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Aleš Ude
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Abstract

In this paper we study object recognition on a hu-
manoid robotic head. The head is equipped with a
stereo vision system with two cameras in each eye,
where the cameras have lenses with different view an-
gles. Such a system models the foveated structure of a
human eye. To facilitate the pursuit of moving objects,
we provide mathematical analysis that enables the robot
to guide the narrow-view cameras toward the object of
interest based on information extracted from the wider
views. Images acquired by narrow-view cameras, which
produce object images at higher resolutions, are used
for recognition. The proposed recognition approach is
view-based and is built around a classifier using non-
linear multi-class support vector machines with a spe-
cial kernel function. We show experimentally that the
increased resolution leads to higher recognition rates.

1 Introduction

Designers of a number of humanoid robots at-
tempted to replicate human oculomotor system. For the
optical part, this means that the optics should model the
foveated structure of the human eye and allow simulta-
neuos processing of images of varying resolution. For
the motor part, this means that the head must have suf-
ficent mobility to perform typical eye movements such
as smooth pursuit and saccades. Such an arrangement
is useful because, firstly, it enables the robot to mon-
itor and explore its surroundings in wide-angle views
that contain most of the environment at low resolution,
thereby increasing the efficiency of the search process.
Secondly, it makes it possible to simultaneously extract
additional information – once the area of interest is de-
termined – from narrow-angle camera images that con-
tain more detail. This kind of system is especially useful

Figure 1. An example humanoid head
(left). The narrow-angle cameras are posi-
tioned above the wide-angle ones. On the
right are the images simultaneously taken
from the wide- and narrow-angle view.

for object recognition on a humanoid robot. General ob-
ject recognition is difficult because it requires the robot
to detect objects in dynamic environments and to con-
trol the eye gaze to get the objects into the fovea and to
keep them there. These tasks can be accomplished us-
ing information from wide-angle views, which enables
the robot to determine the identity of the object by pro-
cessing narrow-angle views.

There are various ways to construct humanoid vision
system in hardware. The approach we followed is is to
use two cameras in each eye equipped with lenses with
different focal lengths [1, 4, 5]. This has the advantage
of allowing us to use small-form cameras for the con-
struction of the head.

2 Wide- and Narrow-Angle Views

The humanoid head of Fig. 1 has narrow-angle cam-
eras rigidly connected to the wide-angle cameras and
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placed above them with roughly aligned optical axes. In
the following we show that objects can be placed in the
central field of view of narrow-angle cameras by bring-
ing them to a certain position in the wide views. This
position is displaced from the center of wide-angle cam-
era images. The necessary displacement depends on the
distance of the object from the cameras.

For theoretical analysis, we model both cameras by
a standard pinhole camera model. The relationship be-
tween a 3-D point M = [X,Y, Z]T and its projection
m = [x, y]T is given by

sm̃ = AM̃ , A =

 α γ x0

0 β y0
0 0 1

 . (1)

where M̃ = [MT , 1]T , m̃ = [mT , 1]T are both points
in homogeneous coordinates, s is an arbitrary scale fac-
tor, and (α, β, γ, x0, y0) are the intrinsic parameters of
the camera. The world coordinate system is assumed
to coincide with the camera coordinate system. In the
following we assume without loss of generality that the
origin of the image coordinate system coincides with
the principal point (x0, y0), thus x0 = y0 = 0.

Let t̂ be the position of the origin of the wide-angle
camera coordinate system expressed in the narrow-
angle camera coordinate system and let R̂ be the ro-
tation matrix that rotates the basis vectors of the wide-
angle camera coordinate system into the basis vectors of
the narrow-angle camera coordinate system. We denote
by Mn and Mw the position of a 3-D point expressed
in the narrow- and wide-angle camera system, respec-
tively. We then have

Mw = R̂(Mn − t̂). (2)

The projections of a 3-D point Mn = (X,Y, Z) onto
the planes of both cameras are given by

xn =
αnX + γnY

Z
, (3)

yn =
βnY

Z
, (4)

and

xw =
αwr1 · (Mn − t̂) + γwr2 · (Mn − t̂)

r3 · (Mn − t̂)
, (5)

yw =
βwr2 · (Mn − t̂)
r3 · (Mn − t̂)

, (6)

where r1, r2, and r3 are the rows of the rotation matrix
R̂ =

[
rT1 rT2 rT3

]T
. Mn projects onto the prin-

cipal point in the narrow-angle camera if xn = yn = 0.
Assuming that the point is in front of the camera, hence

Z > 0, we obtain from Eq. (3) and (4) thatX = Y = 0,
which means that the point must lie on the optical axis
of the narrow-angle camera. Inserting this into Eq. (5)
and (6), we obtain the following expression for the ideal
position (x̂w, ŷw) in the wide-angle camera image that
results in the projection onto the principal point in the
narrow-angle camera image

x̂w =
αwr1 · t̂ + γwr2 · t̂− (αwr13 + γwr23)Z

r3 · t̂− r33Z
,(7)

ŷw =
βwr2 · t̂− βwr23Z

r3 · t̂− r33Z
, (8)

where
[
r13 r23 r33

]T
is the third column of R̂.

Note that the ideal position in the periphery is indepen-
dent from the intrinsic parameters of the foveal camera.
It depends, however, on the distance of the point of in-
terest from the cameras.

Utilizing these formulas we can turn the eye gaze to-
wards the object and keep the object in the center of
narrow-angle cameras based on information from wide-
angle views. This is important because it is difficult to
move the cameras quick enough to keep the object in the
center of narrow-angle views. For this reason the object
can easily be lost from narrow-angle views. Therefore
it is advantageous to control the cameras using informa-
tion from wide-angle views.

3 Learning Object Representations

We developed an object tracking system [6] that al-
lows the robot to find objects of interest and locate them
in the images. Using the formulas described in Section
2 and stereo vision, the robot can apply the results of
the tracking process to center the object of interest in
the narrow-angle view, where the object image has rel-
atively high resolution. Since our tracker can estimate
both the location and scale of the object in the image,
we can warp, i. e. translate, rotate and scale along the
principal axes, the object images to a window of con-
stant size.

Our goal is to learn a view-based representation for
all available objects. To achieve this, it is necessary
to show the objects to the humanoid from all relevant
viewing directions. In computer vision this is normally
achieved by accurate turntables that enable the collec-
tion of images from regularly distributed viewpoints.
However, this solution is not practical for humanoid
robotics, where on-line interaction is often paramount.
We therefore explored whether it is possible to reli-
ably learn models from images collected while a hu-
man teacher randomly moves the object in front of the
robot. In this case the training process is started by a



teacher who moves the object to be learnt in front of the
robot. Snapshots from various viewpoints are collected
and processed. Warping the snapshots onto a window
of constant size ensures invariance against scaling and
planar rotations.

To ensure maximum classification performance, the
data is further processed before training a general clas-
sifier. Most modern view-based approaches character-
ize the views by ensembles of local features. We use
complex Gabor kernels to identify local structure in the
images. A Gabor jet at pixel x is defined as a set of
complex coefficients {Jx

j } obtained by convolving the
image with a number of Gabor kernels at this pixel.
The kernels are normally selected so that they sample
a number of different wavelengths kν and orientations
φµ. Wiskott et al. [7] proposed to use kν = 2−

ν+2
2 , ν =

0, . . . , 4, and φµ = µπ8 , µ = 0, . . . , 7, but this depends
both on the size of the incoming images and the image
structure. They showed that the similarity between the
jets can be measured by

S
(
{Jx
i }, {J

y
i }
)

=
aTx ∗ ay

‖ax‖‖ay‖
, (9)

where ax = [|Jx
1 |, . . . , |Jx

s |]T and s is the number
of complex Gabor kernels. This is based on the fact
that the magnitudes of complex coefficients vary slowly
with the position of the jet in the image.

Our system builds feature vectors by sampling Gabor
jets on a regular grid of pixels XG. At each grid point
we calculate the Gabor jet and add it to the feature vec-
tor. The grid points need to be parsed in the same order
in every image. The grid size used in our experiments
was 6 × 6, the warped image size was 160 × 120 with
pixels outside the enclosing ellipse excluded, and the
dimension of each Gabor jet was 40, which resulted in
feature vectors of dimension 16080. These feature vec-
tors were supplied to the SVM for training.

4 Nonlinear Multi-Class SVMs

Utilizing the similarity measure (9), we developed
a classifier for object recognition based on nonlinear
multi-class support vector machines. Nonlinear multi-
class support vector machines (SVMs) [2] use the fol-
lowing decision function

H(x) = arg max
r∈Ω

{
m∑
i=1

τi,rK(xi,x) + br

}
. (10)

Here x is the input feature vector to be classified (in our
case a collection of Gabor jets), xi are the feature vec-
tors supplied to the SVM training, τi,r, br are the val-
ues estimated by SVM training, and Ω = {1, . . . , N}

are the class identities (objects in our case). The feature
vectors xi with τi,r 6= 0 are called the support vectors.
The SVM training consists of solving a quadratic opti-
mization problem whose convergence is guaranteed for
all kernel functions K that fulfill the Mercer’s theorem.

The similarity measure for Gabor jets (9) provides a
good motivation for the design of a kernel function for
the classification of feature vectors consisting of Gabor
jets. Let XG be the set of all grid points within two
normalized images on which Gabor jets are calculated
and let JXG

and LXG
be the Gabor jets calculated in

two different images, but on the same grid points. A
suitable kernel function can be defined as follows

KG(JXG
, LXG

) =

exp
(
−ρ 1

M

∑
x∈XG

(
1− aTx∗b

T

x
‖ax‖‖bx‖

))
,

(11)

where M is the number of grid points in XG. This
function satisfies the Mercer’s condition [2] and can
thus be used for support vector learning. Parameter ρ
needs to be supplied experimentally.

5 Experimental Results

We used a set of ten objects to test the perfor-
mance of the developed recognition system on a hu-
manoid robot. For each object we recorded two or more
movies using a video stream coming from the narrow-
angle cameras, which were controlled by information
acquired from wide-angle views. In each of the record-
ing sessions the teacher attempted to show one of the
objects to the robot from all relevant viewing directions.
One movie per object was used to construct the SVM
classifier, while one of the other movies was used to
test the classifiers. Each movie was one minute long
and we used at most 4 images per second for training.
Since slightly more than first ten seconds of the movies
were needed to initialize the tracker, we had at most 208
training images per object. For testing we used 10 im-
ages per second, which resulted in 487 test images per
object. All the percentages presented here were calcu-
lated using the classification results obtained from 4870
test images. Gabor jets were calculated as proposed by
Wiskott et al. [7] and the grid size was 6 pixels in both
directions. The filters were scaled appropriately when
using lower resolution images. To show the usefulness
of foveated vision for recognition, we tested the perfor-
mance of the system on images of varying resolution.
We also compared the developed SVM-based classifier
with the nearest neighbor classifier (NNC) that uses the
similarity measure (9) – summed over all grid points –
to deterrmine the class of the nearest neighbor by com-
paring Gabor jets directly.



Table 1. Correct classification rate (image
resolution 120× 160 pixels)

Training views per object SVM NNC

208 97.6 % 95.9 %

104 96.7 % 93.7 %

52 95.1 % 91.5 %

26 91.9 % 86.7 %

Table 2. Correct classification rate (image
resolution 60× 80 pixels)

Training views per object SVM NNC

208 94.2 % 89.3 %

104 92.4 % 87.3 %

52 90.7 % 84.4 %

26 86.7 % 79.2 %

Table 3. Correct classification rate (image
resolution 30× 40 pixels)

Training views per object SVM NNC

208 91.0 % 84.7 %

104 87.2 % 81.5 %

52 82.4 % 77.8 %

26 77.1 % 72.1 %

Results in Tables 1 - 3 prove that foveation is very
useful for recognition. The classification results clearly
become worse with the decreasing resolution. Our re-
sults also show that we can collect enough training data
even without using accurate turntables to systematically
collect the views. As expected the recognition rate de-
creases with the number of images, but we can conclude
that collecting the training views statistically is suffi-
cient to build models for 3-D object recognition.

The presented results cannot be directly compared
to the results on standard databases for benchmarking
object recognition algorithms because here the training
sets are much less complete. Some of the classification
errors are caused by the lack of training data rather than
by a deficient classification approach. Unlike many ap-
proaches from the computer vision literature that avoid
the problem of finding objects, we tested the system on
images obtained through a realistic object tracking and
segmentation procedure. Only such data is relevant for
foveated object recognition because without some kind
of segmentation it is not possible to direct the fovea to-
wards the objects of interest.

6 Conclusions

Our experiments demonstrate that by exploiting
the properties of a humanoid vision we can construct
an effective object recognition system. Wide-angle
views are necessary to search for objects, direct the
gaze towards them and keep them in the center of
narrow-angle views. Narrow-angle views provide
object images at a higher resolution, which signif-
icantly improves the recognition rate. Having both
views at the same time is essential. Most of previous
approaches that employed support vector machines for
object recognition used binary SVMs combined with
decision trees [3]. Our system makes use of nonlinear
multi-class SVMs to solve the multi-class recognition
problem. By normalizing the views with respect to
scale and planar rotations based on the results of the
tracker, we were able to reduce the amount of data
needed to train the SVMs. Object representations can
be learnt just by collecting the data statistically while
the demonstrator attempts to show the objects from all
relevant viewing directions. Experimental results show
high recognition rates in realistic test environments.
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