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Abstract

Semi-autonomous control strategies for prosthetic hands provide a promising
way to simplify and improve the grasping process for the user by adopting tech-
niques usually applied in robotic grasping. Such strategies endow prosthetic
hands with the ability to autonomously select and execute grasps while keep-
ing the user in the loop to intervene at any time for triggering, accepting or
rejecting decisions taken by the controller in an intuitive and easy way. In this
paper, we present a semi-autonomous control strategy that allows the user to
perform fluent grasping of everyday objects based on a single EMG channel
and a multi-modal sensor system embedded in the hand for object perception
and autonomous grasp execution. We conduct a user study with 20 subjects to
assess the effectiveness and intuitiveness of our semi-autonomous control strat-
egy and compare it to a conventional electromyography-based control strategy.
The results show that the workload is reduced by 25.9 % compared to conven-
tional electromyographic control, the physical demand is reduced by 60 % and
the grasping process is accelerated by 19.4 %.

Keywords: semi-autonomous control, prosthetic hands, human grasping data,
context-awareness

1. Introduction and Related Work

Recent advances in prosthetics and humanoid robotics have led to artificial
hands with human-like appearance as well as improved dexterity and grasping
abilities [1, 2]. Hence, the simple yet reliable control of such hands, reducing
the amount of attention a prosthesis user has to pay when performing grasping
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actions, becomes more and more important [3]. Therefore, simple yet reliable
control strategies are needed to enable user to exploit the hand’s dexterous
grasping abilities to their full extent [3, 4]. Such easy-to-use control aims at re-
ducing the amount of attention a prosthesis user has to pay during the execution
of a grasp. Traditionally, electrically actuated prostheses are controlled with sig-
nals captured by two EMG electrodes attached in the socket on the user’s arm.
Through contraction of the muscles in the forearm the user can then sequen-
tially control all degrees of freedom of the prosthesis. While prosthetic hands
get increasingly versatile, control of these added degrees of freedom is difficult
with the limited expressiveness provided by the EMG interface. Hence, long
control signal sequences are needed to control prostheses with a multitude of
functions. Besides the need for a long training time, the direct control of more
than two degrees of freedom (DoF) with only two EMG electrodes results in a
high cognitive load for the user while controlling their device [5]. Therefore, a
simplification of the prosthetic control strategy for the user is needed in order
to reduce the user’s workload while operating their device.

An active field of research is the classification of electromyography (EMG)
and mechanomyography (MMG) signals from multiple sensors to improve upon
the muscle activation control strategies currently applied in commercial prosthe-
ses, as for example proposed in [6, 7, 8, 9, 10, 11, 12]. A comprehensive survey of
these techniques can be found in [13]. However, acquiring fine-granular, contin-
uous and robust signals is challenging due to imperfect fitting of the socket and
changing skin surface conditions, such as sweat and temperature [14]. There-
fore, the emerging field of semi-autonomous control concentrates on reducing
the amount of commands sent by the user to execute an action by incorporat-
ing environmental information extracted from additional sensor modalities and
predicting the user’s intention. These are especially interesting where the user’s
stump condition does not permit to capture feature-rich EMG signals. For this
specific user group, a prosthetic control should require as little direct EMG
commands as possible to mitigate the proneness to errors caused by wrong or
missing muscular signal detection.

The idea of partially automating prosthetic control has a long history. For
an early version of the Southampton Hand, predefined grasps are adapted based
on information from a gyroscope, force sensors and slip detection supporting the
user during grasping [15].

Došen et al. [16] design a semi-autonomous control scheme based on a cog-
nitive vision system for prosthetic grasping. With a camera and a distance
sensor mounted externally on the dorsal side of a prosthetic hand looking over
the fingers, the object is detected and its distance can be measured. Here, the
user directly controls the wrist rotation, while grasp type and hand aperture
are determined based on visual and distance information and a set of if-then
rules of a decision making system. While offering nine different grasp types
and apertures, the system achieved an accuracy of 84 %. Grasping failures were
attributed to errors of the visual object detection. The work was extended to
include the wrist rotation into the semi-autonomous control scheme, leaving the
user only responsible for triggering the grasping action [17].
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Another approach using electrooculography and four sensors placed around
the eye to determine grasp affordances was presented by Hao et al. [18]. The user
has to scan the object’s borders with the eyes and trigger the closing movement
by EMG signals as soon as the desired preshape is obtained. While grasping
in a defined setup shows an object recognition rate of 86.2 %, the robustness
regarding different object-eye distances remains to be assessed.

Markovic et al. [19] present a semi-autonomous control architecture that is
based on augmented reality glasses. In contrast to the approaches described
above, the user stays in control of the fine-tuning of the grasp. While a first
preshape is adopted based on the visual information of the stereo camera system
integrated in the glasses, the user is still able to adjust the grasp aperture by
a proportional myoelectric controller according to the transmitted feedback. In
their following work [20], the authors use an inertial measurement unit (IMU)
on the dorsal side of the palm and combine it with a stereo camera system
mounted in the room as well as position and force sensors embedded into the
prosthetic hand. Based on this multi-modal sensor information, the wrist ro-
tation and grasp preshape of a prosthesis are controlled autonomously. The
semi-autonomous control was compared to three manual control schemes with
increasing difficulty. Compared to a manual control of grasp type, wrist orienta-
tion and finger closing, the grasp execution was faster with the semi-autonomous
control.

An electrotactile human-machine interface is proposed by Gonzalez-Vargas
et al. to facilitate a bidirectional communication between a prosthesis controller
and the user [21]. The user intention is detected by monitoring forearm motions
with an IMU mounted in the prosthetic socket. This interface presents possible
grasps to the user via electro-tactile stimulation and the user then acknowledges
the desired grasp choice by generating a single command signal. Although this
method inherently includes delays according to the required selection process,
it proves to be faster than direct proportional control of all individual degrees
of freedom for three out of four preshape options.

To assess the performance of different levels of autonomy in prosthetic control
regarding grasp success, subjective complexity and satisfaction, several control
schemes are applied to the CyberHand [22]. The evaluation shows that less com-
plex control schemes perform notably better in terms of perceived satisfaction,
required attention and difficulty. The authors also noted that a full, individual
control over all functionalities offered by the prosthesis was seldom used by the
subjects. The study thereby supports the general merit of semi-autonomous
control techniques.

A semi-autonomous control scheme with a multi-electrode user interface is
shown on the TASKA hand [23]. Using combined force and proximity sensing at
the fingertips, the finger closing motion and the grasp force applied to the object
are controlled autonomously. The user controls the grasping motion similar to
a pure multi-electrode manual control and the autonomous control system is
activated based on a threshold set on the decoded muscle signals. This shared
semi-autonomous control is shown to increase the grasp precision and decrease
the workload for the user.

3



The use of cameras attached to a prosthetic hand has been studied in liter-
ature, resulting in several approaches for processing visual information for the
application in semi-autonomous prosthetic control. A pipeline architecture is
used in the cognitive vision system to derive object dimensions from the image
input [16]. A number of recently published object recognition systems make use
of neural networks and propose grasps based on the recognized known objects
[24, 25, 26].

Sensor modalities used in prosthetic control range from IMU data [27] over
stereo vision [20] to distance sensors [16, 23]. A survey on the sensorization
of both robotic and prosthetic hands can be found in [28]. In general, many
semi-autonomous control algorithms rely on sensory information not directly
provided by the prosthesis. Instead they require additional sensors attached
to the human body or installed in the environment. Grasp types for different
objects are usually designed manually. Furthermore, the distinct degrees of
freedom of the prosthetic hand are generally actuated in succession starting
with wrist and thumb positioning followed by the final hand closure. This leads
to a slower grasp execution compared to simultaneous actuation of all degrees
of freedom of the prosthesis.

In this paper, we propose a novel, semi-autonomous control scheme for grasp-
ing with prosthetic hands and evaluate its performance on an improved version
of the KIT Prosthetic Hand [29]. We consider the presented semi-autonomous
control, that uses hand state estimation, object recognition and user intention
based on sensors and processing power directly integrated into the hand as the
main contribution of our work. The control scheme uses the sensor system in-
tegrated into the prosthesis to extract relevant object information, select an
appropriate grasp and recognize the user’s intention. Except for two EMG elec-
trodes, no additional sensors are attached to the human body or mounted in
the environment. This allows to execute grasping tasks including wrist rotation,
finger and thumb closing in a continuous manner based on only one user input
signal to trigger the grasp execution process. Feedback to the user regarding
automatically selected grasps is provided via a color display embedded into the
dorsal side of the prosthesis. The grasp trajectories are generated from human
grasping demonstrations on known objects of daily life. By transferring au-
tonomous robot grasping functionalities to prosthetic hands, we aim to simplify
the grasp process for the user and reduce their workload throughout the control
of their hand. In contrast to the state-of-the-art, the presented control scheme
relies solely sensors and computing power integrated into the prosthesis. This
makes the system applicable in daily life without the need for external sensors
attached to the user’s body or the environment. Control of the prosthesis is fa-
cilitated by a single user input signal and an IMU. The proposed control scheme
is evaluated in a real world experiment regarding grasp time and success as well
as cognitive burden for the user. The semi-autonomous control scheme is com-
pared to a traditional, fully user controlled approach as well as a hybrid control
scheme, that provides autonomous grasp suggestions, while the hand closing is
controlled manually by the user. Both the hybrid and semi-autonomous control
scheme are developed and introduced in this work to assess the merit of different
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levels of autonomy in prosthetic grasp control.
We consider the presented semi-autonomous control integrating hand state

estimation and user intention based on on-board sensors and processing power
as the main contribution of our work.

In Section 2 we briefly describe the used prosthetic hand with its embed-
ded sensor system, processing capabilities and resource-aware image processing.
Section 3 explains the human grasp database that is directly learned from hu-
man motion recordings. The proposed semi-autonomous control is then detailed
in Section 4. Section 5 describes the experimental setup used to evaluate the
proposed control and Section 6 presents the results of these experiments. The
paper concludes with a discussion of the semi-autonomous control and its ex-
perimental evaluation.

2. The Prosthetic Hand and Its Grasping Abilities

The semi-autonomous control scheme presented in this work is implemented
on the female KIT Prosthetic Hand which is based on the prosthesis presented
in [29]. In the following we describe the prosthesis mechanics and processing
system, as well as its sensor setup for completeness. In addition, the intelligent
functionalities provided by the prosthesis are presented. These include an ob-
ject recognition with a camera in the palm of the prosthesis based on previous
work [26], as well as a new database of human grasp motions and its transfer to
the prosthetic hand.

2.1. The Mechatronics

For the implementation and evaluation of the semi-autonomous control scheme,
our female version of the prosthesis is used [29]. The system components of the
prosthetic hand and shaft are shown in Fig. 1. The hand is driven by two mo-
tors actuating the thumb and the four fingers, respectively as shown in Fig. 2.
A cascaded P-controller for position and velocity control is used to drive the
motors. The hand has two degrees of actuation (DoA) and ten degrees of free-
dom (DoF) with two joints for flexion and extension in each finger. The fingers
are connected to the motor by a force distributing mechanism based on the
TUAT/Karlsruhe mechanism that allows the fingers to wrap around arbitrarily
shaped objects as described in [30] and [31]. The prosthetic hand has been de-
veloped to be personalizable in size and grasping abilities. It is equipped with
a multi-modal sensor system that allows the realization of intelligent grasping
behaviors that are easy-to-use and tailored to the user’s needs. The prosthe-
sis is sized according to the 50th percentile of female hands conforming to the
German Standard Specification (DIN 33402-2) and has a weight of 377 g. In a
cylinder grasp the prosthesis provides a grasp force of 24.2 N. Besides relative
encoders on both motors (IEH2-512, Faulhaber), an RGB camera and an IMU
sensor (BNO055, Bosch Sensortec), the prosthesis also comprises a distance sen-
sor (VL53L1X, ST) embedded into the palm. The camera and distance sensor
are shown in gold in Fig. 2.
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Figure 1: Underactuated hand with two motors and ten degrees of freedom (DoF); a sensor
system consisting of camera, distance sensor and IMU; a color display and an embedded
system for sensor data processing and control. In addition, the wrist rotation unit and user
interface, which are integrated in a self-experience shaft are shown.

The developed algorithms for sensor data processing and control are running
on an on-board embedded system with a 400 MHz ARM Microcontroller inte-
grated into the prosthesis palm. This integration allows using the prosthesis in
standalone mode without the need for any external computing power, sensors
or internet connection.

To allow the inclusion of able-bodied subjects into the experimental evalu-
ation of the semi-autonomous control strategy developed in this work, a self-
experience shaft was designed. It is used to attach the prosthesis below the arm
at the palmar side of the human hand as depicted in Fig. 2 and Fig. 3. This setup
allows the execution of grasping actions by able-bodied subjects under condi-
tions comparable to amputated users. The self-experience shaft is connected
to the prosthesis by a quick release fastener. The wrist is actuated by a motor
providing a pronation motion of 90° and a supination motion of 180°. Thereby
it is spanning the human range of motion of forearm pronation and supination
combined with passive shoulder rotation [32] and [33]. The wrist rotation is
also directly controlled by the on-board embedded system of the prosthesis and
similar to the hand motors a P-controller is used for wrist motor control. The
shaft further contains the battery, powering the hand-wrist system as well as
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Figure 2: Technical rendering of the prosthetic system with the hand and self-experience shaft;
the motors actuating the fingers (blue), thumb (red) and wrist (green) as well as the distance
sensor and camera (gold) are shown; the IMU is mounted on the PCB in the back of the hand.

the two EMG electrodes (13E200, ottobock), which are used to measure the
excitation of wrist flexor and extensor muscles. The EMG electrodes provide
internal filtering of parasitic signals. They operate in a frequency bandwidth of
90 Hz to 450 Hz. The conditions of the EMG detection of muscular signals is
kept constant over all implemented control schemes.

Figure 3: A subject wearing the self expe-
rience shaft and prosthesis.

Figure 4: Accuracy of the visual ob-
ject recognition; the detailed experimental
procedure and results are presented in [26]
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2.2. Visual Object Recognition for Prosthetic Hands

To endow prosthetic hands with the ability to autonomously perform parts
of grasping tasks, we transfer a vision-based approach to grasping from robotics
to the prosthetic application. The robotic problem to select a suitable grasp
on an object of interest in an autonomous way can help to reduce the workload
of the user in prosthetics. This is our motivation behind integrating a camera
in the prosthesis, i. e. to transfer our robot grasping knowledge to prosthet-
ics. Given an object of interest that can be recognized with computer vision
methods and an object database of daily objects, the prosthesis should be able
to autonomously determine grasps and select the most appropriate one. The
execution of the chosen grasp is then triggered by the user. A fundamental
requirement to successfully recognize objects, plan and select grasps is that
all computations should be performed in real-time on the in-hand integrated
embedded system.

To achieve this ability, we use a resource-aware visual recognition system,
which is based on a convolutional neural network (CNN) running on the in-hand
embedded system. It achieves a recognition accuracy of 96.5 % on 13 pre-trained
objects from a household environment. The recognition accuracy of the objects
used in our evaluation is depicted in Fig. 4. This visual object recognition
system is described in detail in [26]. Here, we give a very brief overview for
completeness as the recognition of objects in the scene is key and the first step
of the semi-autonomous control scheme. Within the presented controller, the
object recognition is triggered by the user via a single EMG signal. A camera
image is captured and processed by the recognition system to identify the object
in the field of view of the prosthesis. Image processing and object detection are
performed in 115 ms. The CNN outputs the recognition probability of all 13
objects and the object with the highest recognition probability is chosen. The
number of 13 recognized objects provides a viable tradeoff between recognition
rate, memory consumption and processing time based on the utilized microcon-
troller.

The focus of the visual object recognition as well as our semi-autonomous
control scheme is set on free-standing single objects. While the CNN is capable
of recognizing objects in front of varying multicolored backgrounds to some
extent, the grasping of objects in cluttered environments is out of the scope of
our work.

3. Generating Grasps from Human Demonstrations

In prosthetics, grasps must be stable, predictable and optically unobtrusive.
Humans achieve these goals intuitively in their everyday grasping activities.
Human-like prosthesis grasps should align with human expectations of hand
behavior and therefore enhance the predictability of a prosthetic hand. Hence,
the trajectories of our semi-autonomous grasp control are learned from human
demonstration. To this end, we created a grasp database with predefined human
grasps on 29 objects from a household and workshop environment for the top
and side grasps.
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3.1. Data Acquisition

To learn from a broad range of human grasp examples, a kinematic study
of 510 grasping motions was conducted, performed by 5 healthy subjects (two
female and three male) on 29 objects. Objects used in the study are chosen from
the KIT Object Database [34]1 and the YCB Object Set [35]2. The objects are
chosen to represent several primitive shapes as cylinders, boxes and spheres, but
also include more complex shapes like pitchers, a banana and a bowl. While
only a subset of 13 objects is used for the semi-autonomous control scheme, we
record a larger set of objects in different sizes, weights and shapes to establish a
comprising grasp database. In a wider perspective this allows us to derive human
grasps for a wide range of objects and thereby enables the personalization of the
subset of grasps provided by a semi-autonomous control to the needs of each
specific user.

Throughout the grasp recordings, subjects wear a sensorized data glove (Cy-
berGlove III, CyberGloveSystems Inc.) measuring 22 joint angles of the human
wrist, palm and fingers and an IMU mounted on the back of the hand recording
the hand orientation. The data glove is calibrated by a procedure adapted from
Gracia-Ibáñez et al. [36]. Reference postures at defined finger joint angles are
taken by pressing against reference blocks. Calibrated finger joint angles are
calculated assuming a linear correlation of the sensor readings. Isolated thumb
motions involving individual DOFs are measured additionally to identify the
cross-correlations between flexion, abduction and circumvention. For the IMU
calibration, the hand is positioned upright on the table and a reference sample
is used.

3.2. Human Grasp Recordings

The participants performed the grasping procedure with their right hand.
While one subject was left-handed, their motion data showed no significant
difference compared to the four right-handed subjects. Participants were on
average 24 years old and the mean hand length from the wrist to the tip of
the middle finger was 18.5 cm. The study was carried out in accordance with
the recommendations of the ethical committee of the Karlsruhe Institute of
Technology. The protocol was approved by this ethical committee. All subjects
gave written informed consent.

Throughout a recording session, the subject is seated comfortably in front
of a table. The medial side of the hand is placed on the table and the thumb is
abducted and opposed to the fingers. Subjects are asked to move their hand to
the object positioned 29 cm left of the hand, grasp and lift it naturally. Except
for spheres and flat objects with a height below 40 mm, all objects are grasped
with two different approach directions resulting in a top and a side grasp. To
align with the functionality of the prosthesis, the subjects are asked to perform
opposition grasps, allowing both power and precision postures. All grasps are

1https://h2t-projects.webarchiv.kit.edu/Projects/ObjectModelsWebUI/
2http://www.ycbbenchmarks.com/
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executed twice per subject. The recorded data is available in the KIT Whole
Body Human Motion Database [37]3.

3.3. Human Data Mapping

To transfer the human finger motions to the prosthetic hand, an endpoint-
based mapping approach is applied similar to the approaches in [38] and [39].
The human fingertip trajectory is calculated from the joint angle measurements
while the trajectories of the prosthetic fingers are extracted from video data of
the hand closing at constant speed. While the thumb motion can be directly
transferred to the prosthetic thumb, the four fingers of the prosthesis are driven
by a single motor, which does not make a direct mapping possible. Thus,
we develop a method to address the transfer of demonstrated grasps to the
prosthetic hand. For all grasp types used in our study, the middle finger is
included and mostly centred in the second virtual finger opposing the thumb
[40], [41]. Therefore, the middle finger trajectory is chosen as representative for
the human finger motion.

The entire procedure of grasp transfer onto the prosthesis given an object and
a grasp orientation (top/side) is listed in Alg. 1. The calculations are exemplar-
ily shown for the fingers, the implementation for thumb and wrist is similar. The
algorithm has two parameters as input. The first parameter, Hobj := (pi(t), li),
is a set of tuples where pi(t) is the trajectory of the middle finger of subject i
for object obj. The parameter t indicates that pi(t) is a time-dependent data
series. The second element in the tuple li is the length of the subject’s middle
finger. This is needed for the normalisation of the trajectory over the different
hand dimensions of the subjects. The second parameter pprosthesis(t) is the
measured trajectory of the middle finger of the prosthetic hand which is needed
for the mapping.

The human fingertip trajectories are normalised to the length of the pros-
thetic fingers (Alg. 1, line 4). All motions on the same object and direction are
additionally normalised regarding the execution time (Alg. 1, lines 5-8). The
mean trajectory, averaged over all human demonstrations (Alg. 1, line 10), is
mapped to the prosthesis trajectory by a nearest neighbour correlation of all
trajectory points (Alg. 1, line 12). The wrist rotation is directly transferred
from the human grasps to the prosthetic device.

The grasp trajectories are discretized in steps of 100 ms and are executed on
the prosthetic hand with 10 Hz accordingly. The execution of the low-level motor
control causes an overall delay of 295 ms in the grasp execution. Taking into
account the overall execution time of a grasp being roughly 10 s, the response
time of the low-level motor control and the delay resulting from this is therefore
negligible.

The motor trajectories as well as the corresponding fingertip trajectories of
the prosthesis for a grasp on a pitcher are shown in Fig. 5. The important
characteristics of the grasps in the database is their continuous representation

3https://motion-database.humanoids.kit.edu/
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Algorithm 1 Fingertip Trajectory Mapping

Require: Hobj ,pprosthesis(t)
1: Pobj := ∅
2: tmax := 0
3: for all (pi(t), li) ∈ Hobj do
4: Pobj = Pobj ∪ normalize length(pi(t), li)
5: tmax = max (tmax,length(pi(t)))

6: P̂obj = ∅
7: for all p̃i(t) ∈ Pobj do

8: P̂obj = P̂obj ∪ normalize time(p̃i(t), tmax)
9: for τ := 0 to tmax do

10: pmean(τ) :=
1

|P̂obj |
·

∑
p̂i(t)∈P̂obj

p̂i(τ)

11: for all τ do
12: pmapped(τ)

:= nearest neighbour(pmean(τ),pprosthesis(t))
13: return pmapped(t)
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Figure 5: Side grasp on the handle of a pitcher from the grasp database; the grasp is composed
of trajectories for thumb and finger motor as well as a wrist rotation trajectory (a), the
corresponding fingertip trajectories of the hand are shown in (b) together with the hand’s
rotation depicted as a circular trajectory
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as they are not defined by a fixed wrist orientation, static preshaping aperture
and grasp pose, but instead, all degrees of freedom are controlled by continuous
trajectories describing the entire motion throughout both preshaping and grasp
acquisition. In contrast to a fixed hand closing with predefined preshape aper-
ture, these continuous trajectories allow for different timing and closing order
as well as interactions of the fingers and the thumb with varying, synchronized
closing velocities. The third degree of freedom, namely the wrist orientation, is
also described by a trajectory executed simultaneously to the finger and thumb
closing motions. While the global reorientation of the hand according to the
grasp orientation is performed early in the preshaping phase, this wrist motion
trajectory over all grasp phases enables further adjustment in orientation to
ease the final grasp acquisition.

4. The Semi-Autonomous Grasping Controller

Based on the visual object recognition and the human grasp database, we
present a semi-autonomous control scheme for prosthetic hands. The control
scheme automates part of the grasping process to reduce the cognitive burden of
the user. Simultaneously, the user can influence or stop the grasping process at
any time to keep in control of their prosthetic hand. The control flow of the semi-
autonomous control scheme, including the usage of sensor information, object
and grasp databases and user commands is depicted in Fig. 6. An architectural
diagram of the semi-autonomous control scheme is also depicted in Fig. 7 and
the finite state machine implementing the control scheme is shown in Fig. 8. The
sensory information acquired and used throughout two grasp execution examples

Arm Rotation

EMG Signal

KEY

Visual Perception

Distance Sensing

Global Orientation

SENSING

Object Data

DATABASES

USER COMMANDS

Control

Sensing

User Input

Database

Actuation

Object Grasp

User can interfere

Recognition Execution

Modalities

Knowledge

Wrist/Hand

Intention
Recognition and
Grasp Selection

Preshape and
Wrist AdaptationState

MODALITIES

Human
Grasp Data

Figure 6: Steps of the semi-autonomous controller, beginning with the first step on the left.
User input is explicitly provided through an EMG signal and an arm rotation in the first two
steps. Prior object knowledge in the object database is used for visual object recognition.
Prior grasping knowledge in the grasp database is used for intention recognition and grasp
selection. In the last two steps the grasp trajectory is performed on the prosthesis. User
intervention is possible at any time.
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Figure 7: Architectural diagram of the semi-autonomous control including the control state
machine, sensor and feedback interfaces, knowledge databases and the prosthetic hand

is shown in Fig. 9 and Fig. 10. Video 1 shows and explains the procedure of
the semi-autonomous control4. The user triggers actions of the prosthesis via
muscle activations measured by a single EMG-channel. Status information is
presented to the user on the display at the back of the hand. Once the object
to be grasped is identified based on visual information and object knowledge
in the object database, the user’s intention to grasp the object of interest is
recognized and an appropriate grasp from the grasp database is selected. The
recognized object and selected grasp type (top or side grasp) are suggested to
the user on the hand display. Both the object and the selected grasp can be
changed by the user. The hand and wrist motion is triggered by the user via an
EMG signal to bring the hand in a suitable preshape for the selected object and
grasp. The wrist orientation with respect to the object is actively maintained
based on IMU sensor data to compensate for unwanted orientation changes due
to the reaching motion. Once the prosthesis is close enough to the object, it
automatically closes the fingers based on the distance sensor information to
firmly grasp the object.

4https://www.youtube.com/watch?v=-N4xYqAs-6k
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Figure 8: Procedure of the semi-autonomous controller; throughout all grasp phases two
explicit user signals are required and enhanced by implicit user input using the exteroceptive
sensor information; the user can interfere at any time

4.1. User Intention Recognition and Grasp Selection

To start the grasping process, the user takes an image of the desired object
by a single muscle activation measured with the EMG electrodes, as shown in
the leftmost image of Fig. 6 and at the first dashed line in Fig. 9 and Fig. 10. The
in-hand object recognition is run on this image which is recorded by the camera
in the palm of the hand. Using the object information provided by the object
recognition module, the object database is queried to retrieve detailed informa-
tion about the given object including object properties and associated grasps.
For each object, the following object properties are stored in the database: the
three object dimensions, the weight of the object and its fragility. Grasps asso-
ciated with the objects are stored in the human grasp database (see Section 3).
Here, top and side grasps are associated with most objects except flat objects
and spheres that only permit a top grasp.

Once the object is identified, the user is informed about the result of the
recognition by showing the object name on the display. Based on the relation
of the hand to the object, which is estimated based on IMU data, a top or side
grasp is automatically proposed by the hand controller. The IMU measurements
for grasp orientation suggestion are updated with 100 Hz. These grasps are
continuously updated by the user by rotating the prosthesis. In the current
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Video 1: Video demonstrating the different aspects of the semi-autonomous control scheme

implementation, a top grasp is selected if the prosthesis is held horizontally,
and a side grasp is selected if the prosthesis is held at an angle of more than
±15°. The proposed grasp and orientation are shown in different colors on the
display to ease the selection process for the user, as shown in Fig. 6. The user
intention, i. e. the target object to be grasped and the way to grasp it (top or side
grasp), together with the object properties, is used to select, parametrize and
execute the grasp using the corresponding trajectories from the human grasp
database.

It is important to emphasize that the user is able to interact with the hand
during the entire process by confirming or rejecting alternatives generated by
the control scheme. If the user is satisfied by the proposed grasp, she/he can
confirm and trigger the execution using one single EMG channel as marked by
the second dashed line in Fig. 9 and the third dashed line in Fig. 10. The
same EMG channel can be used to trigger the object recognition and to start
the grasp execution. Otherwise, the user is able to change the grasp direction
by re-positioning their arm relative to the object. In case of a wrong object
classification, the user can reject the proposed grasp by shaking the hand as
marked by the second dashed line in Fig. 10. Such movement is recognized
using the IMU. The control scheme always selects the object with the next
highest recognition probability. If the first three proposed grasps are rejected
by the user, the controller can be restarted by requesting a new camera image
for the object recognition.

4.2. Preshape Motion and Grasp Execution

Once a grasp is confirmed by the user, both hand and wrist pregrasp tra-
jectories are selected from the human grasp database and executed as shown
in Fig. 8. The pregrasp trajectory is executed while approaching the object to
ensure feasible hand orientation and finger aperture. The hand preshape motion
and the continuous wrist orientation are performed simultaneously. At the end
of the pregrasp trajectory, the wrist motion is nearly finished as can be seen
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Figure 9: Sensory data throughout one grasp execution with the semi-autonomous control;
the two user inputs can be clearly seen in the EMG signal, pregrasp and grasp motion can be
distinguished in the finger closure, the shaft rotation reflects the angle of the wrist throughout
grasp execution and the final grasp is triggered by a low measured distance to the object

at the third dashed line in Fig. 9 and the fourth dashed line in Fig. 10. The
pregrasp and grasp poses are pictured in Fig. 6 on the right.

Once the pregrasp motion is finished, the wrist is controlled to maintain
the preshape orientation relative to the gravity vector using IMU sensor data,
compensating rotations caused by the user’s arm movements. Thereby, a correct
hand orientation is ensured regardless of arm reconfiguration which might be
required to reach the object, adjust grasping distance or avoid obstacles. In
this way, compensatory motions of the shoulder should be prevented as the user
does not have to take the influence of their approach movement into account.

With the distance sensor in the palm of the prosthesis, the distance to the
object is continuously measured. As soon as the distance between prosthesis
and object falls below a predefined threshold and the prosthesis has reached
the final posture of the pregrasp, the grasp motion is triggered and the grasp
trajectory is executed. This is marked by the third dashed line in Fig. 9 and the
fourth dashed line in Fig. 10. Finally, a closing force is applied. The amount of
this force depends on the fragility and weight defined by the object’s properties
stored for each object in the object database. Once the final grasp is completed,
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Figure 10: Sensory data of a grasp execution with initially wrong object recognition; a clear
shaking of the hand can be seen in the wrist angle measurement issued by the user to alter
the object suggestion before starting the grasp

the object can be lifted.
At any time the grasping process can be stopped and aborted by a shaking

movement of the prosthesis detected by the IMU as described in Section 4.1. The
semi-autonomous control scheme focuses on the acquisition of a stable grasp.
After the grasp is completed, the user can lift, use the object as needed and
release the object when such action is triggered by another muscle activation
signal measured by the EMG electrodes.

5. Experiment Design

To assess the functionality, intuitiveness and complexity of the proposed
semi-autonomous control, a user study is performed comparing it to a con-
ventional sequential control approach. A third control strategy with reduced
autonomous functionality is additionally included to assess the influence of in-
creasing autonomy of the hand on user experience and find the optimal trade-
off between supporting functionality and user control. Hence, we compare three
control strategies, which are all operated by the user via a standard two channel
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EMG input. The two EMG channels are only used for a conventional sequential
EMG control as a baseline. The other two semi-autonomous control schemes
only need a single EMG input channel and signals from both electrodes are
therefore accepted equitably.

� Conventional Sequential Control (CSC) This sequential control approach
allows either the wrist rotation or the opening and closing of thumb and fingers
simultaneously with a fixed coordination. The two available electrode signals
are thereby mapped to the two rotation directions or the opening and closing
of the hand respectively. To switch between wrist rotation and hand control,
both EMG electrodes have to be addressed simultaneously by a co-contraction
of both muscles. This control approach is common in commercial hand pros-
thetics (see [42, 43, 44, 45]) and represents the baseline for the comparison of
our method.

� Semi-Autonomous Control (SAC) The semi-autonomous control applies
our approach described in Section 4, including object recognition based on the
visual information, predefined grasp trajectories learned from human demon-
strations and automatic hand closing based on a distance sensor located at
the base of the thumb. All user commands, namely the start of the object
recognition and the confirmation of a grasp proposed by the control scheme of
the hand, can be generated by contracting either one or both of the muscles
to which EMG electrodes are attached. Therefore the user can issue con-
trol commands with the EMG signals that are easiest to generate for them.
Aborting the current action is always possible by a fast and short shake of the
prosthesis.

� Semi-Autonomous Preshape (SAP) Since the final hand closing is crucial
for grasp success, this third control strategy allows an individual timing of the
hand closing motion by the user. The preshape of the hand and the preparing
wrist orientation are executed similar to the SAC strategy. The maximum
grasping force in this mode is also set as in SAC based on the information
in the object database and human grasp database. However, hand closing is
not triggered automatically based on the hand-object distance, but instead
actively controlled by the user. While the first two control inputs similar to
the SAC strategy can be triggered by any muscle activation, hand closing is
controlled by contracting the flexor muscles as in the CSC strategy. During
this process, the finger and thumb trajectories are still derived from the human
demonstrations and are therefore adapted according to the chosen grasp. As
long as the user sends an EMG signal, the hand closes along the trajectory
from the human grasp database. If the EMG signal is paused, the execution
of the trajectory is paused as well, until a EMG signal is received again and
the trajectory is continued.

5.1. Setup and Procedure

The user study is performed with 20 able-bodied subjects wearing the pros-
thesis connected via the self-experience shaft on their right arm as depicted in
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Fig. 3. From the nine female and eleven male subjects, ten had a background in
robotics, five had no technical background. None of the subjects had experience
with hand prosthetics or EMG control. The study was carried out in accordance
with the recommendations of the ethical committee of the Karlsruhe Institute
of Technology. The protocol was approved by this ethical committee and all
subjects gave written informed consent.

The EMG electrodes are positioned for each subject individually and the
electrode sensitivity is adjusted to maximize the signal quality. Electrode con-
figurations are then kept fixed over the entire study session. During the exper-
iment, the subject is positioned in a comfortable standing position in front of a
table. A subset of the objects contained in the human grasp database is used for
this user study. Ten different objects, chosen from a household environment, are
successively placed on the table in front of the subject. The objects are depicted
in Fig. 11. All three control strategies are evaluated consecutively in randomized
order. Each control strategy is explained to the subjects by the experimenters.
Subjects are given one minute prior to the evaluation to familiarize with the
control and practice with an eleventh object not included in the evaluation. To
begin each grasp, the prosthesis is positioned 13 cm to the front right of the
object. An example for this experimental setup is depicted in Fig. 3. For each
control strategy the subject is asked to grasp all objects from the top first, then
from the side if the object allows a side grasp, resulting in 16 grasps in total. If
a grasp fails in the first grasp attempt, it can be repeated once. If a grasp fails
again in the second attempt, the experiment is continued with the next grasp.
The failed grasp is then excluded from the quantitative measurement of grasp
time and muscle activation, but is still taken into account by the subjects in the
evaluation of control perception and workload. Each subject performs all three
control strategies. The study is conducted with a counterbalanced crossover
design of the control strategies. This means that the order of control strategies
in the experiments is randomized with a similar number of participants starting
with each control strategy. Additionally, the order of objects is randomized in
between subjects but kept constant for all three control strategies in one subject.

5.2. Data Acquisition

To assess the performance of the semi-autonomous control scheme, several
metrics are acquired in the user study. The grasp execution time is applied as
metric for the grasp efficiency. Therefore, the time starting at the beginning
of the grasp until lifting the object is recorded. As the quality of the object
recognition is not a central part of the presented semi-autonomous control, the
time required to discard wrong object recognitions is assessed individually. To
quantify the required amount of physical effort, the EMG activation signal over
the duration of the grasping process is recorded as a quantitative metric.

To assess complexity, success and user impression of each control strategy, a
subjective questionnaire is collected. It provides the workload as measured by
the NASA task load index (NASA TLX) [46]. In our evaluation we aim to com-
pare the workload of the different control schemes in each subject. Therefore, we
apply the metric of the raw TLX and directly calculate the unweighted average
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Figure 11: The objects used in the user study
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Figure 12: Control strategy preference of the 20 participants of the user study

of the sub-scale ratings provided by the subjects. Compared to the individual
weighting of sub-scales this method has been found to be more sensitive [47].
The questionnaire is extended by several questions to quantify intuitiveness of
the control, feeling of control and perception of feedback in the same style as the
questions of the workload index. Furthermore, open questions on the subject’s
impression and preferences are asked.

6. Results

The proportion of users preferring each control strategy is depicted in Fig. 12.
Of all participants, 65.2 % preferred the SAC control compared to the two other
strategies. The results of the evaluating questionnaire and the recorded EMG
signals are depicted in Fig. 13. The reported preference of the SAC control
strategy is also visible in the control intuitiveness as shown in Fig. 13 a). All
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Figure 13: Outcomes of the user study: (a) intuitiveness of the control reported by the
subjects, (b) workload according to the NASA Task Load Index [46], (c) effort put into the
grasp execution, (d) physical demand of the control strategy, (e) mean muscle contraction
signal over the entire recording and both EMG electrodes and (f) feeling of control reported
by the subjects; all graphs show the data points together with the kernel density function, the
median is marked by a white dot and the grey line marks the section between the first and
third quartile
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plots show the shape of the kernel density function around the data points.
The median is marked as a white dot, while the grey line denotes the range
between the 25th and 75th percentile of the data. The colored points denote
the answers/measurements of individual subjects. The horizontal distribution
of data points is merely for visualization purposes. Throughout the trials of
each control scheme, no significant learning was observed from the subjects.

6.1. Workload and Control Intuitiveness

The workload index of both SAP and SAC is significantly lower than for
CSC (Friedman’s Anova < 0.05), as depicted in Fig. 13 b). The Friedman’s
Anova is a non-parametric statistical test to measure the differences between
two groups. The NASA Task Load Index [46] ranges between 1 and 20 with
higher numbers representing an increasing overall task load. With a median of
11.3 the workload index of CSC is almost twice as high as for SAC with 6.2
and almost one third higher than for SAP with 8.6. In the following all results
except the NASA TLX from the subjective questionnaire are converted from
the scale between 0 and 20 to percent.

The high workload index of CSC is mainly caused by a high physical demand
of 85 % in median and a high required effort of 75 %. A significant reduction
(Friedman’s Anova < 0.05) is achieved with the SAC for the median of both
the physical demand to 25 % and the effort to 40 %. Also for SAP the physical
demand is notably decreased to 47.5 % in the median compared to the common
baseline of CSC. The amount of required effort and physical demand is visualized
in Fig. 13 c) and d).

The observed physical demand is clearly reflected in the use of EMG control
signals. The EMG electrodes supply a filtered output voltage correlated to
the muscle activation signal. Fig. 13 e) shows the average EMG activation
calculated by integrating the EMG voltage of both electrodes over the grasp
trial and normalizing it according to the grasp execution time. While grasping
with CSC requires a median electrode activation of 203.7 mV, in SAC only
69.4 mV is recorded. This clearly shows the lower muscle contraction due to the
introduced autonomous functionality. In CSC, an EMG electrode activation is
recognized three times more frequently than in SAC, proving that the reduction
of muscle contraction is mainly caused by reducing the number and length of
necessary user inputs. As the reported intuitiveness shows, this input reduction
can be achieved without a loss of trust into the device. Besides, subjects did not
report any statistically significant difference in their feeling of control between
CSC with a median of 60 % and SAC with 62.5 % as shown in Fig. 13 f). As
expected, SAP has a higher average electrode activation than SAC. Nevertheless
SAP still results in a significantly lower median muscle activity of 111.2 mV
compared to CSC with 203.7 mV.

For CSC, ten subjects stated that the switching of control modes between
hand and wrist motion was tedious, hinting at the co-contration and mode
switching as one of the major sources causing the high workload. One subject
stated that the grasping in SAC did not require attention and three subjects
described hand closing in SAP to be very intuitive. The mean intuitiveness for
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Figure 14: Time required to execute the grasps on all ten objects and the overall grasp
execution time in the three evaluated control strategies; the coloured bar denotes the first to
third quartile of the grasp time with the median marked by a solid line, a black line marks
the data range excluding outliers; the depicted grasp times exclude the time spent on wrong
object classifications

SAC increased by 30 % in the median compared to CSC. As shown in Fig. 13
a), all three control strategies have an intuitiveness median of more than 50 %,
with SAC being most intuitive with a median of 85 %. In addition, a quarter of
participants reported the SAC to be very intuitive when asked to describe their
impression of the presented control in their own words in the questionnaire.

6.2. Grasp Execution Time and Grasp Success

The grasp execution time was measured as the time needed to reach the
object, grasp and lift it off the table surface. The median execution time over all
subjects and objects is 9.8 s for CSC, 9.7 s for SAP and 8.4 s for SAC. The grasp
execution time depends strongly on the quality of the object recognition. Over
all grasps performed in SAC and SAP, subjects were on average 41.6% faster,
if the object was classified correctly in the first attempt. A correct intention
recognition and hence a correct suggestion of the grasp direction sped up the
grasping time by 7.0%. For the remainder of the evaluation, the time spent
on wrong classifications by the object recognition will not be considered as the
quality of the object recognition is not a central part of this work. Excluding
this leads to a reduction of the median execution time to 7.9 s for SAC and 9.2 s
for SAP. While the time required for grasping is very long compared to humans
grasping with their able hand, it is still fast compared to the commercially
used conventional sequential control scheme CSC. Considering that the naive
subjects had only one minute of training prior to the experiments, the grasp
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time of 9.8 s measured for CSC is well within the range observed in literature
with the same control scheme [20].

A significant difference in the overall time required for a grasp is only notable
between SAC and the other two control strategies SAP and CSC, respectively.
The grasp execution time in SAC is 19.4 % faster compared to CSC. A quarter
of the subjects specifically mentioned the SAC to be perceived as very fast. This
was mainly ascribed to the automatic hand closing which was perceived as very
helpful. The average grasp execution time for all individual grasps is depicted
in Fig. 14 showing the median with a solid line and a box from the first to the
third third quartile of measured grasping times. Overall, it can be seen that
CSC has a notably larger variance than SAP and SAC. Large and bulky objects
like the football, the bowl or the canned meat are grasped from the top at a
similar speed with all three control strategies. The merit of the autonomous
coordination of all degrees of freedom of the hand becomes mainly apparent in
objects which need a precise grasping strategy like the top grasps on the fizzies
and chips. This is also evident for grasps that demand a large wrist rotation
compared to the starting pose like the side grasps on the fizzies and the canned
meat.

Furthermore, the time required for object detection, intention recognition
and the control interaction with the user in SAC and SAP is assessed individu-
ally. The object detection time is measured from the EMG activation command
issued by the user, until the correct object is recognized and presented on the
display. It therefore includes the time for potential misclassification. The object
detection required an average time of 1.6 s. The time for intention recognition
is measured from the moment of correct object detection until the correct grasp
direction is suggested, including the time needed to rotate the hand, if the grasp
direction is inferred incorrectly. The intention recognition took on average 0.7 s.
From the moment, object and grasp direction are presented correctly until the
grasping start issued by a user EMG command, the interaction time is measured.
This includes the time the user needs to read and check the grasp suggestion
before confirming it. The interaction time amounts to 1.3 s on average.

Taking into account the time needed for wrong object recognition, the grasp
execution time depends strongly on the quality of the object recognition. Over
all grasps performed in SAC and SAP, subjects were on average 41.6 % faster,
if the object was classified correctly in the first attempt. A correct intention
recognition and hence a correct suggestion of the grasp direction sped up the
grasping time by 7.0 %.

Looking at the grasp success for the 16 different grasps reveals that subjects
were overall comparably effective in grasping objects with SAC and SAP. The
attempts needed to successfully perform the different grasps with each control
scheme are shown in Fig. 15. In total four of the 16 grasps in the conducted
experiment could be executed successfully in the first trial by all participants
in CSC while there were five grasps without failure in SAC and eight in SAP.
Although SAP proves to be the most effective control strategy on this basis,
participants preferred SAC. In addition, half of them commented on SAC being
easy to control. A reason for this discrepancy might be found in the difficulties of
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Figure 15: Attempts needed to achieve a successful grasp on all ten objects and the overall
number of grasp attempts in the three evaluated control strategies

SAP for specific cases, especially the top grasp on a package of fizzy tablets which
can be clearly seen in Fig. 15. As these have a small diameter, an accurate hand
positioning is important. Keeping the exact hand position while performing a
muscle contraction to close the hand was difficult for many subjects. On this
specific grasp subjects needed on average 2.1 grasp attempts to successfully lift
the object.

Due to this reason, object slip occurred more often in SAP than in both SAC
and CSC. No object was knocked over in SAC, while this happened once in SAP
and twice in CSC. Additionally, in CSC subjects were frequently struggling with
undesired wrist rotation during grasping, which in one case caused the grasp
attempt to fail entirely. This is directly prevented by the semi-autonomous
control schemes, since the tedious and unreliable switching between wrist rota-
tion and hand closing is not required. Finally, the grasp force control of SAC
fully prevents grasp failures due to insufficient grasp force, which occurred five
times in CSC and six times in SAP. In addition we observed that some subjects
crushed the fragile bandaid package in CSC by applying too much grasp force,
which was prevented by the control in SAP and SAC.

The quality of neither the object recognition nor the intention recognition
had a significant influence on grasp success. The difference in grasp success rate
over all grasps in SAC and SAP was 0.2 % with a successful object recognition
compared to cases where several object suggestions were needed. Comparing an
instantly correct intention recognition with cases where the user had to correct
the suggested grasp orientation by slightly rotating the prosthetic hand, grasp
success varies by 0.4 %.
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7. Discussion and Conclusion

In this work we propose a semi-autonomous control scheme that automat-
ically chooses and executes a grasp trajectory and wrist orientation based on
visual object recognition. With a single EMG channel, a starting command
invokes a CNN for object recognition on an image from the camera in the palm
of the hand. The object identity is then presented to the user together with
the approach direction from the top or side. The approach direction can be
changed via the IMU by slightly tilting the forearm. If the user is satisfied
with the suggested object and approach direction on the display, a single EMG
command starts the execution of a coordinated trajectory of fingers, thumb
and wrist to form a preshape. The wrist orientation is continuously adapted
relative to the gravity vector to compensate for orientation changes during the
reaching motion. As soon as the hand reaches the object, the grasp is trig-
gered by a signal from the distance sensor. The hand closes with a predefined
maximum grasp force dependent on the object. All necessary sensors are em-
bedded into the prosthesis and the control scheme is running on the embedded
system inside the palm, eliminating the need for external sensors and devices.
Grasp trajectories for the objects are learned from human demonstration. The
whole control scheme can be operated using a single EMG channel and mo-
tion input sensed by the IMU. Based on sensor information directly acquired
on the prosthetic hand, context and user intention are deduced and exploited
to propose suitable grasps to the user. With a single EMG channel, the user
is able to start the semi-autonomous grasping process and choose the desired
trajectory. Grasp trajectories and object properties from an object database
are selected by an image-based object recognition. The approach direction is
deduced from the user’s forearm orientation measured by an IMU within the
prosthetic hand. Once the user has started the grasping motion via an EMG
command, a preshape is performed resulting in an appropriate hand orientation
and finger aperture to approach the object. The final grasp is triggered based
on a distance sensor as soon as it has reached the object.

Compared to a conventional, sequential EMG control our semi-autonomous
control requires less than half the amount in average EMG activation and the
physical demand is rated 70.6 % lower in the median. Together with an increase
of the intuitiveness by 30 %, this causes a significant reduction of the workload
by 25.9 %. As a consequence, the prosthesis user has to concentrate less on
the performance of a stable grasp. In addition, this reduced workload allows
for faster grasping especially for thin and delicate objects. The näıve subjects
achieved a median grasping time of 7.9 s with the semi autonomous control.
This lies well within the range of semi-autonomous control schemes presented in
literature [16, 20] and is notably faster than the baseline conventional sequential
control both in our evaluation as well as in literature [20]. At the same time,
the feeling of control is comparable to the conventional sequential control as the
user is able to intervene at any moment.

Due to the required object detection, the presented control is limited to
known objects and is currently meant for frequently used objects. In a setup
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phase, the user could take images of frequently used objects with the prosthesis,
which then can be used to train the object detection. The training could for
example be accomplished by uploading the images to a smartphone or PC via
Bluetooth where the object detection is trained and its result written back to the
prosthesis. After the object detection is adapted, the user would then be able to
use the proposed control with her/his personalized set of objects. This means
that the semi-autonomous control can be personalized to the specific objects a
user frequently grasps with her/his prosthetic hand. It thereby complements the
common, manual control to reduce the cognitive burden on the user in situations
which are encountered repetitively in daily life. While the amount of objects
in this work is fixed to 13 due to the limitations of the used microcontroller,
the use of FPGAs can greatly increase memory and computing power for vision
applications [48, 49, 50].

In comparison to the related work presented in Section 1, the strength of
our control scheme is that it relies only on on-board components and does not
require any external sensors or computation resources. To our best knowledge,
it is the first semi-autonomous control that operates entirely on the prosthetic
hand. Several previous works choose a grasp preshape based on the object’s
overall shape and are therefore able to give grasp suggestions also for unknown
objects with the use of external sensors and computing resources [16, 18, 20].
Others present sophisticated object classification for a significantly larger set
of objects, again making use of external computation power [24, 25]. However,
extensive sensor setups and external computing resources restrict the flexibility
in using prosthetic hand in everyday activities. Our semi-autonomous control
system is therefore developed to overcome such limitations and pave the way
towards the next generation of prosthetic hands that integrate the sensors and
computing power to facilitate a symbiotic interaction with the user. Further-
more, our approach does not only provide an automatic grasp preshape, as
usually proposed in semi-autonomous control. It additionally provides hand
closing trajectories, so that the user does not need to worry about the timing
and velocity of finger and thumb closing. To the best of our knowledge, our
semi-autonomous control is also the first scheme that allows simultaneous wrist
orientation and hand closing. These simultaneous motions are beneficial to in-
crease overall grasp speed and to adapt the hand orientation to further optimize
the grasp acquisition especially for thin objects.

In the future we plan to further analyze the workload distribution in our
semi-autonomous control by conducting a psychological study. Thereby we aim
to get a fine-granular picture of the workload distribution over the entire grasp-
ing task and to identify parts of the control that benefit most from further
improvement. In addition we plan to extend our work by the inclusion of addi-
tional haptic sensor modalities to allow for closed-loop grasp force control. In
this case the grasping force saved in the object database would serve as an initial
control target that is then updated based on normal and shear forces as well as
slip detection. This would enable the prosthesis to react to changes in the ob-
ject, for example while pouring liquid out of a grasped bottle, which is currently
not modeled by the static grasping force saved in the object database. The in-
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tegration of an additional object pose estimation based on the camera images
would make it possible to dynamically adapt the grasp to tilted objects.

Acknowledgment

The authors would like to thank all participants for taking part in our user
studies.

References

[1] J. T. Belter, J. L. Segil, A. M. Dollar, and R. F. Weir, “Mechanical design
and performance specifications of anthropomorphic prosthetic hands: A
review,” The Journal of Rehabilitation Research and Development, vol. 50,
no. 5, pp. 599–617, 2013.

[2] C. Piazza, G. Grioli, M. Catalano, and A. Bicchi, “A century of robotic
hands,” Annual Review of Control, Robotics, and Autonomous Systems,
vol. 2, no. 1, pp. 1–32, 2019.

[3] F. Cordella, A. L. Ciancio, R. Sacchetti, A. Davalli, A. G. Cutti,
E. Guglielmelli, and L. Zollo, “Literature review on needs of upper limb
prosthesis users,” Frontiers in Neuroscience, vol. 10, pp. 1–14, 2016.

[4] G. S. Dhillon and K. W. Horch, “Direct neural sensory feedback and control
of a prosthetic arm,” IEEE TRansactions on Neural Systems and Rehabil-
itation Engineering, vol. 13, pp. 468–472, 2005.

[5] S. Amsuess, P. Goebel, B. Graimann, and D. Farina, “Extending mode
switching to multiple degrees of freedom in hand prosthesis control is not
efficient,” in International Conference of the IEEE Engineering in Medicine
and Biology Society, 2014, pp. 658–661.

[6] M. Ortiz-Catalan, B. H̊akansson, and R. Br̊anemark, “Real-time and si-
multaneous control of artificial limbs based on pattern recognition algo-
rithms,” IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering, vol. 22, no. 4, pp. 756–764, 2014.

[7] J. M. Hahne, F. Bießmann, N. Jiang, H. Rehbaum, D. Farina, F. C. Mei-
necke, K. . Müller, and L. C. Parra, “Linear and nonlinear regression
techniques for simultaneous and proportional myoelectric control,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 22,
no. 2, pp. 269–279, 2014.

[8] S. Wilson and R. Vaidyanathan, “Upper-limb prosthetic control using wear-
able multichannel mechanomyography,” in International Conference on Re-
habilitation Robotics, 2017, pp. 1293–1298.

28



[9] C. Piazza, C. D. Santina, M. Catalano, G. Grioli, M. Garabini, and A. Bic-
chi, “SoftHand Pro-D: Matching dynamic content of natural user com-
mands with hand embodiment for enhanced prosthesis control,” in Int.
Conference on Robotics and Automation, 2016, pp. 3516–3523.

[10] K. Z. Zhuang, N. Sommer, V. Mendez, S. Aryan, E. Formento, E. D’Anna,
F. Artoni, F. Petrini, G. Granata, G. Cannaviello et al., “Shared human–
robot proportional control of a dexterous myoelectric prosthesis,” Nature
Machine Intelligence, vol. 1, no. 9, pp. 400–411, 2019.

[11] J. A. George, T. S. Davis, M. R. Brinton, and G. A. Clark, “Intuitive neu-
romyoelectric control of a dexterous bionic arm using a modified Kalman
filter,” Journal of Neuroscience Methods, vol. 330, p. 108462, 2020.

[12] M. D. Paskett, M. R. Brinton, T. C. Hansen, J. A. George, T. S. Davis,
C. C. Duncan, and G. A. Clark, “Activities of daily living with bionic arm
improved by combination training and latching filter in prosthesis con-
trol comparison,” Journal of NeuroEngineering and Rehabilitation, vol. 18,
no. 45, pp. 1743–0003, 2021.

[13] A. L. Ciancio, F. Cordella, R. Barone, R. A. Romeo, A. D. Bellingegni,
R. Sacchetti, A. Davalli, G. D. Pino, F. Ranieri, V. D. Lazzaro et al.,
“Control of prosthetic hands via the peripheral nervous system,” Frontiers
in Neuroscience, vol. 10, pp. 1–17, 2016.

[14] A. Chadwell, L. Kenney, S. Thies, A. Galpin, and J. Head, “The reality of
myoelectric prostheses: Understanding what makes these devices difficult
for some users to control,” Frontiers in Neurorobotics, vol. 10, pp. 1–21,
2016.

[15] I. D. Swain and J. M. Nightingale, “An adaptive control system for a
complete hand/arm prosthesis,” Journal of Biomedical Engineering, vol. 2,
no. 3, pp. 163–166, 1980.

[16] S. Došen, C. Cipriani, M. Kostić, M. Controzzi, M. Carrozza, and
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