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Abstract— Distinguishing between dynamically stable and
unstable body poses during the execution of whole-body motions
is of equal importance for humanoid robots and humans
assisted by robotic exoskeletons. In this work, we present a
study for developing a real-time system for detecting dynamic
instability based on a small number of body-mounted inertial
measurement units (IMUs). To this end, we systematically
evaluate different online capable classifiers, operating on the
data of 1 to 6 body mounted sensors, trained on a dataset
of 50 disturbed motions with nearly 30,000 motion frames
recorded at 100 Hz. In contrast to the majority of related
studies, our system does not make use of thresholding certain
sensor values but instead uses machine learning techniques
to detect characteristics and patterns of features of unstable
movements. We show that the right combination of classification
method and sensor placement on the human body leads to very
good detection results with only 3 sensors.

I. INTRODUCTION

For bipedal humanoid robots as well as for humans
(and for humans wearing exosekeletons), controlling and
maintaining a stable upright configuration during walking
is essential. Falls can cause severe damage or injury and
therefore need to be prevented. The research presented in
this paper is concerned with estimating the instantaneous
dynamic stability of humans during walking based on the
data acquired from body-mounted inertial measurement units
(IMUs). Detecting unstable situations is necessary as input
for reactive measures to regain stability, e.g. a recovery step
in the case of a robot or enhanced torque augmentation in
the case of a human/exoskeleton system.

To achieve this, we use methods known from robotics (the
Zero Moment Point, ZMP [1]), and apply them to humans,
where significantly less sensor data than on a typical robot is
available even if body-mounted sensors are deployed. This
lack of data, such as joint angles and velocities, makes
the computation of the ZMP more complex. To overcome
this challenge we use the ZMP for labeling human motion
capture data, where sufficient information for its calculation
is available. Based on the labeled motion data we train
automatic classifiers that learn to distinguish dynamically
stable from unstable body poses in an end-to-end fashion
on the data provided by body mounted inertial sensors only.
Those sensors can be deployed as wearable devices outside
a motion capture environment.

The main contribution of this paper is twofold: We
present a method to automatically label human locomotion
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Fig. 1: Normalized Representation of a human subject regaining
balance after a push from the right side at shoulder height.

data acquired with an optical marker-based motion capture
system (VICON) as dynamically stable/unstable, based on
the relation of the ZMP and the support polygon. The
degree of instability we aim at detecting is such that it
can still be recovered from (i.e. we do not just want to
detect inevitable falls). Based on the labeled data, a thorough
analysis of sensor positions and machine learning algorithms
(binary classifiers) for detecting unstable configurations is
performed. Special attention is thereby paid to identifying
the minimal subset of sensors that lead to satisfactory results
since real-world applications benefit from lower numbers
of required sensors. We consider the placement of up to
six body-mounted sensors as feasible and hence restrict our
study to this number of sensors. All combinations of up
to six sensors from all 34 possible sensor positions on the
body in combination with six classification methods are
tested and evaluated in terms of their instability detection
performance based on their respective F1-score, taking into
account precision and recall. Through this analysis we are
able to identify the best suited sensor positions on the human
body and data classification methods that allow reliable and
efficient stability estimates in real-time.

Such methods are primarily relevant for humans wearing
exoskeletons, where an active exoskeleton can potentially
intervene and prevent a fall that would have otherwise
arisen from the detected unstable state. The required inertial



sensors could either be mounted on the exoskeleton directly
or, in case sensor position not covered by the exoskeleton
are favorable, be integrated in the wearer’s clothes. Since
maintaining balance and preventing falls is of equal impor-
tance for bipedal humanoid robots, the same methods may
find application in state estimation and balance control in
humanoid robotics.

II. RELATED WORK

Research in the context of stability estimation and fall
detection is mainly driven by the requirements of human
health and assistive systems on the one hand, and humanoid
robotic research concerned with the generation of human-
like bipedal motions on the other hand. Therefore, related
research work may not only be found in the context of human
movement observation and analysis, but also in the work
done on humanoid walking and balancing. For instability
detection, a key parameter is the time between triggering
the alarm and the time the fall becomes inevitable. The
earlier the instability is detected, the more time remains for
interventions like executing motions that prevent a fall or
selecting damage minimization strategies, like moving the
arms to a safe position or releasing an airbag system.

A. Stability Estimation in Humans

For human fall detection, sensors and devices applied
in the past include cameras ([2], [3], [4]), vibration and
sound sensors ([5], [6]), smartphones ([7], [8]) as well
as accelerometers and gyroscopes ([9], [10], [11], [12]).
For real world supervision, body-mounted sensors like ac-
celerometers and gyroscopes, which may be integrated in
smart devices like phones and watches, are preferable, as
they overcome shortcomings of video and sound systems
which are restricted to certain environments where they
may be installed and trained. In the past, numerous systems
deploying accelerometers and gyroscopes were presented. A
common way is to build a threshold based model filtering
high accelerations, which are then matched with further
patterns common in falls before triggering alarm ([13],
[14]). For those approaches, the reaction time after high
impacts is relatively high. Therefore, recent approaches tend
to apply more sophisticated machine learning methods to
reveal patterns related to disturbances occurring earlier than
the high accelerations directly preceding the floor contact in
falls. Promising approaches in this category include the use
of Support Vector Machines (SVM) [9], decision trees [10]
and k-Nearest Neighbor methods [11].

An outstanding result from the literature in this area of
research was achieved with the use of a Hidden Markov
Model (HMMs) that detects falls with an accuracy of 100%,
200ms - 400ms before ground impact (which might still be
too late to prevent the fall) [12]. This and other approaches
are not only tested for fall data, but are compared to a
range of other motions, denoted Activities of Daily Life
(ADL) in literature. Such activities usually include walking
and postural transitions, e.g. from sitting to standing and
vice versa. Most of the studies use only one single sensor

and choose its position according to practical reasons rather
than attempting a data-driven analysis of different sensor
positions. However, some studies (e.g. [13], [15]) evaluate
different possible positions and state that sensors positioned
on the torso yield more reliable detection systems.

B. Stability Estimation in Humanoid Robotics

In the field of humanoid robot locomotion, one of the
most common method for achieving dynamic balancing is
controlling the Zero Moment Point (ZMP), a concept that
was initially introduced by Vukobratovic [1]. The ZMP is
often applied to reduced dynamic models such as the rimless
wheel or the (linear) inverted pendulum to derive control
systems for humanoid robots ([16], [17]). Since the effects of
complex, multi-joint motions on robots inevitably defer from
the predictions of simplified dynamic models, the supervision
and stability control remain an important part of humanoid
robot motion execution.

Rather than labeling momentary states as stable or insta-
ble, other approaches observe the results of entire movements
and divide them in those that remain stable and those that
inevitably lead to falls. Thereby, the set of safe (stable)
motions are called viable and constitute the ’viability kernel’,
i.e. motions that can be executed without potential damage
([18], [19]). In [19], the authors label the existent data using
actual state and result, in the classes ’balanced’ (motion
currently stable and remaining stable), ’fallen’ (motion that
already led to a fall) and ’falling’ (the sequence that leads
to a fall, but prior to impact). They use machine learning
techniques and distinguish between those classes and manage
to trigger an alarm at least 700ms before the robot actually
falls. However, they have a false positive rate of 10%, which
could cause many false alarms in practice.

In the work described in [20], push-recovery methods for
a small humanoid robot are presented that leverage a single
torso-mounted IMU (attitude sensor and gyroscope) as well
as the joint encoders to generate a stability estimate, which is
than mapped to a recovery action. To enhance this mapping,
reinforcement learning with a simulated robot is used for
optimization. In the context of soccer-playing humanoid
robots, the authors in [21] argue that good soccer players,
particularly goalkeepers, should be able to intentionally fall
down. They describe a classification method for unstable
situations and manage to execute a damage-preventing fall
primitive if necessary. Also in the context of small-scale hu-
manoid soccer robots, [22] presents a simulation-based study
on an effective instability detector with attitude sensors.
Deviations from expected attitude signals are aggregated into
an instability indicator that triggers one of two reflexive
behaviors (slowing down or stopping).

III. METHODOLOGY

This study is based on human locomotion data taken from
a large database of human whole-body motions, the KIT
Whole-Body Human Motion Database (see [23] and [24]).
The motions were captured using an accurate multi-marker
optical motion capture system (VICON) and processed with



Fig. 2: Support Polygon with its centroid and ZMP of a person walking from right to left over time. At about 0.25m on the x-axis, the
subject experiences a push from the left, leading to a significant deviation of the ZMP (red dots and dashed lines). After that, the subject
takes two recovery steps to the right in order to maintain balance. From there, three more steps lead the subject to the target position.
The blue dots (”cut of line”) are the intersections of the line from the centroid to the ZMP with the current support polyogon (Boarder
in Equation 1). The support polygon, its centroid and the ZMP are plotted at every 10th motion frame (i.e. 100ms apart).

the Master Motor Map toolchain [25] to obtain a normalized
motion representation across different subjects (see Figure
1). The Master Motor Map (MMM) provides a unifying
framework for representing whole-body human motion data
in conjunction with tools and methods for motion analysis
and reproduction. In its core, the MMM contains a refer-
ence model of the human body providing a well-specified
kinematic configuration and dynamics, and defines the data
formats for capturing, representing and mapping of human
motion to a target robot system. This reference model is used
to generalize motion recordings from the subject-specific
properties and, thus, facilitates the implementation of motion
mapping mechanisms to different embodiments. Motions are
represented as frames at a rate of 100Hz, containing the
marker positions, the Cartesian pose of the root body and
all joint angles of the underlying reference model of the
human body (the MMM model), from which all velocities
and accelerations can be numerically derived. The data in the
KIT Whole-Body Human Motion Database is collected using
a reference marker set consisting of 56 markers which are
derived from specific anatomical landmarks of the human
body. More information about the marker set is available
online.1 The database currently contains more than 9,400
human motion recordings of 154 subjects and a total duration
of 28.8 hours of manually labeled human motion data.

1https://motion-database.humanoids.kit.edu/marker_set

In the 50 recordings used in this study, the subject is dis-
turbed heavily enough to be considered dynamically unsta-
ble, requiring active recovery actions to avoid falling. In these
50 motions, the subject is either walking or standing, and at
some point in time unknown to the subject is experiencing
a disturbing force, causing the motion to be momentarily
unstable. The disturbances are externally applied pushes to
the torso from either the front, back, left or right side. None
of the disturbed motions actually led to a fall, which ensures
that any classifier trained on this data does not learn to
detect when a person has fallen but is much more sensitive,
detecting unstable situations from which the subject can
recover. This is a significant difference to many of the related
works presented in Section II.

A. Data Preparation

The goal of this work is to distinguish stable from unstable
situations based on body-mounted inertial sensors with a
frame-wise, automatic classifier. The classifier needs to be
trained on labeled data, which requires two major steps
of data preparation: (1) adding IMU-data to the motion
recordings and (2) labeling them.

The IMU-data consists of three-axis linear acceleration,
three-axis rotational rate (both in the sensor frame) and
absolute orientation, which can be provided by state-of-the-
art wearable sensors such as Mbientlab’s MetaMotionR [27].
Using the MMM framwork ([25], [24]) and the Simox

https://motion-database.humanoids.kit.edu/marker_set


Fig. 3: All optical markers from the standard MMM marker set
depicted as blue dots on the human body. 34 of these markers
served as locations for emulated IMUs. These IMU-positions are
indicated by blue dots having a numerical index and are referenced
in Table I. The figure of the human body in this figure is under
creative common license and can be found at [26].

toolbox ([28]), we emulate the IMU data by computing
those measurements for 34 positions on the human body
and adding them to the motion data. The sensor positions
coincide with a subset of the locations of the optical reflective
markers from the standard MMM marker set, which consists
of 56 markers at predefined anatomical locations, since their
positions and motions are exactly know without the need for
further interpolation. This selection was based on consider-
ations of practicability in later applications (e.g. attaching
wearable IMU sensors to the head or toes is impractical,
hence those sensor locations were not considered). Figure 3
shows the positions of all optical markers as blue dots on the
human body, where the 34 emulated IMU sensor positions
are indicated by the markers with numerical indices. Note
that higher indices than 34 occur since they denote MMM
marker positions which were not all used as emulated sen-
sors.

For training a frame-wise binary classifier, an appropriate
label (stable/unstable) must be associated with each of the
nearly 30,000 frames of the 50 motions containing unstable
situations. While this could be done manually, it would be
extremely tedious. We therefore developed an automatic pro-
cedure to derive the correct label based on the position of the
ZMP in relation to the support polygon. The support polygon
can be directly computed from the kinematic motion data,
and the ZMP can be computed from the mass distribution of
the human model and its motion, using the method described

in [29]:

zmpx =

N∑
i=1

{
~ri ×mi(~ai − ~g) + [d(

↔
I i ~ωi)/dt]

}
Y
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{
~ri ×mi(~ai − ~g) + [d(

↔
I i ~ωi)/dt]

}
X

M(Z̈CoM + g)

Hereby we use the physical formulations for linear and
angular momenta, as well as the gravitational force, to
compute the values of the ZMP on the ground in x- and
y- axis separately. The used variables denote the position ~ri,
mass mi and acceleration ~ai of every body part i = 1, ..., n,
the inertial momenta Ii and angular velocity ~ωi of these as
well as the overall mass M and the height of the center of
mass of the whole body ZCoM . ~g describes the downward
acting gravitational acceleration. Using this formulation, the
ZMP computed from recorded motion data does not always
remain inside the support polygon. In fact, it frequently
leaves the support polygon even for undisturbed dynamic
motions. However, the distance between the centroid of the
support polygon and the ZMP can still be considered a
measure of dynamic stability - the greater this distance, the
less stable (or more disturbed) the motion.

To account for varying sizes of the support polygon that
arise from the kinematic differences of single and double
support phases, we define the ZMP-Ratio that puts into
relation the distance between the centroid of the support
polygon and the ZMP to the distance between the centroid
of the support polygon and its border, all on the line passing
through centroid and ZMP.

ZMP-Ratio =
Distance(Centroid, ZMP)

Distance(Centroid, Border)
(1)

This value can be computed for every frame and serves as
a measure for dynamic stability. It can be interpreted as
follows:
• ZMP-Ratios close to 0 indicate a ZMP that is close to

the centroid (stable)
• ZMP-Ratios greater than 1 indicate a ZMP that lies

outside of the support polygon (potentially unstable)
Since values of the ZMP-Ratio greater than 1 do not automat-
ically indicate instability, we resorted to empirically defining
a threshold that reliably indicates an instability in the sense
that the subject would have fallen if no dedicated recovery
action was performed. This value was found by examining
videos of the 50 disturbed motion trials and computing
the respective ZMP-Ratio values during the disturbances.
We found a threshold of 2.5 as a reliable indicator of a
significant instability that requires recovery actions. That
is, push disturbances that lead to clearly visible counter-
measures by the pushed subject in the form of either whole-
body motions, stepping or a change in walking direction
induce a ZMP-Ratio of 2.5 or more, whereas this values
remains smaller during undisturbed motion. Based on this



threshold of the ZMP-Ratio, all frames of the investigated
motions are assigned a binary label (stable/unstable), so that
a classifier that directly operates on the IMU-data (not on
the ZMP) can learn to distinguish those two classes.

B. Classification

Two criteria define a good classifier in the context of
this study: (1) It should reliably (measured by the F1-score)
distinguish between stable (ZMP-Ratio < 2.5) and unstable
(ZMP-Ratio > 2.5) poses from IMU-data and (2) require a
small number of body mounted sensors to ensure feasibility
in real-world applications. To achieve the latter and reduce
the number of used sensors from the initially available 34
to a smaller number, a feature selection process is necessary.
Since each sensor provides 9 features (3-axis acceleration, 3-
axis rotation rate, 3D orientation) it is not feasible to remove
features individually and they have to be treated in a bulk
of 9, either using all of them or removing the entire sensor.
Feature selection in our case thus becomes synonymous to
sensor selection. We further need to select from a set of
available methods of automatic classifiers, where we con-
sider Bayesian regression, Support Vector Machines, Nearest
Neighbors classification as well as Perceptron methods, both
single layer and multilayer (i.e. neural networks). To assess
the effect that bagging of classifiers has on the presented
learning task we also evaluated a bagged version of the
Nearest Neighbors method, which we chose for its promising
results even in the non-bagged version.

We rely on the implementations of these methods available
from the SciKit-learn toolbox for Python [30]. All of these
methods are trained and evaluated for every possible sensor
combination of up to 6 sensors, which we consider the upper
limit of practicability in later applications. The very signifi-
cant computation time required for this complete search for
the best combination of sensor set and classification method
(on the order of days) must be invested only once and
leads us to a trained, ready-to-use classification tool that can
be evaluated in real-time for each motion frame to detect
unstable situations that require balance recovery control.

IV. RESULTS

To get a baseline for the classification results obtained
from the different classifiers, training and evaluation was first
conducted with all 34 sensors (i.e. 306 features) for each
classifier. Table I shows the F1-score for these experiments
in the last row. The Bayes, Bagged 10 Nearest Neighbors
and Support Vector Classifier (SVC) perform equally well
with an F1-score of 66%. The 10 Nearest Neighbors without
bagging, the multi-Layer perceptron and the single-layer
perceptron follow with an F1-score of 64%, 63% and 61%,
respectively. When considering the mere percentage of
correctly classified frames, it is important to take into account
our comparatively high frame rate of 100Hz. We consider
much shorter time intervals than most related approaches,
which implies that our system may appear less accurate at
first sight, even when actually reporting better results. We
performed a complete search for the sensor setups from 1 to

6 sensors that perform best in terms of the F1-score for each
classifying technique. The results, consisting of the sensor
identifiers (numbers) and the F1-score for each classifier,
is presented in Table I, where the listed sensor set with n
sensors is the one that led to the highest score with this
classifier out of all possible sets of n sensors. The sensor
identifiers relate to sensor positions as indicated in Figure 3.
To be able to use as much data as possible for training
and still get meaningful evaluation results, four-fold cross-
validation was used for all training and evaluation. This leads
to an F1-score difference of approximately ±2% among the
four evaluation sets. Table I shows the average of the score
over all evaluation sets.

As can be seen, the results vary significantly when ap-
plying different methods to different numbers of demanded
sensors. When adding higher numbers of sensors, higher
order approaches like the Nearest Neighbors method and the
multilayer perceptron outperform linear methods such as the
Bayesian classifier.

A. Observations and Discussion of the Results

Several interesting and noteworthy observations can be
derived from the presented results.

1) Sensor Reoccurence: Most notably, optimal sensor sets
for a given classifier with n sensors are generally not subsets
of the optimal sensor set with n+m sensors. For example,
the best single sensor for the bagged 10-NN classifier is the
sensor at position 32, which does not reoccur in any of the
other optimal sensor combinations for this classifier for up to
6 sensors. Moreover, the optimal two-sensor setup consists
of the sensors positions 0 and 36, both of which do not
reoccur in the three- or four-sensor setup (both reappear in
the five-sensor setup).

2) Number of Sensors: More sensors, i.e. more dimen-
sions in the feature space, do not automatically lead to better
results, emphasizing the relevance of appropriate feature
selection to avoid the ’curse of dimensionality’ when em-
ploying high dimensional machine learning tools on limited
training data. A good example for this observation in the
presented study is the 10-NN classifier that reaches an F1-
score of 64% when using all 34 sensors, a result that
is surpassed by even using the single best sensor alone
(68%). Most classifying methods show a relatively steep
improvement when adding a second and third sensor (e.g.
the SVC, improving from 55% with one sensor to 73% with
three sensors) and then continue to improve at a much lower
rate, if improving at all. The 10-NN classifier for example
reaches its highest score (78%) with only 5 sensors, and the
single layer perceptron shows its best performance (76%) for
both 4 and 5 sensors.

3) Sensor Location: The question for the single best
sensor location on the body to detect unstable states can
only be answered in the context of a specific classification
algorithm. All six classifiers presented here achieve their best
single-sensor F1-scores with a different sensor (depicted in
Figure 4). We conclude that the proper choice of sensors is
highly dependent on the classification method, and that being



# Sensors Bayes 10 Nearest Neighbors 10 Nearest Neighbors Bagged Perceptron ML-Perceptron SVC

1 40 17 32 33 38 34
67% 68% 70% 63% 70% 55%

2 14,40 34,40 0,36 32,51 24,36 33,43
67% 75% 76% 70% 77% 67%

3 39,40,43 33,38,40 10,16,44 17,32,43 1,40,47 21,41,47
70% 76% 79% 73% 80% 73%

4 1,2,41,46 0,15,38,39 29,34,37,44 22,25,33,43 0,39,40,46 10,14,43,47
70% 75% 80% 76% 80% 74%

5 14,32,40,41,51 16,34,39,40,44 0,43,36,37,39 15,24,36,44,45 23,38,39,46,51 14,21,29,39,47
70% 78% 81% 76% 81% 76%

6 15,33,39,40,41,51 29,34,37,39,40,44 29,33,34,36,38,43 0,1,24,33,36,41 1,2,23,41,46,47 10,15,21,39,40,46
70% 77% 81% 73% 82% 76%

34 (all) 66% 64% 66% 61% 63% 66%

TABLE I: Listing of the 36 classifiers as combinations of classification method (row) and number of used IMU sensors (column) that led
to the best F1-scores among all possible systems with the same number of sensors. Each cell contains the sensors used (see Figure 3 for
reference) together with the achieved F1-score. The result for each classification method operating on all 34 sensors is given in the last
row. Note that the numbers represent marker positions of the MMM reference marker set (that translate to emulated IMU positions) and
thus can be higher than the number of 34 sensors (see also Section III-A).

Fig. 4: Location of the sensor that leads to the best detection
result in a single-sensor setup for the six investigated classification
methods.

the ”best” sensor is not an attribute of the sensor but of the
combination of sensor and method.

As exemplary visualized in Figure 4, the optimal sensor
sets show a bias towards the right side of the body. We
hypothesize that the reason for this lies in an asymmetric
preference for the choice of the stepping foot when pushed
from the back or the front while standing.

B. Best System

Of all the 42 classification systems summarized in Table I,
consisting of the combination of sensors and a machine
learning method, using six sensors (1, 2, 23, 41, 46 and
47) along with a multilayer perceptron (one hidden layer,
trained via back-propagation) leads to the best results (F1-
score of 82%). For actual use, the same system but with only
three sensors (1, 40 and 47) might be even better suited due
to the lower number of sensors at the small cost of an F1-
score dropping 2 percentage points. A single classification
using the six-sensor model takes 1.45ms on average on
an Intel Core i7, 4th generation with 16 GB RAM. Using

the trained system on real-time data with a frame-rate of
100Hz will therefore be possible without the need for further
optimizations.

V. CONCLUSION

We presented a method to automatically label frames of
whole-body motion recordings as either stable or unstable
based on a quantitative, ZMP-based criterion and applied it
to a set of 50 different recordings of disturbed motions with
nearly 30,000 motion frames. We computationally added 9-
dimensional IMU data to the motion recordings for 34 sensor
positions on the body. With this dataset, we systematically
searched for the best frame-wise detection system for un-
stable states that operates on the IMU-data, comprising a
binary classifier and a set of up to six sensors. Six different
classifying techniques were evaluated in terms of their F1-
score, each on every possible sensor combination. The best
result was achieved with a multilayer Perceptron (neural net)
with one hidden layer and six body mounted sensors (i.e. 54
features). The F1-score for this setup is 82%. Interestingly,
results of similar quality can be achieved with the same
method but only three sensors (F1-score of 80%).

A. Discussion and Future Work

The methods presented here were solely evaluated on
motion data acquired with the optical VICON system, while
the IMU sensor data, that is the foundations of the classifier,
were computationally emulated. It therefore remains to be
investigated how well the results can be reproduced from
data gathered directly from body-mounted IMUs, where
noise level and other sensor-specific parameters may differ
from the data used for the presented study. Furthermore,
the labeling-method relies on the ZMP-Ratio introduced
in Section III and a numerical threshold that is based on
heuristics. While a smaller threshold would lead to more
false positives and a larger to more false negatives, an in
depth analysis of the implication of this threshold remains
to be done. Another point to investigate is the potential
for improvement when using a version of the classifier



Fig. 5: Self-contained, wireless IMU module [27] for studies with
body-mounted sensors. Centimeter scale for size comparison.

that uses evaluation of three or more consecutive frames to
verify results. Our evaluation showed that many of the false
positives only occur in a single motion frame and could be
suppressed by evaluating a window of several consecutive
frames, still maintaining a high frame rate.
In our future work, we will evaluate the frame-wise stability
estimation method with up to six body mounted wireless
inertial orientation sensors like the one shown in Figure 5.
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[23] C. Mandery, Ö. Terlemez, M. Do, N. Vahrenkamp, and T. Asfour, “The KIT
whole-body human motion database,” in Advanced Robotics (ICAR), Interna-
tional Conference on. IEEE, 2015, pp. 329–336.

[24] C. Mandery, O. Terlemez, M. Do, N. Vahrenkamp, and T. Asfour, “Unifying
representations and large-scale whole-body motion databases for studying human
motion,” IEEE Transactions on Robotics, vol. 32, no. 4, pp. 796–809, August
2016.
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APPENDIX

List of the motion recordings used for this study, all
available from the KIT Whole-Body Human Motion
Database2:

push recovery right{01,02,03,04,05,06,07,08,09,10,11}.xml,
push recovery stand back{01,02,03,04,05,06,07,08,09}.xml,
push recovery back{02,04,05,06,07,08,10}.xml,
push recovery left{01,02,03,05,06,07,08,09,10}.xml,
push recovery front{04,05,06,07,09}.xml,
push from behind{08,11,12}.xml,
push from the left side{10,11,12}.xml,
push from the front09.xml,
push front hard03.xml,
push recovery stand right11.xml,

2https://motion-database.humanoids.kit.edu/
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