
Synthesizing Goal-Directed Actions from a Library
of Example Movements

Aleš Ude∗†, Marcia Riley¶, Bojan Nemec∗, Andrej Kos∗, Tamim Asfour‡ and Gordon Cheng†§

∗Jožef Stefan Institute, Dept. of Automatics, Biocybernetics and Robotics
Jamova 39, 1000 Ljubljana, Slovenia

†ATR Computational Neuroscience Laboratories, Department of Humanoid Robotics and Computational Neuroscience
2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan

‡University of Karlsruhe, Institute of Computer Science and Engineering
c/o Technologiefabrik, Haid-und-Neu-Str. 7, 76131 Karlsruhe, Germany

§Japan Science and Technology Agency, ICORP Computational Brain Project
4-1-8 Honcho, Kawaguchi, Saitama, Japan

¶Georgia Institute of Technology, College of Computing
Atlanta, Georgia 30332–0250, USA

Abstract— We present a new learning framework for syn-
thesizing goal-directed actions from example movements. The
approach is based on the memorization of training data and
locally weighted regression to compute suitable movements for a
large range of situations. The proposed method avoids making
specific assumptions about an adequate representation of the
task. Instead, we use a general representation based on fifth
order splines. The data used for learning comes either from the
observation of events in the Cartesian space or from the actual
movement execution on the robot. Thus it informs us about the
appropriate motion in the example situations. We show that
by applying locally weighted regression to such data, we can
generate actions having proper dynamics to solve the given task.
To test the validity of the approach, we present simulation results
under various conditions as well as experiments on a real robot.

I. INTRODUCTION

Humanoid robotics has dealt with the problem of learning
complex humanoid behaviors for a long time. It was soon real-
ized that to overcome problems arising from high dimensional
and continuous perception-action spaces, it is necessary to
guide the search process, thus effectively reducing the search
space, and also to develop higher-level representations suitable
for faster learning. To achieve these goals, researchers in sen-
sorimotor learning have explored various solutions. Some of
the most notable among those are learning from demonstration
(or imitation learning) and motor primitives.

Building on the large body of work by the computer
graphics community, it has been shown that motion capture
technology can be used to generate complex humanoid robot
motions that may require a great deal of skills and practicing
to be realized, e. g. dancing [11], [18], [19]. Techniques to
adapt the generated movements with respect to various robot
constraints have also been proposed [10], including more com-
plex constraints such as self-collision avoidance and balancing
of a free standing dancing robot [8], [14]. Dynamics filter

that can create a physically consistent motion from motion
capture data has also been proposed [22]. While these works
can overcome the problem of different embodiments of the
robot and the demonstrator, they do not deal with the effects
of motion acting on the external world. Different methods are
needed to adapt the captured motions to the changes in the
external world and synthesize goal-directed actions, such as
in the case of object manipulation tasks.

In tasks involving the manipulation of objects, it is neces-
sary to adapt the observed movements to the current state of
the 3-D world. For any given situation, it is highly unlikely
that an appropriate movement would be observed in advance
and included in the library. While many tasks can be learned
assuming a proper representation for the physics of the task,
such an approach relies on a priori knowledge about the
action and therefore does not solve the complete learning
problem. To avoid specifying the physical model of the task,
Miyamoto et al. [9] based their methodology on programming
by demonstration and derived a representation for optimal tra-
jectories, which they referred to as via-points. They were able
to teach a robotic arm a fairly difficult game of Kendama and
tennis serves. Schaal et al. [5], [17] proposed a more general
nonparametric approach based on nonlinear dynamic systems
as policy primitives. They developed canonical equations for
rhythmic and discrete movements and demonstrated that these
systems can be used to learn tasks such as tennis strokes
and drumming. Hidden Markov models (HMMs) are another
popular methodology to encode and generalize the observed
movements [1], [3], [6]. While techniques that enable the
reproduction of generalized movements from multiple demon-
strations have been proposed, generalization across movements
to attain an external goal of the task is not central to these
works. HMMs, however, can be used effectively for motion
and situation recognition [6] and to determine which control
variables should be imitated and how [3].

Fig. 1. Human demonstration of the ball throw, unsuccessful direct reproduction on a humanoid robot, and a successful action execution after coaching

The computer graphics community has also studied human
motion synthesis from example movements. The most com-
mon approach is to generalize across a number of movements
by linear interpolation, like e. g. [21]. If done correctly, such an
approach results in physically correct movements under many
circumstances [15]. Rose et al. [13] represent the motions by
B-splines and use radial basis functions to interpolate between
the control points of B-Splines. Automatic re-timing of the
captured movements based on registration curves has also
been considered [7]. Most of the early works dealt with the
intepolation of relatively short movements, but interpolation
of longer action sequences is also possible as shown in [16].
While these works address many problems relevant to the
robotics community, their main aim is to generate realistic
computer animations. Our focus, however, is to show that
movement interpolation can generate actions that can change
the external world in such a way that the goal of an action
is attained. In order words, we focus on the synthesis of
goal-directed actions and how to make action synthesis from
example movements applicable for the implementation on a
real robotic system.

In the following we propose a new movement generalization
methodology based on locally weighted regression [2]. The
goal of an action is used to index into the library of stored
movements. We also briefly deal with different approaches that
can be applied to generate a suitable movement library. We
show both in simulation and on a real robot that the proposed
approach can be used to synthesize goal-directed actions. As a
test example we use the task of throwing a ball into a baskett,
which has the advantage that its physics is well understood
and we can thus compare our results with an ideal system.

II. COLLECTING THE EXAMPLE MOVEMENT LIBRARY

As mentioned in the introduction, motion capture has been
used successfully to generate fairly complex movements on a

humanoid robot. However, direct reproduction of movements,
even if it includes the physical constraints of a robot, rarely
results in a successful execution of the task that involves
external goals. In the throwing example of Fig. 1, the direct
reproduction ended up in a throw that missed the basket
(middle row of figures). Moreover, the execution of the
throwing movement was suboptimal in many other ways such
as for example timing of the ball release and smoothness. It
was therefore necessary to develop a methodology to adapt
the initial robot motion. In our previous work, we explored
the coaching paradigm to solve these problems. Coaching
provides a familiar setting to most people for interacting
with and directing the behavior of a complex humanoid robot
where human-robot communication takes the form of coach’s
demonstrations and high-level qualitative instructions. In this
way it is possible to generate throwing movements that result
in successful throws with good dynamical properties, which
are suitable for generalization. See [12] for more details.

There are other ways than coaching to adapt captured move-
ments to attain the goal of the task in a given situation. The via-
point representation based on the forward-inverse relaxation
neural network model (FIRM) [20] is one of them. Via points
are extracted sequentially by taking the first two via-points
to be the end-points of the movement and interpolating the
movement using the minimum principle for the approximated
dynamics model (point mass), which results in a minimum
jerk trajectory (fifth order polynomial). New via-points are
determined by calculating the distance between the observed
and interpolated trajectory and adding the via-points at the
point of the maximum squared error until the error is small
enough. Hovewer, the movement generated by the final set
of via-points still cannot ensure the successful execution of
the task. It was therefore proposed to adapt the trajectory by
moving the via-points until the robot is successful [9]. This is

accomplished by constructing a function from via-points to the
task goal and by moving the via-points using a Newton-like
optimization method.

In certain situations, it is well possible that a skilled
engineer would be able to design optimal trajectories for some
situations. The coaching paradigm described above just pro-
vides the technology that enables non-skilled people to design
”good” movements for learning. Thus, all these methods for
trajectories generation can be utilized for the construction of a
library of movements. The method we propose in the following
is independent of the data collection method1.

III. GENERALIZATION ACROSS MOVEMENTS

The data collection mechanisms described in the previous
section provide us with a set of movements M i, i =
1, . . . , NumEx, that were executed by the robot and suc-
ceeded to accomplish the goal of the task in the observed situ-
ations. We denote the goals by qi ∈ Rm, i = 1, . . . , NumEx.
In the case of throwing a ball into a basket, the goals {qi} are
specified by the positions of the basket. Every movement M i

is encoded by a sequence of trajectory points pij at times
tij , j = 1, . . . , ni. We have experimented both with end-
effector trajectories (in this case pij are points in the Cartesian
space) and with robot joint trajectories (in this case pij are
the joint angles stemming from the active degrees of freedom).
Our aim is to develop a method that can compute motions that
attain the goal of the task for any given query point (goal) q.

To find a representation for the desired movements, we
follow [9], [20] and represent the trajectories by fifth order
splines. Due to their local support property, we chose B-splines
[4] to implement the spline functions, which results in the
following representation

M(t) =
∑

k

bkBk(t), (1)

where Bk are the basis functions from the selected B-spline
basis.

A. Determination of Basis B-Spline Functions
We adapted the via-point approach of [9] to find a good

spline basis. Unlike [9], which deals with only one example
movement, we need to consider multiple examples. We there-
fore introduce what we call common knot points. Common
knot points are extracted sequentially as follows:

1) First all trajectories are time-scaled to interval [0, 1].
The duration of every movement Ti is also stored
with each example. Without re-timing it is not pos-
sible to interpolate between the examples. See Sec-
tion III-C for more details on this issue. The initial
knot sequence for the fifth order spline is taken to be
K1 = {0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1}, which results in a
so called clamped spline. Clamped splines can be used to
calculate minimum jerk splines interpolating the desired
position, velocity, and acceleration at the end points (0

1However, a via-point like method is used to obtain a suitable representation
for goal-directed actions.

and 1). The initial spline basis consists of six basis
functions.

2) For every movement M i we determine the best approxi-
mating fifth order spline Sli with basis functions defined
by the current knot sequence Kl.

3) For all configurations (pij , sij), sij = tij/Ti, we
calculate the distance to the generated spline trajectories

elij = ‖pij − Sli(sij)‖. (2)

We select the knot point to be added to the existing knot
sequence at the point of the maximum squared error
elij between the example movements and the generated
spline trajectories. The new knot sequence is given by

Kl+1 = {0, . . . , sij , . . . , 1}. (3)

4) The procedure continues at step 2 (with l ← l +1) until
the difference between the example movements and the
generated spline trajectories becomes sufficiently small.

The above process is similar to the way Miyamoto et al. [9]
determine via-points. Its final result, the knot sequence KL,
is applied to define a spline that we use to synthesize goal-
directed actions.

B. Synthesizing New Actions
Given a goal q, we would like to find movement M(q)

that can attain this goal. Using the above representation we
can write

M(q) =
N∑

k=1

bk(q)Bk, (4)

where N is the number of B-spline basis functions defined by
the knot sequence KL. In computer graphics, new movements
are often synthesized by simply interpolating the splines
approximating the example movements [15]

M =
∑

i

wiM i. (5)

However, if the approximation by splines is not accurate,
such an approach can introduce undesired deformations in the
example movements, which can affect the synthesized actions.
We therefore studied other techniques such as locally weighted
regression [2] to generate movements for any given goal. Our
main motivation is that it is difficult to find global models that
are valid everywhere and that it is therefore better to look for
local models that are correct only in one particular situation,
but are easier to compute. In locally weighted regression, local
models are fit to nearby data. Its application results in the
following optimization problem

M(q) = arg min
b

{C(q)},

C(q) =
NumEx∑

i=1

ni∑

j=1

∥∥∥∥∥

N∑

k=1

bkBk(sij)− pij

∥∥∥∥∥

2

W (di(q,qi)) .

(6)
Here W is the weighting kernel function and di are the
distance functions between the query point and the data points

qi. The unknown parameters we minimize over are b =
[bT

1 , . . . , bT
N]T .

Since W (di(q,qi)) does not depend on the B-spline coeffi-
cients bk, the optimization problem (6) is a classic linear least
squares problem. It is, however, very large because it contains
all data points pij describing the example movements. Before
describing how to solve it, we define distance functions di

and the kernel function W. We take the weighted Euclidean
distance for di, i. e.

di(q,qi) =
1
ai
‖q− qi‖, ai > 0. (7)

It is best to select ai so that there is some overlap between
the neighboring query points. One possibility is

ai = 2min
j
‖qi − qj‖ (8)

By selecting ai in this way we ensure that as query points
transition from one data point to another, the generated move-
ments also transition between example movements associated
with the data points.

There are many possibilities to define the weighting function
W [2]. We chose the tricube kernel

W(d) =
{

(1− |d|3)3 if|d| < 1
0 otherwise (9)

This kernel has finite extent and continuous first and second
derivative. Combined with distance (7), these two functions
determine how much influence each of the example move-
ments M i has. It is easy to see that the influence of each M i

diminishes with the distance of the query point q from the
data point qi. If the data points qi are distributed uniformly
along the coordinate axes, then every new goal directed
movement M(q), q %= qi, will be influenced by 4m example
movements2, where m is the dimension of the query point.

Optimizing criterion (6) is nothing else but a linear least-
squares problem. Locally weighted regression combined with
the local support of B-spline basis functions results in sparse
linear least-squares problems that need to be solved to min-
imize criterion (6). Since only the weights and not the basis
functions depend on the query point q, the sparse system ma-
trix that needs to be formed to solve the optimization problem
can be precomputed in its entirety. Due to the finite extent of
the weighting function W , even many of the nonzero elements
of this sparse matrix become zero after weighting. We applied
the Matlab implementation of sparse matrix algebra to solve
the resulting linear problems, which enabled us to generate
new actions quickly despite the large number of trajectory
points pij . Another advantage of the proposed method is that
there is no need to search for nearby movments in the database;
locally weighted regression and sparse matrix algebra do this
job.

2Exception are the movements at the edge of the training space.

C. Re-Timing of the Generated Actions

To interpolate between example movements, we needed to
first scale the timing of all trajectories to a common interval,
which we chose to be [0, 1]. This scaling, however, causes
the velocities and accelerations of both the example move-
ments and the synthesized actions to be scaled. To synthesize
movements with proper velocities and accelerations – which
is essential to solve dynamic tasks – we need to rescale
the resulting actions back to the original time interval. As
described in Section III-A, the timing of each example motion
M i is scaled by 1/Ti, where Ti is the duration of the example
movement. Hence to re-time the synthesized action, we need
to compute an estimate for the expected time duration T .

For this purpose, we approximate the expected timing by
a multivariate B-spline function ft : Rm → R, which is
estimated by minimizing the following criterion

NumEx∑

i=1

(ft(qi)− Ti)
2 . (10)

In our experiments we defined a B-spline basis by uniformly
subdiving the domain of the goal points qi. A suitable timing
for the synthesized action is then given by

T = ft(q) =
M∑

i=1

aiBi(q). (11)

Finally, the correctly timed trajectories for the synthesized
actions obtained by minimizing criterion (6) can be calculated
by mapping the knot points KL = si to the new knot sequence
K ′

L

K ′
L = {0, . . . , T ∗ si, . . . , T}. (12)

The optimal coefficients bk(q) remain unchanged and the
spline with these coefficients defined on the knot sequence
K ′

L specifies an action with appropriate velocities and accel-
erations.

It should be noted here that uniform scaling might not
be suitable for every task. In some situations it might be
more appropriate to segment the example movements and
apply different scaling factors to different time intervals.
Here matching of key events is crucial for good results [15].
Computer graphics community has proposed some approaches
to automatically resolve this problem [7], [13]. Since the
task considered in this paper does not require nonuniform
scaling, we did not attempt to develop more complex re-timing
methods here.

IV. EXPERIMENTAL RESULTS

We validated our approach both in simulation and on the real
robot. As a test example we considered the task of throwing
a ball into a basket, which has the advantage that it is a
dynamic task, dependent not only on the positional part of
the movement, and that its physics is well understood. This
allows us to compare our results with an ideal system. It can
easily be shown that the trajectory of the ball after the release

is fully specified by the position and velocity at the release
point

x = x0 + v0t cos(α), y = y0 + v0t sin(α)− gt2

2
, (13)

where (x0, y0) is the release point, v0 is the linear velocity of
the ball at release time and α is the initial angle of the throw.
We considered the problem where the target basket is placed
in xy-plane. Note that a humanoid robot could normally turn
towards the basket, thus solving this problem allows the robot
to throw the ball to any position in space.

A. Simulation Results
For the interpolation to work, the style of example move-

ments must be similar. Interpolation between movements that
have nothing in common would not results in sensible actions.
To generate examples that can be used for action synthesis,
we used Eq. (13) to design Cartesian space trajectories that
theoretically result in successful throws for a given basket
position. The base of the robot, which was taken to be a seven
degrees of freedom arm, was fixed in space. The designed
trajectories consisted of circular and linear parts. From a given
basket position, we determined a suitable release point and by
specifying the desired angle under which the ball should fall
into a basket (taken to be 60 degrees), a good trajectory for
each situation could be calculated. We distributed the goal
basket positions within a rectangular area of size 4× 2 meter
squares, with the lower left corner positioned at (1.2, 0.1)
meters. The base of the robot was placed at (−0.5, 0.1) meters.
Fig. 2 shows the velocity profiles of the movements generated
by specifying a grid in thin rectangular area with baskets
placed every 0.5 meters (altogether 45 basket positions). We
used inverse kinematics to generate example trajectories in
joint space.

By specifying different grid sizes for training (we took grid
side lenghts of 0.25, 0.5, and 1 meter, which resulted in 15,
45, and 153 example movements within the training area), we
tested how many example movements are necessary to throw

0 200 400 600 800 1000 1200
!1

0

1

2

3

4

5

6

7

8

9

Time (milliseconds)

V
e
lo

c
it
ie

s
 (

m
/s

e
c
)

Fig. 2. Cartesian velocities of example movements

0.5

1

1.5

2

1

2

3

4

5

0

0.05

0.1

0.15

y position (m)x position (m)

e
rr

o
r

(m
)

Fig. 3. The throw error. The graph corresponds to the condition of Tab. I
with grid size 50× 50, joint space synthesis. The error is larger at the edges
of the training area where less data is available for synthesis.

a ball anywhere within the training area with good precision.
Tables I and II show the errors in the synthesized throws. They
were calculated by using Eq. (13) to determine the ball flight
trajectory after release. All values in the tables are given in
centimeters. The density of the training data is specified by
the grid size (rightmost column). Since the error was smaller
away from the edges of the library (see Fig. 3), we estimated
the error in the complete training area and in the area reduced
by the side length of the grid along the edges. In Tab. I the
data points pij used in (6) consisted of both positions and ve-
locities3, which were approximated by the spline functions. In
Tab. II the data points pij consisted of positional information
only. To test the method we evaluated the throws by applying
a grid of 2.5×2.5 centimeter squares, which resulted in 13041
test throws for every training condition.

Both tables show that the accuracy of the ball throw
is significantly improved when more data is available. We

3Formula (6) is valid for positional information only, but extension to
velocities and accelerations is straightforward and does not significantly
change the linear system that needs to be resolved.

0

2

4

6 0

0.5

1

1.5

2

2.5

0.2

0.4

0.6

0.8

1

y position (m)
x position (m)

ti
m

e
 (

s
e

c
)

Fig. 4. Spline function approximating the release times of the movements
with respect to the basket position

TABLE I
ERRORS IN THE SYNTHESIZED THROWS (IN CENTIMETERS). SEE TEXT

FOR THE EXPLANATION.

Joint space Cartesian space Grid size

Training area Full Reduced Full Reduced

Average error 2.18 1.52 1.70 1.28 25× 25

Max. error 10.39 5.79 9.63 4.67 25× 25

Average error 2.72 1.75 2.25 1.40 50× 50

Max. error 12.57 7.08 13.79 6.01 50× 50

Average error 10.15 7.03 9.85 6.37 100× 100

Max. error 38.97 15.27 37.71 13.23 100× 100

TABLE II
ERRORS IN THE SYNTHESIZED THROWS WITHOUT INCLUDING

VELOCITIES IN THE DATA (IN CENTIMETERS). SEE TEXT FOR THE

EXPLANATION.

Joint space Cartesian space Grid size

Training area Full Reduced Full Reduced

Average error 2.25 1.50 2.25 1.60 25× 25

Max. error 10.03 4.89 9.69 4.58 25× 25

Average error 2.41 1.54 2.43 1.61 50× 50

Max. error 13.35 6.17 13.77 5.91 50× 50

Average error 10.39 6.55 10.23 6.40 100× 100

Max. error 38.31 13.34 37.78 12.94 100× 100

140 150 160 170 180 190 200 210
0

1

2

3

4

5

6

7

8

9

10

Distance (cm)

E
rr

o
r

(c
m

)

Fig. 5. Accuracy of the learned throwing action executed by the robot

achieved average precision between 1 and 2.5 cm for the
two finer grids. Hence, 45 training examples were enough for
an average precision of below 2 cm within the reduced area.
The comparison of Tab. I and II also shows that the explicit
addition of velocity information did not improve the throwing
precision. We believe that the main reason for this is that our
data was simulated at a typical robot servo rate of 500 Hz,
hence enough data was available to estimate the velocities
from positional information. For sparser data the addition of
velocity and acceleration will become more important.

We applied the proposed approach to the data collected in
both the Cartesian and the joint space. Tab. I and II show that
in most but not all cases the precision was slightly better when
using the Cartesian space data. However, the differences were
so small that we consider both types of data equally suitable.

The improvement with denser training data was much more
significant when moving from the grid size of 1×1 to 0.5×0.5
meter squares than when moving to the grid size of 0.25×0.25.
The main reason was that the estimation of the timing function
ft of Section III-C (see Fig. 4) used the same set of basis
functions to form the approximating spline in all cases. Thus
when the grid size was reduced, the inaccuracies in the timing
function started to dominate and the throwing precision did
not improve any further. This shows the importance of the

0 100 200 300 400 500 600 700
!1.5

!1

!0.5

0

0.5

1

1.5

time (milliseconds)

v
e

lo
c
it
ie

s
 (

m
/s

e
c
)

Fig. 6. Cartesian velocities of generated robot movements for throws into a
basket positioned at 1.4, 1.45, 1.5, ... 2.1 meters

proper estimation of timing.
Our results demonstrate that albeit the system was not

provided with the model of the task, it managed to learn
how to throw the ball with high precision using no other
information but the example movements and the associated
basket positions.

B. Robot Experiments
We used a humanoid robot arm with seven degrees of free-

dom for our first real-world action synthesis experiments. We
used five training examples (taken at 1.37, 1.63, 1.77, 1.98, and
2.18 meters) to train the throwing behavior along the line from
1.4 to 2.1 meters. Fig. 5 shows the accuracy of the synthesized
throws. The average error was 3.36 centimeters. The training
had to be done in the joint space because the robot can not
follow Cartesian space trajectories with sufficient accuracy.
Also, it is important to use the desired joint trajectories and not
the actual joint trajectories for training, so that the synthesized
actions directly relate to the actual robot commands. Our
results show that locally weighted regression provides us with
the ability to synthesize goal-directed actions directly from the
data instead of first approximating the example movements by

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
220

225

230

235

240

245

250

255

distance (meters)

re
le

a
s
e

 t
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Fig. 7. Spline function approximating the release times (blue) and release
times of the example movements (red)

spline functions and then interpolating the coefficients of the
approximating splines,

Fig. 6 depicts the velocities of robot hand movements in
xy−plane of the Cartesian space. These velocities are different
from the velocities of example simulated movements in Fig.
2 because we used different types of throws in these two
examples. Nevertheless, both figures show a typical smooth
transition between movements as the target position moves
in space. Finally, Fig. 7 shows the spline approximating
the release point timings. Again, the form of the spline is
somewhat different from the simulated spline of Fig. 4, but
both splines exhibits smooth transition of release times as the
basket position changes.

V. CONCLUSION

The most important result of this paper is that dynamic
goal-directed actions can be synthesized by applying locally
weighted regression to the library of example movements,
where each of the example movements is known to fulfil the
task in one particular situation. We showed how to connect
action synthesis with techniques such as coaching and pro-
gramming by demonstration, which enables us to acquire the
example library. Our experiments demonstrate that we can
achieve fairly accurate results without providing the system
with models about the dynamics of the task and without need-
ing to acquire an excessive amount of example movements.
Finally, we demonstrated that locally weighted regression is
suitable for synthesizing goal-directed actions directly from
the training data instead of first approximating the example
movements by spline functions and then interpolating the
approximating splines.

Our approach is by no means limited to ball throwing. It is
pretty straightforward to apply it to other discrete movements
such as reaching, catching, tennis strokes, etc. More work is
necessary to generalize the approach to rhythmic movements.
We believe, however, that such a generalization is possible by
utilizing closed splines instead of the clamped splines, which
we used to synthesize discrete movements in this paper.

REFERENCES

[1] T. Asfour, F. Gyarfas, P. Azad, and R. Dilmann, “Imitation learning of
dual-arm manipulation tasks in humanoid robots,” in Proc. IEEE-RAS
Int. Conf. Humanoid Robots, Genoa, Italy, December 2006, pp. 40–47.

[2] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learn-
ing,” AI Review, vol. 11, pp. 11–73, 1997.

[3] A. Billard, S. Calinon, and F. Guenter, “Discriminative and adaptive
imitation in uni-manual and bi-manual tasks,” Robotics and Autonomous
Systems, vol. 54, pp. 370–384, 2006.

[4] C. de Boor, A Practical Guide to Splines. New York: Springer-Verlag,
1978.

[5] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes
for learning motor primitives,” in Advances in Neural Information
Processing Systems 15, S. Becker, S. Thrun, and K. Obermayer, Eds.
Cambridge, Mass.: MIT Press, 2003, pp. 1547–1554.

[6] T. Inamura, I. Toshima, H. Tanie, and Y. Nakamura, “Embodied symbol
emergence based on mimesis theory,” Int. J. Robotics Research, vol. 23,
no. 4-5, pp. 363–377, 2004.

[7] L. Kovar and M. Gleicher, “Flexible automatic motion blending with
registration curves,” in Eurographics/ACM SIGGRAPH Symposium on
Computer Animation, 2003, pp. 214–224.

[8] S. Kudoh, T. Komura, and K. Ikeuchi, “Stepping motion for a human-
like character to maintain balance against large perturbations,” in Proc.
IEEE Int. Conf. Robotics and Automation, Orlando, Florida, 2006, pp.
2561–2567.

[9] H. Miyamoto, S. Schaal, F. Gandolfo, H. Gomi, Y. Koike, R. Osu,
E. Nakanao, Y. Wada, and M. Kawato, “A kendama learning robot based
on bi-directional theory,” Neural Networks, vol. 9, no. 8, pp. 1281–1302,
1996.

[10] N. S. Pollard, J. K. Hodgins, M. Riley, and C. G. Atkeson, “Adapting
human motion for the control of a humanoid robot,” in Proc. IEEE
Int. Conf. Robotics and Automation, Washington, DC, May 2002, pp.
1390–1397.

[11] M. Riley, A. Ude, and C. G. Atkeson, “Methods for motion generation
and interaction with a humanoid robot: Case studies of dancing and
catching,” in Proc. 2000 Workshop on Interactive Robotics and Enter-
tainment, Pittsburgh, Pennsylvania, April/May 2000, pp. 35–42.

[12] M. Riley, A. Ude, C. G. Atkeson, and G. Cheng, “Coaching: An
approach to efficiently and intuitively create humanoid robot behaviors,”
in Proc. IEEE-RAS Int. Conf. Humanoid Robots, Genoa, Italy, December
2006, pp. 567–574.

[13] C. Rose, B. Bodenheimer, and M. F. Cohen, “Verbs and adverbs:
Multidimensional motion interpolation using radial basis functions,”
Computer Graphics, Proc. SIGGRAPH ’96, pp. 147–154, August 1998.

[14] M. Ruchanurucks, S. Nakaoka, S. Kudoh, and K. Ikeuchi, “Humanoid
robot motion generation with sequential physical constraints,” in Proc.
IEEE Int. Conf. Robotics and Automation, Orlando, Florida, 2006, pp.
2649–2654.

[15] A. Safonova and J. Hodgins, “Analyzing the physical correctness of
interpolated human motion,” in Eurographics/ACM SIGGRAPH Sympo-
sium on Computer Animation, 2005, pp. 171–180.

[16] ——, “Construction and optimal search of interpolated motion graphs,”
in ACM Transactions on Graphics, 2007.

[17] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning movement
primitives,” in Robotics Research: The Eleventh International Sympo-
sium, P. Dario and R. Chatila, Eds. Berlin, Heidelberg: Springer, 2005,
pp. 561–572.

[18] A. Ude, C. G. Atkeson, and M. Riley, “Planning of joint trajectories
for humanoid robots using B-spline wavelets,” in Proc. IEEE Int. Conf.
Robotics and Automation, San Francisco, California, April 2000, pp.
2223–2228.

[19] ——, “Programming full-body movements for humanoid robots by
observation,” Robotics and Autonomous Systems, vol. 47, no. 2-3, pp.
93–108, 2004.

[20] Y. Wada and M. Kawato, “A neural network model for arm trajectory for-
mation using forward and inverse dynamics models,” Neural Networks,
vol. 6, no. 7, pp. 919–932, 1996.

[21] D. J. Wiley and J. K. Hahn, “Interpolation synthesis of articulated figure
motion,” IEEE Computer Graphics and Applications, vol. 17, no. 6, pp.
39–45, 1997.

[22] K. Yamane and Y. Nakamura, “Dynamic filter – Concept and imple-
mentation of online motion generator for human figures,” IEEE Trans.
Robotics Automat., vol. 19, no. 3, pp. 421–432, 2003.

