
Efficient Collision and Self-Collision Detection for
Humanoids Based on Sphere Trees Hierarchies

Klaus Steinbach1,2 James Kuffner1 Tamim Asfour2 Ruediger Dillmann2

1The Robotics Institute 2Institute of Computer Science and Engineering
Carnegie Mellon University University of Karlsruhe

5000 Forbes Ave., Pittsburgh, PA, 15213, USA Haid-und-Neu-Straße 7, 76131
{ksteinba,kuffner}@cs.cmu.edu Karlsruhe, Germany

Abstract— We present an algorithm for computing compact
sphere tree hierarchies over general 3D polygonal meshes for
the purpose of efficient collision detection and minimum dis-
tance computation. The sphere tree construction method we
use optimizes the location of the sphere centers and radii at
each level of the hierarchy to compactly contain the underlying
geometry. We enhance the heirarchy construction so that it can be
applied to both self-collision and obstacle collision detection for
articulated robots. Finally, we introduce distance range bounds
that is effective for minimizing the overall number of required
distance computations. The result is a faster algorithm that
performs particularly well on collections of multiple mesh objects.

I. INTRODUCTION

Safety and reliability are crucial for humanoid robots ex-
pected to operate in home or office environments. Specifically,
potential collisions between the robot and its environment
must be efficiently detected and avoided. We are developing
a complete robotic system for autonomous manipulation tasks
in a kitchen environment. In this context, the detection and
prevention of collisions and self-collisions is an important
issue. The prototype ARMAR (Fig. 1) is a humanoid platform
with 23 degrees of freedom and consists of five subsystems:
the head, left arm, right arm, torso and a mobile base [1].

Fig. 1. The Humanoid Robot ARMAR

In the broader sense, collision detection and minimum
distance computation between 3D objects is an important prob-
lem with applications in robotics, computational geometry,

computer graphics, haptics and simulation. Both operations
are closely related and can be generalized as two instances of
geometric proximity queries. Specifically, collision detection
typically involves testing for overlap between two or more
volumetric or surface models of objects, and returning a binary
result. If the objects are disjoint, the minimum separating
distance between pairs of objects may additionally be returned.
In either case, information concerning the location and na-
ture of the proximity event (contact points, contact normals,
amount of overlap, pairs of closest points, minimum separating
distances, etc.) may also be needed. For a general overview of
collision detection and a survey of various algorithms, see [2]–
[5]. An important application of collision detection algorithms
in robotics is for motion planning, where minimum distance
information may be used to maintain clearance between the
robot and nearby obstacles as in [6], [7].

As the number of geometric primitives involved in a query
become large, hierarchical bounding volumes are often used to
spatially partition the objects. Several hierarchical approaches
have been proposed with different bounding volumes, each
with advantages and disadvantages. Typical examples include
axis-aligned bounding boxes (AABBs) [8], object-oriented
bounding boxes (OOBBs) [9], [10], spheres [11]–[15], el-
lipsoids [16], swept-sphere volumes [17], and convex hulls
[18]–[20]. The choice of bounding volume results in different
tradeoffs between computational efficiency, complexity, and
the tightness of the fit to the underlying geometry. Sphere
bounding volumes are a popular choice due to their simplic-
ity and computational efficiency due to rotation invariance.
Sphere tree hierarchies are simple to implement and suitable
for efficient minimum distance computation as in Quinlan’s
formulation [21], [22]. Relatively few techniques focus on
detecting self-collision. For example, convex hulls and pruning
techniques to reduce computation complexity by analyzing the
kinematic structure of the articulated robots was used in [23].
Other work focused specifically on long kinematic chains
[24].

In this paper we present an improved algorithm for col-
lision detection and minimum distance computation between
arbitrary triangle meshes in 3-D. Our method works particu-
larly well for articulated kinematic structures represented as
collections of rigid links. We expand the hierarchical structure

and introduce an approximate range of motion hull for each
rigid link and for entire kinematic subchains. The range of
motion hull encodes the kinematic swept volume that we have
found to be very useful for efficiently detecting self-collisions
for articulated linkages using the improved hierarchical sphere
tree structure.

II. IMPROVED MINIMUM DISTANCE COMPUTATION FOR
NONCONVEX OBJECTS

Our approach is based on the hierarchical sphere trees
of Quinlan [21], [22], which we will assume the reader is
familiar with. We selected Quinlan’s method because of its
simplicity and applicability to arbitrary nonconvex meshes and
“polygon soups”. We also wish to obtain not just a binary
result for collision detection, but rather some approximate
measure of the minimum separating distance. Quinlan’s algo-
rithm conveniently allows the user to set an error tolerance
on the computed minimum distance value that can speed
up the computation for cases where the exact minimum
distance information is not needed. For our humanoid robot
application, we adjust the error tolerance according to the task
requirements, and propose several modifications to Quinlan’s
approach that improves the overall efficiency and running time
for moving articulated kinematic structures.

A. Distance Range Interval

We define the distance range interval I = [mind,maxd] to
be a user-selected range of object distances of interest to the
application. For example, when validating a candidate motion
trajectory for a serial chain manipulator, the largest possible
distance that any point on the robot can move from the start
configuration is a good candidate for maxd. In this case, it is
unnecessary to compute the exact distance to objects which
are further away than maxd. Similarly, due to uncertainty
in control, the manipulator should maintain a safety distance
margin to all obstacles when moving. This safety margin is a
good candidate for the value of mind, as it is unnecessary to
compute a more precise minimum distance value to obstacles
which have already been shown to penetrate the safety margin.

The primary advantage of a well-chosen distance range
interval is that Quinlan’s algorithm can be tuned to easily
avoid unnecessary distance computations. When the algorithm
is initialized, the variable d which keeps track of the upper
bound on the minimum distance between two query objects
should not be set to infinity as in [21], [22], but with maxd.
Similarly, rather than reporting a collision whenever d ≤ 0,
we can simply terminate whenever d ≤ mind.

Another advantage of utilizing the distance range interval
appears when considering a sequence of queries between
multiple pairs of objects. In this case, maxd can be initialized
to the current minimum distance for all objects tested so far.
Whenever a subsequent object is shown to be beyond maxd,
it can be skipped. Thus, it is beneficial to begin a sequence
of queries with the nearest object, which can be heuristically
selected if unknown a priori.

B. Sphere-Tree Hierarchy Construction

The key to the efficiency of Quinlan’s algorithm is the
hierarchical data structure of spheres used to approximate
the underlying polygonal geometry of some arbitrarily-shaped
object. To construct the hierarchy, Quinlan first creates an
initial grid of small “leaf spheres” with fixed size is blanketed
over the surface of every polygon [21], [22]. Nearby spheres
are grouped together and combined to form a hierarchy from
the bottom-up. The radii of larger intermediate spheres are
calculated to entirely contain the smaller ones. For binary
sphere trees, each intermediate sphere contains at most two
child spheres. Finally, the root sphere of the tree will contain
the entire collection and forms a bounding volume for the
underlying geometry. Clearly, the value of the resulting root
sphere radius heavily depends on the ordering and method
used to combine child spheres. If we combine two spheres and
insist on the fact that the child spheres be entirely contained
within the parent sphere as in [21], [22], the minimal parent
radius is straightforward to compute as shown in Figure 2(a).
We will refer to this strategy as the greedy combine method.

(a) Greedy Combine Method (b) Compact Combine Method

Fig. 2. Illustration of the greedy and compact combine methods.

The condition that every parent sphere must entirely contain
all child spheres is not necessary, since we are interested
in the computation of the distance between the underlying
object geometry. Thus, it is sufficient for the parent sphere
to only completely contain all of the underlying geometry
(i.e. polygon vertices) contained by its children. This fact
is also realized and exploited in [25] for performing more
efficient collision detection for haptics model display, and in
[24] for efficient collision detection between long chains. We
will refer to this as the compact method, which is illustrated
in Figure 2(b). Various numerical optimization techniques
can be used to search for the sphere center location that
results in a minimal radius value. Figure II-B graphically
illustrates the minimal radius value field for different candidate
center locations (red being worse and green being better). The
optimal compact sphere center in this case is coincident with
the geometric center of the cube.

We can no longer assume that the current estimate of the
maximum possible value of the minimum separation distance
will monotonically decrease while descending the sphere hier-
archy. Instead, the maximum distance should be updated only
if it is strictly smaller than the current estimate. Intuitively, this

Level 1 L2 L3 L4 L5 L6
greedy

compact

Fig. 4. Comparison of different levels of the sphere tree hierarchy for the greedy construction method versus our compact method for an L-shaped mesh.

Fig. 3. The candidate compact sphere center locations for a cube colored
according to the relative size of the smallest possible sphere radius containing
the entire cube.

has the effect of maintaining a bound on the maximum value
for the minimum separation distance between the intersection
of the volumes of the parent and child spheres. Thus, if a child
sphere includes any volume which the parent does not include,
the algorithm uses only the part of the sphere inside the parent.
Figure 4 shows a comparison of the relative sizes of different
levels of the sphere tree hierarchy for a 3D L-shaped object for
both the greedy and compact tree construction methods. Notice
how each level of the compact hierarchy more compactly
contains the underlying geometry.

C. Sphere Center Transformation Caching

Finally, we implemented an additional performance opti-
mization to our algorithm by caching relative sphere trans-
formations. Because sphere centers are stored in object local
coordinates, for every distance computation between spheres, a
transformation of one of the center points is needed. However,
under certain circumstances this center point will be the same
for some sequence of intermediate steps. For example, when
processing subtrees for both a large and small object, the
tree of the large object will be subdivided several times prior

to that of the small object. Thus, the transformation of the
small object sphere into the large object’s coordinate system
can be cached from the previous step and reused for future
subdivisions. In our experiments, caching improved the overall
runtime performance of a query by approximately 30% on
average.

III. APPLICATION TO ARTICULATED LINKAGES

For applications involving serial chains or kinematic trees of
rigid links such as humanoid robots, we propose constructing
sphere-tree hierarchies that not only approximate the current
configuration of the linkage but also their range of motion.
The range of motion hull for a particular kinematic subtree
can be intuitively thought of as the union of all possible
spatial configurations. Another way to interpret it is the
recursive computation and aggregation of the swept volume
of all child links or subtrees to form a tight bound on the
geometric reachability of an entire kinematic hierachy. This
calculation needs to be done only once, and can be performed
as a precomputation step provided that the valid joint angle
ranges are known in advance. A compact sphere center is
then computed that encloses the entire range of motion hull
geometry.

The benefits of our approach are twofold. First, collision
detection or minimum distance computation can be performed
between two articulated linkages or a rigid and articulated
structure without testing every pair of rigid parts against
each other. Second, because the range of motion hull bounds
the extent of the possible motion of the underlying subtree,
validating motion trajectories for potential collisions can be
performed very efficiently.

A. Hierarchy Construction for Articulated Linkages
Similar to the case for rigid objects, articulated structures

require a “separation” and “combination” method for sphere-

tree construction. The separation method is tailored to the
kinematic structure of the articulated object and combines
several subtrees at every step considering the possible move-
ments of the affiliated joints. The structure is built from the
bottom-up as for rigid objects. Initially, each of the subtrees
for each rigid link is constructed as described previously.
During the combination method several spheres are merged
to form a hierachy. The underlying geometry of the object or
the underlying movement of the kinematic sub chain is used
instead of the child sphere parameters to compute the parent
sphere. Thus, the combination method cannot assume that only
two child nodes must to be combined. However, our proposed
method for rigid objects calculates sphere radii from point
clouds and therefore does not make any assumptions regarding
the number of nodes to merge.

To approximate the range of motion hull, the possible joint
values for a particular link are sampled at a discrete resolution
within the application-specific safety margin. At each subtree
level, all rigid parts of the current kinematic subtree must be
sampled along their affiliated joint ranges. Figure 5 illustrates
the construction for a manipulator arm with three rigid links
(L1, L2, and L3). The rigid bounding sphere R3 for link L3

is calculated first. Then the joint motion for L3 is sampled
and the corresponding motion sphere M3 is computed. Next
R2 is calculated and combined with M3 to form the bounding
sphere MR2 based on the aggregation of their sampled points.
In a similar fashion, M2, R1, and MR1 are computed. MR1

approximates all possible configurations of the kinematic chain
relative to the local coordinate system of L1.

Fig. 5. The Range of Motion Hull for an articulated manipulator robot
consisting of three rigid parts L1, L2, and L3 (left) and the resulting sphere-
tree.

B. Collision Detection

Our enhancement to the hierarchical sphere structure does
not claim any conceptual change for the distance computation
algorithm. The only thing which has to be considered is the
amount of child nodes. Our approach successively tests the
child nodes of a motion sphere (i.e. MR2) with a sphere
of another object instead of arranging them based on their
minimum distance to the other object. The algorithm starts

with the sphere for the rigid object (i.e. R2) and then use the
other motion spheres (i.e. M3).

IV. SELF-COLLISION DETECTION FOR ARTICULATED
LINKAGES

The self-collision detection algorithm makes one assump-
tion, which requires neighboring links to be collision free.
This is typically the case if proper joint limits are set for the
mechanism. The algorithm works in three steps as illustrated
graphically in Figure 6.

1) Collision detection of rigid link against children child
nodes

2) Collision detection of child nodes against each other
3) Self-collision detection for child nodes

Fig. 6. Self-Collision detection steps for an example manipulator.

The first step checks for possible self-collision between
each rigid link and its descendant nodes. Due to the fact that
there cannot be any self-collision between neighboring links,
each rigid link is tested against its “grandchildren” subtrees
(all descendant nodes of its own children). For example, per-
forming self-collision for the articulated structure in Figure 6
results in collision detection queries between RA and MD,
ME , and MF as step one. The second step checks possible
self-collision between the kinematic sub chains denoted by
the child nodes. In Figure 6 collision detection between MB

and MC is performed in step two. Finally, the self-collision
detection routine is recursively called on each child node. In
Figure 6 the recursive call must be done for MRB and MRC .
During each step, the distance information is maintained and
propagated, thereby lowering the upper bound on the overall
minimum self-collision distance.

Pruning Collision Pairs: A precomputation step is per-
formed that computes a lookup table of possible link pairs
of the object which can possibly collide based on kinematic
reachability. This allows us to avoid unnecessary distance
computations during each of the steps of the query phase.

Because the self-collision algorithm not only detects colli-
sions between rigid links against each other, but also against
kinematic subtrees, additional lookup tables are computed.
The rigid look up table denotes if a given rigid link of an
articulated object can possibly collide with each kinematic
sub chain. In Figure 6 this corresponds to the test in step
one between RA and MD. For this example, if RA and MD

are collision-free, then RA and RD, RA and RG, and RA

and RH must be collision-free. An additional lookup table
(motion) is calculated in a similar fashion only that its entries
denote whether or not two motion spheres collide or not (see
Equation 4). In Figure 6 this corresponds to the test between
MB and MC . Finally, the lookup table (scfree) denotes if a
motion node is self-collision free or not (see Equation 12).
This lookup table is used in the third step of the algorithm
and is a conjunction of all tests which the algorithm would
perform. Mathematically, this can be described as follows:

baseij =

 true, range of motion hulls of Ri

and Rj are collision free
false, otherwise

(1)

partsi = {k |Rk is part of subchain of Mi } (2)

rigidij =
∧

∀k∈partsj

baseik (3)

motionij =
∧

∀(l,k)∈partsi×partsj

baselk (4)

rCi = k,Rk is child node of MRi (5)
mCi = {k |Mk is child of MRi } (6)

mCCi =
{

k

∣∣∣∣ k ∈ mCj ∧ l ∈ mCi∧
MRj is child of Ml

}
(7)

mrCi = {k |MRk is child of Ml ∧ l ∈ mCi } (8)

ri =
∧

k∈mCCi

rigidrCik (9)

mi =
∧

k,l∈mCi∧k 6=l

motionkl (10)

si =
∧

k∈mrCi

scfreek (11)

scfreei = ri ∧ mi ∧ si (12)

If convex hulls are used of discretely sampled swept joint
volumes, there will be an underestimation error from the true
swept volume. However, an upper bound on this hull underes-
timation error can be approximated. Sampling all considered
joints by α results in a maximum error eα = r ·

(
1 − cos

(
α
2

))
as illustrated in Figure 7. Thus, two α-sampled convex hulls
are collision free if their distance d > 2 · eα.

V. COMPACT SPHERE CONSTRUCTION

In this section, we provide a detailed description of our
compact sphere construction algorithm. As described in Sec-
tion II-B we adopted the condition that every parent sphere
must completely contain only the vertices of the underlying

Fig. 7. Estimation of the upper bound error value.

link geometry contained by its children, rather than all in-
termediate sphere volumes. Algorithm 1 shows pseudocode
for computing compact sphere radii using methods similar to
[26] and [27]. During the Initialization stage, the algorithm
computes a compact sphere containing the first two vertices.
While executing the loop, the algorithm tests whether a vertex
is already contained by the compact sphere or not (line 10).
The loop ends if all vertices are contained. If a vertex is
not contained within the current sphere, the sphere must be
updated (line 12 and 13) to include it.

Algorithm 1: CompactSphereConstruction(P)
Data: Pi = {V1, ..., Vni

} convex polygon,
P = {P1, ..., PN} set of polygons,
V = ∪Pi∈P Pi set of all vertices
Result: compact sphere S = (c, r), c ∈ R3, r ∈ R
Initialization:
U = ∅1

choose v1, v2 ∈ V2

V = V \ {v1, v2}3

U = U ∪ {v1, v2}4

c = 1
2 · (v1 + v2)5

r = EuclDist(c, v1)6

Loop:
while V 6= ∅ do7

choose v ∈ V8

V = V \ {v}9

if EuclDist(v, c) > r then10

max = arg (maxu∈U (‖v − u‖))11

c = Update(c, v, max)12

r = EuclDist(c, v)13

end
U = U ∪ {v}14

end
return (c, r)15

Pseudocode for the update method is shown in Algorithm 2.
The purpose of this method is to compute a new location
for the compact sphere center. First, we consider the triangle
formed by the three points ~c, ~v and ~max, and compute
the projection of the midpoint of the longest edge onto the
opposing edge as illustrated in Figure 2(b). This point ~d

becomes the new location for the center of the compact sphere.

Algorithm 2: Update(c, v, max)

Data: c ∈ R3 sphere’s old center point,
v ∈ R3 vertex not contained by the sphere,
max ∈ R3 used vertex with biggest distance to v
Result: c ∈ R3 sphere’s new center point
offset = 1

2 · (max + v)1

temp =DotProduct(c−v
‖c−v‖ , max−v

‖max−v‖)2

if temp ∈ (0, 1) then3

n = c−v
‖c−v‖ − temp · max−v

‖max−v‖4

if n · (c − offset) < 0 then5

n = −n6

end
temp =Length(n)7

Normalize(n)8

temp = temp
1−temp29

c = offset + 1
2 · ‖max − v‖ · temp · n10

else
c = 1

2 · (c + v)11

end
return c12

VI. RESULTS

Our algorithms were tested on a wide variety of different
models and scenarios. Due to space limitations, only selected
results are presented. The kitchen environment (Figure 8)
involves more than 95,000 triangles (the humanoid robot
ARMAR is modeled with 16,440 triangles).

Query Time: Our compact sphere construction method
results in smaller overall volumes for the sphere-trees, and
hence yields lower overal distance computation times due
to the smaller probability of overlapping. Figure 9(a) shows
the percentage of additional computation time needed for
the greedy method compared to the compact method. For
measuring the performance, we used two cubes and computed
multiple distance queries across different separating distances.
Two different error tolerance (α) values were used: 0% and
30%. The higher error threshhold results in faster distance
computation for the compact sphere trees compared to the
greedy ones. Thus, as the distance gets smaller, the additional
node traversals that must be performed increases, resulting
in approximately the same performance for both combination
methods.

Distance Range Value Effects: Results for self-collision
detection with different maximum distance cutoff values for
ARMAR are shown in Figure 9(b). Utilizing the maximum
value increases the performance of the algorithm not only
for values smaller than the real distance, but also for higher
values. The same performance improvement can be noticed
for collision detection between ARMAR and the kitchen
environment obstacles, as the lower cutoff value will quickly
prune away distant objects.

Fig. 8. The kitchen environment with ARMAR.

The effect of changing the minimum distance value is
illustrated in Figure 10(a). As soon as the current bound on
the distance between ARMAR and the kitchen gets smaller
than the minimum safety margin (here: 10mm), our algorithm
directly reports a collision situation. Without the minimum
distance cutoff, the computation would take much longer, due
to the fact that for small inter-object distances, typically many
triangle leaf nodes must be evaluated and considered in order
to determine the exact true minimum distance.

Error Tolerance: Both Figure 10(a) and Figure 10(b)
illustrate the effect of error tolerance. Figure 10(a) shows the
resulting time and distance for collision detection of ARMAR
with the kitchen environment. Figure 10(b) shows the results
for self-collision detection of ARMAR. Utilizing a larger
error tolerance improves the performance of the collision
detection algorithm considerably. Particularly in the case of
self-collision detection, a larger error tolerance results in a
much faster distance computation.

VII. CONCLUSION

We have presented new techniques for efficient self-collision
detection and minimum distance queries for articulated struc-
tures of arbitrary 3D meshes. We build compact sphere-
tree hierarchies that optimize the locations of the sphere
centers and radii to produce bounding volumes that more

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14

op
tim

al
 :

gr
ee

dy
 (

in
 %

)

real object distance

time differences depending on construction method

0% error accepted
30% error accepted

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600 700 800 900 1000
 0

 50

 100

 150

 200

 250

tim
e

(in
 s

ec
on

ds
)

di
st

an
ce

 (
in

 m
m

)

maximum distance of interest (in mm)

time and distance differences depending on maximum distance

time
distance

(b)

Fig. 9. Elapsed time difference for the two construction methods (left), and
the effect of the maximum distance range maxd (right).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

tim
e

(in
 s

ec
on

ds
)

di
st

an
ce

 (
in

 m
m

)

accepted error (in %)

time and distance differences depending on accepted error

time
distance

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 50

 100

 150

 200

 250

tim
e

(in
 s

ec
on

ds
)

di
st

an
ce

 (
in

 m
m

)

accepted error (in %)

time and distance differences depending on accepted error

time
distance

(b)

Fig. 10. Performance for various minimum distance range values (left), and
for various error tolerance threshholds (right).

tightly approximate the underlying geometry. We improve
the distance computation efficiency through the use of a
distance range interval, transformation caching, and exploiting
our compact sphere tree hierarchies. Finally, we extend and
improve the applicability of the algorithm for self-collision
detection and obstacle minimum distance computation for
articulated structures using range of motion hulls. Exploring
additional computational improvements and more detailed
analysis form the basis of our future work.

ACKNOWLEDGMENTS

This work has been partly performed in the framework of the interACT
exchange program between Carnegie Mellon University and the University of
Karlsruhe and the German Humanoid Robotics Program SFB 588 funded by
the German Research Foundation (DFG: Deutsche Forschungsgemeinschaft).
We thank the anonymous reviewers for their helpful suggestions.

REFERENCES

[1] T. Asfour, K. Berns, and R. Dillmann, “The humanoid robot ARMAR:
Design and control.” in The 1st IEEE-RAS International Conference

on Humanoid Robots (HUMANOIDS 2000), MIT, Boston, USA, 7-8
September, 2000.

[2] G. van den Bergen, Collision Detection in Interactive 3 D Environments.
Morgan Kaufmann, 2003.

[3] P. Jimenez, F. Thomas, and C. Torras, “3d collision detection : A survey,”
Computers and Graphics, pp. 269 – 285, 2001.

[4] M. Lin and D. Manocha, “Collision and proximity queries,” Handbook
of Discrete and Computational Geometry, vol. 2, 2003.

[5] V. R. de Angulo, J. Cortés, and T. Siméon, “BioCD: An efficient
algorithm for self-collision and distance computation between highly
articulated molecular models.” Proceedings of Robotics: Science and
Systems, 2005.

[6] O. Brock, “Generation of robot motion: Integrating planning and exe-
cution,” Ph.D. dissertation, Stanford University, November 1999.

[7] D. Bertram, J. Kuffner, T. Asfour, and R. Dillmann, “An integrated
approach to inverse kinematics and path planning for redundant ma-
nipulators,” in Proc. IEEE Int’l Conf. on Robotics and Automation
(ICRA’06), May 2006.

[8] G. Zachmann, “Minimal hierarchical collision detection,” Virtual Reality
Software and Technology, pp. 121 – 128, 2002.

[9] S. Gottschalk, “Collision Queries using Oriented Bounding Boxes,”
Ph.D. dissertation, The University of North Carolina, 2000.

[10] S. Gottschalk, M. C. Lin, and D. Manocha, “Obbtree: A hierarchical
structure for rapid interference detection,” International Conference on
Computer Graphics and Interactive Techniques, vol. 23, pp. 171 – 180,
1996.

[11] P. M. Hubbard, “Approximating polyhedra with spheres for time-critical
collision detection,” ACM Transactions on Graphics (TOG), vol. 15,
no. 3, pp. 179 – 210, 1996.

[12] G. Bradshaw, “Bounding Volume Hierarchies for Level-of-Detail Colli-
sion Handling,” Ph.D. dissertation, PhD thesis, Trinity College Dublin,
2002.

[13] G. Bradshaw and C. O’Sullivan, “Sphere-tree construction using medial-
axis approximation,” ACM SIGGRAPH Symposium on Computer Ani-
mation SCA, 2002.

[14] ——, “Adaptive medial-axis approximation for sphere-tree construc-
tion,” ACM Transactions on Graphics (TOG), vol. 23, no. 1, pp. 1–26,
2004.

[15] ——, “Adaptive medial-axis approximation for sphere-tree construc-
tion,” ACM Transactions on Graphics (TOG), vol. 23, no. 1, pp. 1 –
26, 2004.

[16] M. J. et al, “Fast and accurate collision detection based on enclosed
ellipsoid,” Robotica, vol. 19, no. 4, pp. 381 – 394, 2001.

[17] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” Department of Computer Science,
University of N. Carolina, Chapel Hill, Tech. Rep., 1999.

[18] S. A. Ehmann and M. C. Lin, “Accurate and fast proximity queries
between polyhedra using surface decomposition,” in Computer Graphics
Forum (Proc. Eurographics 2001), 2001.

[19] S. Cameron, “Enhancing GJK: Computing minimum and penetration
distances between convex polyhedra,” in Proc. IEEE Int’l Conf. on
Robotics and Automation (ICRA’97), Apr. 1997, pp. 3112 – 3117.

[20] B. Mirtich, “VClip: Fast and robust polyhedral collision detection,” ACM
Transactions on Graphics, vol. 17, no. 3, pp. 177 – 208, July 1998.

[21] S. Quinlan, “Efficient distance computation between non-convex ob-
jects,” Proc. IEEE Int’l Conf. on Robotics and Automation, pp. 3324 –
3329, 1994.

[22] ——, “Real-time modification of collision-free paths,” Ph.D. disserta-
tion, Stanford University, december 1994.

[23] J. Kuffner, K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, and
H. Inoue, “Self-collision detection and prevention for humanoid robots.”
in Proc. IEEE Int’l Conf. on Robotics and Automation (ICRA’02), May
2002, pp. 2265 – 2270.

[24] P. K. Agarwal, L. Guibas, A. Nguyen, D. Russel, and L. Zhang, “Col-
lision detection for deforming necklaces,” Computational Geometry:
Theory and Applications, pp. 137–163, 2004.

[25] D. Ruspini, K. Kolarov, and O. Khatib, “The haptic display of complex
graphical environments,” in Proc. ACM SIGGRAPH, 1997, pp. 345 –
352.

[26] E. Welzl, “Smallest enclosing disks (balls and ellipsoids),” New Results
and New Trends in Computer Science, pp. 359 – 370, 1991.

[27] K. Fischer and B. Gärtner, “The smallest enclosing ball of balls:
Combinatoreal structure and algorithms,” International Journal of Com-
putational Geometry and Applications, august 2004.

