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Abstract— Grasping with five-fingered humanoid hands is
a complex control problem. Throughout the entire grasping
motion, all finger joints need to be coordinated to achieve
a stable grasp. Grasp synergies provide a simplified, low-
dimensional representation of grasp postures and motions, that
can be used for the description of human grasps as well
as the generation of novel, human-like grasps. However, the
abstract synergy representation complicates the association of
relevant high-level grasp parameters, as for example the grasp
type and final posture or the grasp speed. Therefore, it is
difficult to control these grasp characteristics in the synergy
space. This paper presents an adaptable representation for
kinematic grasping motions in synergy space, that allows the
generation of novel, human-like grasps under direct control of
high-level grasp parameters. It is based on via-point movement
primitives trained on synergy trajectories of human grasping
motions. The representation using synergy primitives allows
for a straightforward adaptation of grasp characteristics while
preserving the essential grasping motion learned from human
demonstration. The kinematic synergy primitives have a low
reproduction error of 3.9% of the maximum finger joint angle
and are able to generate successful grasps on a simulated human
hand and a real prosthetic hand.

I. INTRODUCTION AND PROBLEM STATEMENT

The human hand is a versatile and complex system with its
joints providing 23 Degrees of Freedom (DoF) driven by 38
muscles [1], [2], [3]. Despite the complexity of the everyday
control tasks, humans are able to perform such versatile
grasping motions easily and without much effort. To transfer
this intuitive human grasp control onto humanoid robotic
hands is one of the great challenges in robotic grasping.

One step towards this goal is the search for an intuitive,
adaptable representation of human-learned grasp strategies
for the control of humanoid robotic hands. In this work,
we aim for such a generalized, adaptable representation of
grasp trajectories. These trajectories describe the kinematic
configuration of finger joint angles in the human hand
throughout the entire grasping process. It thereby starts with
the relaxed open hand and describes the finger motion up
to the final, stable grasping posture. This grasp motion
representation shall be as simple as possible and shall allow
the generation of artificial, human-like grasp motions for the
control of humanoid robotic hands. It shall therefore provide
meaningful parameters to adapt and influence the generated
grasp motions.
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Fig. 1: Human-like grasps generated by the kinematic synergy
primitive representation and executed on a robotic prosthetic hand:
(a) extension type grasp on a cracker box, (b) large diameter grasp
on a ravioli can and (c) sphere 4 finger grasp on a ball

To this end, we leverage the strategy of postural grasp
synergies [4], which describe correlations between different
joint angles of the human hand during grasping. Postural
synergies project a grasp posture ggg in a lower dimensional
synergy representation sss. Therefore, we seek a synergy space
SSS with m dimensions to represent the grasp posture vector
ggg with n dimensions under the precondition that m < n.

To represent an entire grasp trajectory ggg(t), a synergy
trajectory sss(t) needs to be described relative to the time
t. With the contribution of this paper we aim to frame the
synergy trajectory sss(t) in a generalized function fffg(t) that
is able to describe any grasp from grasp type g. Further,
this generalized grasp representation shall be adaptable with
respect to relevant characteristics of the grasping motion. In
particular, these include the final grasp posture, the grasp
speed as well as the hand posture at the beginning of the
grasping motion. In addition, the grasping motion itself shall
be adaptable in the range of grasp demonstrations provided
by humans. This allows to manipulate the exact shape of
a human-like grasp trajectory that is generated from the
adaptable grasp synergy representation.

By these means, this work introduces a representation of
grasp motions learned from human demonstration that is
adaptable to high-level grasp characteristics including the
start and grasp pose, the grasp speed and timing as well
as the shape of the grasp trajectory. At the same time, it
leverages the simplification of grasp control provided by
kinematic grasp synergies inspired by human motor control.
To this end, we learn a set of novel grasp synergy primitives
from a single, general kinematic synergy space, as detailed
in Section III. Further, we show strategies to adapt and
apply these grasp synergy primitives for the generation and
control of human-like grasp motions on humanoid robotic
or prosthetic hands, as shown in Figure 1 and explained in
Section IV. The presented approach is based on a preliminary
analysis on grasp motion primitives presented in our previous



work [5]. Our contributions are (i) the generalized represen-
tation of grasp synergy primitives that provides a precise
control of the grasp trajectory path, (ii) a guidance on how
to leverage the grasp synergy primitives to adapt different
high-level grasp parameters and (iii) the generation of novel,
human-like grasping motions from the synergy primitives
that have not been demonstrated by a human.

II. RELATED WORK

The related research in the area of adaptable grasp rep-
resentations learned from human demonstration concentrates
on two main representation strategies. First, we will explain
the concept of grasp synergies, which provide a lower-
dimensional representation of the complex control space
of the human hand. Thereafter, we will discuss movement
primitives as a method for the representation of motion
trajectories, that can be adapted according to task and motion
characteristics.

A. Grasp Synergies

Postural grasp synergies have been originally found in
neuroscience [4], [6]. It has been shown that the joint angles
of the human hand are correlated in static grasp postures and
can thereby be described by few synergy variables. By these
means, a high-dimensional grasp posture can be described in
a lower-dimensional grasp synergy space. Postural synergies
have since been applied for the design [7], [8], [9], [10], [11]
and control [12], [13], [14], [15] of numerous robotic hands.

To achieve a static hand posture described by such postural
synergies, a suitable finger motion needs to be adopted
throughout the grasp acquisition process. Several approaches
have been presented in literature to describe this kinematic
grasping motion based on trajectories in a static synergy
space [16], synergistic eigenmotions [17], [18] or joint-wise
function approximation [19]. All these approaches provide
low-dimensional representations of finger joint angle trajec-
tories to describe temporal grasping motions. However, the
applied dimensionality reduction decreases the intuitiveness
of the representation and makes it harder to deduce and
control high-level grasp characteristics. Moreover, all listed
approaches concentrate on a lower dimensional description
of either the finger joint angle configuration or the timing
of the grasp. The respective other aspect still needs to be
defined manually.

To improve the intuitive representation of high-level grasp
characteristics, structured postural synergy spaces have been
developed [20], [21], [22]. A non-linear mapping of the
joint angles to the synergy parameters allows to shape the
latent synergy space according to other high-level grasp
characteristics. Nevertheless this structured postural synergy
space is designed solely for the representation of static grasp
configurations and does not take the finger approach motion
into account.

A temporal synergy representation for grasp contact forces
provides an encoding of both temporal and force characteris-
tics directly in a non-linear synergy space learned by a neural
network [23]. This temporal latent synergy representation is

also capable of embedding additional grasp characteristics
into the structure of the synergy space during learning. As
an alternative, the method of representing grasping motions
in a static synergy space has been successfully transferred
also to temporal grasp force patterns [23], [24].

B. Movement Primitives

Dynamic Movement Primitives (DMPs) [25], [26] allow
for the adaptation of a represented motion trajectory regard-
ing the system’s start and end pose as well as the velocity of
the motion execution. Due to this flexibility, they are widely
used in robot programming by demonstration. The derivative
models of Probabilistic Movement Primitives (ProMPs) [27]
and Via-Point Movement Primitives (VMPs) [28] improve the
original representation by preserving the variance of human
motion demonstrations within the MP representation.

Similar to DMPs, VMPs consist of an elementary trajec-
tory hhh(x) and a shape modulation fff(x). The shape modula-
tion, which enables the adaptability of the resulting motion
trajectory, is described by kernel functions ψψψ(x) weighted
based on the weight parameters www with

fff(x) = ψψψ(x)Twww (1)

The VMP representation is the sum of this shape modulation
offset and the real elementary trajectory with

yyy(x) = hhh(x) + fff(x) (2)

By the directed adaptation of waypoints in the elementary
trajectory hhh(x) – the via-points – VMPs provide direct
control over the path of the trajectory.

Motion primitives, like DMPs, ProMPs and VMPs, are
widely used to represent and control arm trajectories dur-
ing robotic reaching and manipulation motions. To control
finger grasp motions, Ben Amor et al. apply a dimension-
ality reduction to human grasping data to describe grasp
movement primitives in a lower-dimensional subspace [29].
However, an individual low-dimensional representation is
learned for each grasp type, thereby giving up the univer-
sality of the human grasp synergies. From a more general
point of view, Bitzer and Vijayakumar have shown that a
well-parameterized dimensionality reduction on the original
motion data can significantly improve the specificity of task
characteristics in the resulting movement primitive represen-
tation [30].

III. SYNERGY PRIMITIVES

The generation of kinematic synergy primitives will be
explained in the following, starting with the human demon-
strations of grasping motions. A universal postural synergy
space is learned from human demonstrations. A VMP is
trained on several grasp synergy trajectories from the same
grasp type and the adaptation capabilities of the resulting
kinematic synergy primitive are explained.



A. Grasp Recordings

To learn grasp synergy primitives, we record a dataset
of 911 human grasp motions on 30 objects of different
shapes and sizes. The twelve male and three female subjects
with an average age of 24.7 ± 3.0 years performed all 33
grasps included in the GRASP Taxonomy [31]. In addition,
a functional grasp to push a trigger or button on a tool while
holding it in a cylindrical power grasp is recorded. This grasp
type will be called Trigger Grasp in the following. Subjects
were standing comfortably in front of a table with the object
placed before them. At the beginning of each recording, the
subject placed both hands flat on the table surface. The grasp
type for each recording was predefined and was shown to the
subject using a picture with the same grasp type applied to
another object. Subjects then grasped the object with their
dominant right hand adopting the demonstrated grasp type,
lifted it from the table and placed it back down. Finally, the
subjects placed their hand back flatly on the table.
Grasping motions were recorded by a sensorized glove
measuring 22 joint angles within the human hand (Cyber-
Glove III, CyberGlove Systems Inc., USA). In addition, the
glove was equipped with reflective markers, which were
recorded by a motion capture system (Vicon, Vicon Motion
Systems Ltd., UK). For reference, a video recording of the
grasp procedure was acquired in addition. The sensorized
glove was calibrated by measuring two reference angles
per joint and determining a linear correlation of the sensor
value with respect to the joint angle. For the thumb, cross-
correlations between the three degrees of freedom (DoF) of
the metacarpophalangeal joint have been taken into account.
The calibration procedure is described in detail in our pre-
vious work [32]. The grasp recordings are publicly available
in the Kinematic Grasping Dataset1 within the KIT Whole
Body Human Motion Database [3].

B. Learning Synergy Primitives

The grasp synergy primitives are learned from the human
grasp demonstrations in a two-step-procedure. First, synergy
trajectories are learned from the finger joint angle motions.
Then, VMPs for the different grasp types are trained on those
synergy trajectories.

The synergy trajectories are defined in a static synergy
space using the method proposed by Romero et al. [16]. The
static synergy space is learned by performing a principal
component analysis over all joint angle configurations in the
Kinematic Grasping Dataset regardless of their timing. The
22 joint angles are projected into six dimensions in synergy
space, which represent 85.8% of the overall variance. The
first synergy predominantly represents the general degree
of hand closing, the second synergy allows more specific
control of the distal interphalangeal joints and the higher
order synergies provide adjustments of finger abduction and
the joint posture of individual fingers. Grasp trajectories are

1https://motion-database.humanoids.kit.edu/list/
motions/?datasets=3534

Fig. 2: Representation error of synergy primitives learned with a
varying number of weighted kernel functions.

represented by a timed sequence of static synergy configu-
rations, thereby describing a trajectory in synergy space.

Subsequently, one VMP per grasp type is learned. To this
end, all synergy trajectories of the same grasp type are used
to train a single VMP for that particular grasp type. Since the
grasp type defines the coordination of the fingers throughout
the grasping motion, the corresponding trajectories represent
a single grasp strategy. Hence, each weight of the VMP can
be encoded by a single Gaussian distribution. The number of
weighted kernel functions required to represent the synergy
primitives has been evaluated based on the reproduction error
on learned demonstrations. As shown in Figure 2 a significant
impact in correct motion representation is achieved by 20
weighted kernels. Increasing the number of weights beyond
that does have a very small impact on the representation ac-
curacy of the primitive representation. Therefore, the synergy
primitives are learned by a VMP with 20 weighted kernel
functions.

C. Grasp Parameterization

The learned synergy primitive can be executed on a
humanoid robotic or prosthetic hand to control a grasping
motion of the primitive’s grasp type. The adaptability of the
VMP allows to parameterize the grasping motion according
to the specific object and situation while preserving the
human-learned grasp strategy. To this end, the inherent
adaptation capabilities can be leveraged to customize the
different characteristics of the primitive grasping motion.

Start: By adapting the start of the synergy primitive, the
initial position of the hand can be influenced. Most often,
the start pose will be the open hand. This is also the case in
the human demonstrations the synergy primitives have been
trained on. However, the starting pose could also be set to
a slightly curved, relaxed resting pose. If the grasp shall be
executed within a longer series of manipulation actions, the
starting pose can be defined to match the hand pose after the
execution of the preceding manipulation step.

Goal: The goal of the synergy primitive describes the
final, static grasp posture. Thereby, goal adaptation has to be
applied to adjust the grasp to the object. To define a suitable
goal pose, any grasp planner can be applied, ranging from
standardized analytical grasp planners [33], [34] to human-
like synergy grasp generators [21], [22]. Alternatively, a
more reactive grasp planning and control inspired by the
concept of soft synergies can be applied [13]. For this option,
the goal posture is chosen as the maximally closed human
hand posture observed for this grasp type. Then the grasp

https://motion-database.humanoids.kit.edu/list/motions/?datasets=3534
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execution is performed in an adaptive manner, either by
reactive, sensor-based control or a mechanically adaptive
hand actuation.

Temporal scaling: The temporal scaling factor τ of the
synergy primitive describes the execution speed of the grasp-
ing motion. A factor of τ = 1 causes an execution at the
exact speed learned from human demonstration, while τ < 1
results in a slower execution and τ > 1 speeds up the grasp-
ing motion. This grasp speed can be defined directly. Instead,
the temporal scaling can also be derived from measurements
of the task progress. Especially in assistive and rehabilitation
robotics, the temporal scaling can be directly controlled by
user input to allow the user to retain control of the task
execution.

Via-points: By explicitly setting via-points, it can be
ensured that the grasping trajectory passes a specific hand
posture at a specific time during the grasping process. Apart
from the direct enforcement of postural adaptations in the
grasping motion, this concept can be leveraged to shape the
general motion characteristics in several ways. First of all,
via-points allow to naturally adapt the grasping motion to
different starting conditions. When the fingers are partially
flexed at the beginning of the grasping motion, humans
enlarge their hand aperture within the first 60% to 70% of
the reaching phase, before closing the hand again [35], [36].
This behavior is not present in the human grasp recordings
our synergy primitives are trained on, because these start
with the hand fully opened. Nevertheless, such behavior can
be provoked by setting a via-point representing a more open
hand position with respect to the starting posture. This will
cause the hand to open first throughout the grasping motion
before closing around the object.

On a synergy level, a via-point can be used to structure
and alter the amount of motion done before and after the via-
point. Thereby, the timed coordination of synergies can be
changed by speeding up the motion caused by one synergy
and delaying the motion caused by another synergy. The
same can also be achieved on a kinematic level, if the desired
intermediate hand posture is transferred into the synergy
space. To give a practical example, an intermediate hand
posture can be set by a via-point to define whether the thumb
or the fingers close inside for a small diameter power grasp.

Finally, via-points may even be used for regrasping be-
tween two different variants of the same grasp type. This can
be achieved by varying the characteristics of the grasp pos-
ture between the goal and an additional via-point. Thereby,
the synergy primitive is forced to primarily aim at the via-
point posture, but alter it again later in the grasping process
to reach the final goal posture. For example, such regrasping
within the same grasp type can be used to rotate a small
object in a pinch grasp or to adapt a cylindrical grasp
from an initial configuration that allows to pick an object
from a surface to a more stable configuration for following
manipulation actions. However, since each synergy primitive
is trained on a specific grasp type, grasp variations can
only be enforced within the same grasp type to ensure the
resulting grasping motion is sensible and human-like.

All of these adaptation capabilities are not available in
the classical synergy representation, where trajectories would
need to be altered by hand. However, manually changing tra-
jectories does not ensure the human likeness of the resulting
motion, which is guaranteed with the synergy primitives.

IV. EVALUATION

The kinematic synergy primitives are evaluated to assess
their validity and merit for the representation and control
of human-inspired grasping motions for robotic hands. To
assess the general validity of synergy primitives, the repro-
duction error of human grasping motions represented by
synergy primitives is evaluated. Further, the capability of
synergy primitives for robotic grasp generation is assessed by
evaluating the grasp success in simulation and on a physical
robotic hand.

A. Representation Quality

The representation quality of demonstrated human grasp-
ing motions is measured by calculating the Mean Squared
Error (MSE) between the original grasp trajectory and the
trajectory represented by the corresponding synergy primi-
tive. The MSE measures both spatial and temporal similarity,
since the human and generated trajectory are compared at
each timestep without considering any time shifting. The
synergy primitive is parameterized according to the demon-
strated grasping motion. If only the start and goal pose of the
hand is adapted, the primitive causes a representation error
of 7.0%, as shown in Figure 2. However, this error can be
reduced significantly by adapting the general primitive to the
specific characteristics of the grasp trajectory with via-points.
By setting three via-points after one, two and three quarters
of the trajectory progress, a reproduction error of 3.9% can
be achieved. The PCA-based synergy representation has a re-
production error of 3.9%. The combined reproduction error
caused by both PCA and VMP representation in sequence
amounts to 5.9% under the same conditions. This error is
smaller than the sum of the individual errors, because the
inaccuracies of both methods are not necessarily accumu-
lated, but may also compensate each other. An overview of
the reproduction error for different grasp types is presented
in Figure 3.

The largest errors can be seen in frequent grasps, e. g.
Medium Wrap and Small Diameter. Due to the larger amount
of human demonstrations, these grasps have larger variations
in the demonstrated data, which need to be represented by
the synergy primitive. For the same reason the Lateral grasp
shows a higher error. In this grasp only the thumb and index
finger postures are functionally relevant and therefore the
joint angles of the other three fingers have a high variance.
On the other hand the Palmar Pinch, Power Disk, Prismatic
2 Finger and Ring are easy to replicate using a primitive
motion and exhibit a lower primitive error.

B. Grasp Quality on a Simulated Humanoid Hand

The grasp quality of motions generated from the kinematic
synergy primitives is assessed on a simulated humanoid



hand. In order to eliminate any influence of mapping errors,
we apply the generated grasps on the simulated human hand
model of the Master Motor Map [3].

For each grasp type, novel, human-like grasp trajecto-
ries are generated from the respective kinematic synergy
primitive. The grasp trajectories are adapted based on the
variance observed in the human grasp demonstrations for
the same grasp type and object. In total, 728 grasps have
been evaluated.

The grasp quality is evaluated on the static, final grasp
achieved by the generated grasp trajectory. The arm mo-
tion and hence the position and orientation of the hand
with respect to the object is taken directly from a human
demonstration of a grasp from the same grasp type on the
same object. All grasps are executed in the kinematic grasp
simulator Simox [34]. To ensure that contact is made between
the fingers of the hand and the object surface, an approach
inspired by the soft synergy model [13] is applied. Once the
hand has reached a grasp aperture corresponding to 90% of
the final finger closing angle, the finger motion is controlled
taking into account both the trajectory generated from the
kinematic synergy primitives as well as the object surface.
By these means it can be ensured that the fingers involved
in the grasp are in contact with the object surface.

(a) (b) (c)

Fig. 5: Simulated grasps on a human hand model generated from
the kinematic synergy primitives: (a) index finger extension grasp,
(b) large diameter grasp and (c) palmar pinch

The quality of the grasps is measured by the ε-metric [37].
Over all grasps, it results in a quality of ϵ = 0.13. Because
the ε-metric encourages grasps with a higher number of grasp
contact points, it is naturally higher for power grasps than for
precision grasps. Due to this characteristic, the grasp quality
increases to ϵ = 0.18 when considering only power grasps.
The ε grasp quality for the grasps of all different grasp types
can be seen in Figure 4. Some exemplary grasps are shown
in Figure 5. While the two power grasps in Figures (a) and
(b) yield a high grasp quality of ϵ = 0.38 and ϵ = 0.25
respectively, the precision grasp in Figure (c) yields a grasp
quality of ϵ < 0.01, but nevertheless provides a qualitatively
acceptable result.

Fig. 3: Reproduction error for different grasp types caused by the synergy representation, the primitive representation and the overall error
of the synergy primitives

Fig. 4: ε grasp quality of grasps generated from the kinematic synergy primitives and simulated on a human hand model for the different
grasp types



C. Grasp Quality on a Robotic Hand

Further, we evaluate the quality of generated grasp tra-
jectories on the female KIT Prosthetic Hand [11]. This
robotic prosthetic hand provides an actuated thumb flexion
as well as the underactuated closing of all four long fingers.
The adaptivity of the underactuation mechanism driving
the fingers allows for different power grasps depending on
the interaction between the hand and the object. Grasps
generated from all power grasp primitives are executed on
the prosthetic hand. Overall, 63 grasps from eight different
grasp types are executed on 14 objects. The grasp synergy
primitives are adapted according to the object size. For each
grasp a grasp trajectory is generated using the respective
synergy primitive for that grasp type. The 22-dimensional
trajectory of joint angles is then mapped to the two DoF
of the robotic prosthesis by a kinematic mapping. The pros-
thesis thumb trajectory is calculated from the motion of the
three thumb flexion joints. The prosthesis finger trajectory is
calculated based on the flexion joint trajectories of all four
long fingers. For both finger and thumb trajectory the mean
over all considered joint angles is calculated and mapped to
the motor position corresponding to the same joint angle in
the prosthetic hand. The grasp trajectory is then executed on
the robotic prosthesis using a feedforward control.

For the grasping evaluation the prosthesis is mounted on
a shaft and worn on the arm of the experimenter below
their own hand. The grasp motion is triggered externally.
The objects are placed on a table. Each grasp trajectory is
executed three times to grasp the corresponding object. The
objects are lifted, held for three seconds, turned by 90◦ and
held for another three seconds, before placing them back
onto the table. For grasping up to two points are given for
a successful and correct grasp, if the object moves within
the hand or the grasp type is significantly different, only one
point is scored. After rotation another two points are given
for firmly holding the object. If the object moves within the
hand after rotation, only one point is scored.

Overall 237 out of the achievable 252 points are obtained.
This corresponds to a grasp success of 94.0%. Figure 6
shows a detailed overview of the grasp success achieved
with grasps of different grasp types on the robotic prosthetic
hand. Most grasps were performed stably in all trials. Some
exemplary grasps are shown in Figure 1. Major problems
occurred only when grasping the small mixing bowl, because
the bowl was too wide to be grasped from atop in a disk grasp
with the 50th percentile female-sized prosthesis. Further, the
golf ball slipped out of the hand in one occasion in the sphere
4 finger grasp and object motion within the hand occurred for
the small clamp in the small diameter grasp and the cracker
box in the parallel extension grasp.

V. CONCLUSION

This paper introduces a novel method to describe human
grasping motions in a general and adaptable way and allows
to generate new human-like grasping motions for the control
of humanoid robotic hands that have not been directly
demonstrated by a human. Using a static postural synergy

Fig. 6: Grasp success rate for different power grasps generated by
the kinematic synergy primitives on a robotic prosthetic hand

space, that is learned from human demonstration, grasping
motions can be described as simplified, low-dimensional tra-
jectories. The selection and adaptation of these grasp motion
trajectories is performed by applying a motion primitive
representation.

For each grasp type, a single VMP is learned from a
range of varying human grasp demonstrations. The VMP
thereby provides a generalized description of the trajectory
and variance of the grasping motion. In addition, its adapta-
tion capabilities allow to accurately control high-level grasp
characteristics. The start and final grasp postures can be
modified directly in the VMP representation. By these means,
a grasp can also be adapted to different objects that vary
e. g. in size or overall shape. Grasp speed and timing can be
controlled via the canonical value of the VMP representation.
Finally, the trajectory path can be influenced by using via-
points. This may be used to adapt the grasping motion
within the variance of the human demonstrations, but also
to achieve intermediate grasp poses for regrasping or object
manipulation.

The presented kinematic synergy primitives exhibit good
representation capabilities for grasp motions demonstrated
by humans. A representation error of less than 6% can be
achieved. In addition, novel, human-like grasping motions
can be generated from the kinematic synergy primitives.
These achieve suitable grasp configurations with an average
grasp quality of ϵ = 0.13 in simulation. On a real prosthetic
hand, generated grasps achieve a grasp success rate of 94%.

In future work, we would like to extend the application
of via-point trajectory control to more complex manipulation
tasks that consist of a series of simple grasp postures. Further,
we also plan to leverage the adaptation capabilities of the
kinematic synergy primitives to personalize grasping motions
in the interaction with humans. We believe that the presented
kinematic synergy primitives provide a powerful tool for the
generalized representation, adaptation and control of human-
like grasping motions for humanoid robotic hands.
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