress is directly incorporated into the
synergy space S̃ . Matching the findings of the static synergy
representation S, the dynamic synergy space is incorporated
into a latent layer with eight dimensions, hence S̃ ∈ R8. The
network is trained with temporal force patterns fffg(t) with
46 time steps i, each describing the force fffg(i) = fffg,i with
i ∈ [0, T ]. The network architecture is depicted in Fig. 4.

The encoder consists of two LSTM-layers with 18 and
13 dimensions, respectively. To enforce a continuous syn-
ergy representation, the latent space is represented by two
dense layers encoding the mean EEE(s̃ssg(t)) and log variance
varvarvarlog(s̃ssg(t)) of the force synergies s̃ssg(t) in eight dimen-
sions each. A sample s̃ssg(t) from this synergy space is drawn
by a downstream sampling layer

s̃ssg(t) = EEE(s̃ssg(t)) + ε · e0.5varvarvarlog(s̃ssg(t)) (3)

Fig. 4: Structure of the recurrent autoencoder network, mean and
variance of the dynamic synergies s̃ssg(t) are represented in the latent
space trained on the temporal force patterns.

based on the randomly sampled variable ε with a mean of 0.0
and a standard deviation of 1.0. The synergy sample s̃ssg(t) is
fed into the decoder network. The decoder is mirroring the
encoder architecture back to the 18-dimensional force space.
Since contact forces are normalized, a sigmoid activation is
applied to all layers short of the last. The output layer has a
linear activation function.

Training is performed with a composite loss function L
explicitly shaping the latent synergy space. A mean squared
error term MSE(fffg(t), f̂ffg(t)) between the human force
pattern fffg(t) and the decoder output f̂ffg(t) is applied. This
reconstruction loss ensures an adequate representation of
the grasp force patterns by the autoencoder. Following the
methodology of our previous work on postural synergies
[14], we include an additional loss term to enhance the
clustering of grasp types in the synergy space. Due to
the temporal structure of the force patterns, a weighted
contrastive loss is applied. The distance between sequences
of synergies for the grasps ggg and g̃gg with the same grasp
type is minimized to aggregate the synergy representation of
similar temporal force patterns. At the same time, separation
of dynamic synergies of grasps ggg and hhh from different
grasp types is promoted up to a threshold d. The entire loss
function thereby accounts to

L = α ·MSE(fffg(t), f̂ffg(t))

+ β · t ·MSE(s̃ssg(t), s̃ssg̃(t))
+ γ(d− t ·MSE(s̃ssg(t), s̃ssh(t)))

(4)

A description of all symbols is given in Table I. Both latent
loss components are multiplied by the normalized grasp
execution time t to gradually emphasize grasp clustering
towards the final grasp force configuration fffg(T ). This
weighting avoids an artificial segregation in the early phase



TABLE I: SUMMARY OF USED SYMBOLS

Symbol Description

fff(t) human temporal force pattern
f̂ff(t) decoded temporal force pattern
s̃ss(t) temporal sequences of synergies
MSE(·) mean squared error function
ggg,hhh grasps with different grasp types
g̃gg grasp with the same grasp type as ggg
α = 1.0 weighting parameter
β = 0.05 weighting parameter
γ = 0.005 weighting parameter
d = 0.15 desired squared distance threshold

Fig. 5: Loss function to train the autoencoder network, the encoder
is evaluated in parallel to allow the comparison of temporal se-
quences in synergy space

of grasp execution, as force configurations at the first contact
are naturally similar over all grasp types. The network is first
pretrained for 1500 epochs only based on the reconstruction
loss. A similar amount of training is then spent applying the
entire loss function L to enforce the structured shape of the
latent synergy space S̃. An illustration of loss composition
is shown in Fig. 5.

The data is split into training, validation and test set at a
proportion of 90%, 10% and 10% respectively. For training
we use an Adam optimizer with a learning rate of 10−3 and
gradient norm is scaled to 0.5.

B. Dynamic Synergy Description

The first three dimensions of the dynamic synergies in the
latent space learned by the autoencoder are shown in Fig. 6.
The line color of the synergy sequences gets darker over the
time of grasp progress. Similar to the static synergies sg ,
the trajectories s̃g(t) of human grasp forces in the dynamic
synergy space have a common origin marked by a red circle
in Fig. 6. From this unconstrained hand configuration without
any contact forces, the temporal force patterns evolve into
different directions, as can be seen in Fig. 6. The generalized
description of different grasp types in the dynamic synergy
space calculated by a GMR on all demonstrated dynamic
synergies s̃ssg(t) of the same grasp type as described in
subsection III-B is shown in Fig. 7. It can be seen, that the
temporal force patterns of different grasp types are locally
separated in synergy space. Especially in the first three
synergies, individual grasp types can be clearly distinguished
showing a correspondence between the learned synergies and
the grasp type. Compared to the static synergy space S,

Fig. 6: Force synergy trajectories of different grasp types shown in
the first three dimensions of the dynamic synergy space S̃, the red
circle marks the center position of sssg(0) in synergy space.

Fig. 7: Synergies generalized for different grasp types by a GMR
in the dynamic synergy space.

trajectories in the dynamic synergy space S̃ are separated
earlier in the grasp progress and do not overlap in any
synergy dimension.

V. EVALUATION

The two force synergy models are evaluated regarding 1)
the quality of reproduction and generation of human-like
grasp force patterns and 2) the stability of grasps described
by dynamic force synergies. As shown in Fig. 2 and Fig. 6,
both synergy spaces are shaped differently due to non-
linearity and additional grasp clustering of the autoencoder
network.

A. Reproduction Quality

The reproduction error of human grasp forces is defined as
the root mean squared error RMSE(fffg(t), f̂ffg(t)) between the
demonstrated force pattern fffg(t) and the force pattern f̂ffg(t)
reconstructed from synergy space. For the static synergy



Fig. 8: Mean reproduction error of the force synergies by grasp
type calculated over all available recorded data for this grasp type.

space S, the mean reproduction error over all recorded grasps
is 0.32N or 0.98% of the maximum grasp force of 32.4N.
The mean reproduction error for the dynamic synergy space
S̃ is 0.65N and 0.61N for the test set and the entire data
set respectively. This corresponds to 1.99% and 1.88% of
the maximum force.

The mean reproduction error for each grasp type is shown
in Fig. 8. It is calculated by averaging over the reproduction
error of all grasps recorded for this specific grasp type. The
total number of grasps considered for each grasp type is
also listed in Fig. 8. Especially precision grasps like tripod
or palmar pinch are represented very well by the synergy
models, while the largest error can be observed for power
small diameter. This is due to a higher variance in the force
distribution of power grasps involving many contact points.
The grasp type power small diameter is very frequently used
for both lightweight and heavy objects and the distribution
of grasp forces at contact locations varies according to the
object’s shape and the task. In contrast, in delicate precision
grasps contact points are very well defined and force is
distributed over a very small number of contacts. Therefore,
the range of valid temporal force patterns for precision grasps
is significantly smaller and the exact mapping of these grasps
in sequences of synergies is hence simpler.

Overall, the static force synergies thereby show a signifi-
cantly lower reproduction error, making them the model of
choice for the representation of pre-recorded human grasps.
However, both models can represent temporal force patterns
with an accuracy of more than 98% and are therefore suitable
for grasp force representations in low dimensional spaces.

B. Generation of Human-Like Grasp Forces

To generate human-like grasp force patterns f̂ffg(t) based
on the synergy model, a sample is taken from the synergy
space. For the static force synergy space S, a new trajectory
in synergy space is sampled within the variance varvarvarg(t)
of the desired grasp type. The dynamic synergy space S̃
directly provides a mean EEE(sss) and a variance varvarvar(sss) for

(a)

(b)

Fig. 9: Temporal force patterns of palmar pinch grasps, force
patterns demonstrated by the human are plotted in solid lines
while force patterns generated from the static synergy space (a)
and dynamic synergy space (b) are shown in dashed lines; forces
are described at the proximal (PP), medial (MP) and distal (DP)
phalanges of all fingers and within the palm.

every learned temporal force pattern. By taking the pooled
mean and variance of all grasps of the same grasp type,
the sample range for temporal synergies s̃ssg(t) of this grasp
type can be defined. Examples of generated temporal force
patterns for palmar pinch grasps are shown in Fig. 9(a) for
the static synergy space S and Fig. 9(b) for the dynamic
synergy space S̃ in dashed lines. Both generated grasps
show the desired contact forces along the thumb including
the thenar at the proximal palmar location and the index
finger. Besides, they differ from the demonstrated human
force patterns and thereby allow to adapt the specific force
patterns while still keeping human-like force characteristics.

C. Grasp Quality

The grasp quality of the dynamic force synergies is
compared to human grasps in simulation. Since the repro-
duction quality is lower for the dynamic than for the static
synergy space, we aim to verify the feasibility of this force
description by a grasp quality evaluation. The grasps are
simulated on the human hand model of the Master Motor
Map [35]. Simulation and calculation of grasp quality are
done using the grasp planning simulator Simox [36]. The
evaluation is based on 75 grasps on nine objects used in



(a) (b) (c)

Fig. 10: Simulation of grasps based on force synergies of a parallel
extension grasp on a bowl (a), a palmar pinch grasp on a marker
(b) and a power small diameter grasp on a pitcher (c).

the human grasp study, of which 3D-models were available.
To define the contact points of the hand on the object, we
use the human hand position and finger posture from the
human grasp recordings. Hand pose and shape are initialized
with the recorded human data in simulation. We optimize
this initial hand posture according to the contact points
measured at the hand and described by the human grasp
forces fffg(t = T ). Optimization of the hand pose is done
by gradually varying the position and orientation of the
hand with respect to the object. For each hand pose, the
fingers involved in the grasp are closed until contact with
the object is made. For grasp stability evaluation, we choose
the grasp posture that 1) makes contact with the object
at the contact areas measured in the human demonstration
and 2) provides the best grasp quality for the demonstrated
human grasp forces considering all grasp postures satisfying
condition 1). This optimization is necessary to ensure that
contact is made at the recorded parts of the hand despite
inaccuracies due to measurement error in the hand posture.
It is important to note, that both human force configuration
and decoded synergy force configuration are evaluated on
the same hand posture and hence the same contact points.
By these means, a relative comparison between both force
configurations independent of the grasp posture is performed.
Fig. 10 shows simulations of three grasps on different objects
and the parts of the hand that exert a force on the object are
marked in red.

Grasp stability is measured by the grasp quality ε-metric
[37], [38]. Overall, the synergy configurations have a very
similar grasp quality compared to human force configurations
with the mean of ε being 0.338 and 0.337 respectively. As
shown in Fig. 11, the grasp quality varies considerably over
grasp types due to the strong dependency of the grasp quality
metric on the number of grasp contact points. However,
no grasp type shows a significant difference between force
synergy configurations and the original demonstrations. This
shows that grasp force configurations represented by the
dynamic force synergies yield a grasp stability comparable
to human grasps.

VI. CONCLUSION

We introduce two force synergy models to represent the
temporal patterns of contact forces throughout the grasp
progress. The models describe force synergy patterns by a

Fig. 11: Grasp quality of simulated grasps with human and synergy
forces.

time-dependent trajectory in a linear, static force synergy
space S and a temporal pattern in a non-linear, dynamic
synergy space S̃ while taking into account changes of applied
forces on the object over time.

The static synergy space provides the best reproduction
quality of demonstrated human force patterns. Hence it is
well suited for the representation of known human force
patterns in a low-dimensional space for the control of robotic
hands. However, the static synergy space has no notion
of grasp progress and the timing of grasp force patterns
generated based on these synergies therefore has to be
defined manually.

The dynamic synergy space solves this problem by directly
incorporating the timing into the synergy space represen-
tation. This ensures that every point in the synergy space
is a valid force configuration for the given timestep. The
correlation of grasp contact forces throughout the grasp
progress is thereby directly learned and grasp force patterns
can be generated ensuring a human-like temporal behavior
of grasp forces. However, this comes at the cost of a higher
error in the reproduction of demonstrated grasps compared
to the static synergy space. Nevertheless, the quality of
grasps generated from the dynamic force synergies is still
comparable to the quality of demonstrated human grasps
in simulation. Therefore, the representation accuracy of
98.01% is sufficient for the description of feasible grasp
force patterns.

Overall, the static force synergies should be used when
a low-dimensional representation of demonstrated force pat-
terns is required. The dynamic force synergies should be
preferred, whenever human-like force patterns shall be gen-
erated for a known grasp type without a specific human
demonstration. Both synergy representations reduce the hand
control complexity and could be applied in combination with
reinforcement learning strategies for grasping [39].

In future work, we are planning to classify grasps based
on the temporal synergies. Further we already started ex-
perimenting with neural networks that compress and thereby
abstract the time dimension entirely. However, further inves-



tigation is needed regarding temporal smoothing to represent
force synergies independent of grasp progress over longer
time horizons. In addition, we are planning to apply the
dynamic force synergies to control a robotic hand, thereby
substantiating the results obtained from simulation on noisy
data. We believe that the presented temporal force synergies
provide a powerful means to both describe demonstrated
grasp force patterns as well as generate force patterns for
human-like robot grasps.
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