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Abstract—The calibration of serial manipulators with high
numbers of degrees of freedom by means of machine learning
is a complex and time-consuming task. With the help of a
simple trick this complexity can be drastically reduced and the
speed of the learning procedure can be increased: When the
robot is virtually divided into shorter kinematic chains, these
subchains can be learned separately and, hence, much more
efficiently than the complete kinematics. Such decompositions,
however, require either the possibility to capture the poses of
all end-effectors of all subchains at the same time, or they are
limited to robots that fulfill special constraints. In this work,
an alternative decomposition is presented that does not suffer
from these limitations. An offline training algorithm is provided
in which the composite subchains are learned sequentially with
dedicated movements. A second training scheme is provided to
train composite chains simultaneously and online. Both schemes
can be used together with many machine learning algorithms. In
the experiments, a PSOM algorithm modified for online learning
was chosen to show the correctness of the approach.

I. INTRODUCTION

With higher numbers of degrees of freedom (DoF) the cal-
ibration of serial manipulators (e.g., anthropomorphic manip-
ulators) becomes increasingly complex and expensive [1]. In
such systems, the need for calibration arises more often either
due to deformations or—much more interestingly—because
of reconfigurations such as tool-use. Instead of the costly
traditional calibration routines, machine learning techniques
can be used to learn the correlation between the joint angle
configuration and the spatial pose of the end-effector, the
forward kinematics (FK). Usually, learning is accomplished
by observing examples of input/output pairs of valid FK
configurations. Many suitable learning algorithms have been
proposed for this task. Among them there are the continuous
extension of Kohonen maps, the Parameterized Self Orga-
nizing Maps (PSOM) [2], and Locally Weighted Projection
Regression (LWPR) [3]. However, no learning algorithm can
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avoid the exponential growth (O(en)) in the number n of DoF
required to represent directly the FK with enough accuracy
( [4] and [5]). This was the motivation for this work since the
number of movements required in our humanoid robot [6] was
impractical, even using state-of-the-art methods to learn FK.
An effective way to palliate this problem are decomposition
techniques [4][7]. Hereby, the robot is virtually divided into
two (or more) subchains with fewer DoF each. These sub-
chains can be learned much more efficiently than the complete
chain; and the number of required training samples can be
reduced to about its square root O(en

2 ). The decomposition is
known to work with many different learning systems.

Current techniques of learning by decomposition, however,
have shortcomings. In [4], a decomposition is proposed that
can be easily applied to robot manipulators whose last three
axes intersect in a single point. This constraint excludes many
possible robot architectures and may not hold anymore after
a manipulator has suffered a deformation. A second approach
that is general w.r.t. the choice of the robot architecture has
been presented in [7]. However, it requires the ability to
observe the spatial pose of all subchains’ end-effectors at
the same time in order to be able to learn. While this may
be perfectly appropriate in setups with external cameras, the
higher sensorial demand may exclude robots that learn from
pure self-observation as it is the case of many humanoid
robots.

This work presents a third option that is general w.r.t. the
robot architecture and requires only the visibility of the orig-
inal end-effector, at the expense of a more complex learning
scheme. A batch algorithm well-suited for initial learning
requires that, during the training of one subchain, the other
subchains remain unchanged. This way, enough information
can be gathered without the need to know the location of
the individual subchains’ end-effectors or origins, respectively.
After an initial training, the decomposed kinematics can adapt
online to many deformations such as a shift in the joint
encoders or reconfigurations when using a tool. In contrast
to the initial batch learning, this online learning allows for
simultaneous movements of all subchains and it can be used
during the operation of the robot.

In the experiments, these principles are validated using the
new decomposition in conjunction with the PSOM learning
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system. While PSOM originally does not offer online learning,
it has proved possible to apply the Widrow-Hoff rule (also
known as δ-rule) to the weights of this artificial neural
network.

In the following two sections, the principles of the new
proposed decomposition and the composition of the separately
learned functions will be explained, respectively. The next sec-
tion presents both the batch and the online learning algorithms.
The document concludes with experiments and an outlook on
future work.

II. KINEMATICS DECOMPOSITION

The proposed decomposition approach consists in using two
kinematics functions that depend on disjoint subsets of the
joint values. In Fig. 1, an example of the functions is provided
for a robot with four rotational degrees of freedom.

We partition the joint variables θ = (θ1, θ2...θn) into
two subsets ζ = (ζ1, ζ2, ..., ζk) := (θ1, θ2...θk) and µ =
(µ1, .., µn−k) := (θk+1, ...θn), that is, ζ is the set of the first
k joints and µ the final n−k ones. Then the direct kinematics
function of the robot K(θ) (or K(ζ,µ) for convenience)1 can
be expressed as

K(θ) = K(ζ,µ) = Kζ(ζ) ·Kµ(µ), (1)

where Kζ and Kµ are the kinematics of the two subchains of
the robot implicitly defined by ζ and µ, respectively.

The first function in the decomposition is

K1(ζ; µ̃) := K(ζ, µ̃), (2)

where µ̃ is an arbitrarily fixed value for µ. In the following,
we will omit the parameter µ̃ from K1 if not required. This
function can then be reformulated as

K1(ζ) = Kζ(ζ) ·Kµ(µ̃) = Kζ(ζ) · Cµ̃, (3)

where Cµ̃ is a constant transformation matrix associated to µ̃.
The second function, K2(µ; µ̃), is the one that transforms

K(ζ, µ̃) to K(ζ,µ), that is, it satisfies

K(ζ,µ) = K(ζ, µ̃) ·K2(µ; µ̃). (4)

Again, we will omit the parameter µ̃ in K2 unless it is strictly
required. Using K1(ζ) = K(ζ, µ̃) the above equation can be
expressed as

K(ζ,µ) = K1(ζ) ·K2(µ). (5)

It is easy to check that K2 is independent of ζ. Solving for
K2,

K2(µ) = K(ζ, µ̃)−1 ·K(ζ,µ), (6)

and developing K into the two component kinematics, one
gets

K2(µ) := (Kζ(ζ) ·Kµ(µ̃))−1 ·Kζ(ζ) ·Kµ(µ)
= Kµ(µ̃)

−1 ·Kζ(ζ)−1 ·Kζ(ζ) ·Kµ(µ)
= C−1µ̃ · Kµ(µ). (7)

1All kinematic functions K� : Rn → SE(3) are defined as mappings
from the joint space into the group of rigid motions, whose elements can
be expressed by homogeneous transformation matrices, for instance, or dual
quaternions. In this work, we have chosen to use homogeneous matrices.

Now, it is also clear that K2 has the shape of a kinematics
function with n−k degrees of freedom. In the end, we come up
with two functions that depend only on one of the two disjoint
subsets of variables. We would like to inform the reader that,
alternatively, there exists a complementary decomposition not
commented in depth in this article2.

III. KINEMATICS COMPOSITION

The forward kinematics (FK) is obtained from (5). K1(ζ)
and K2(µ) will be approximated by two learning systems (e.g,
neural networks) N1 and N2, respectively. Therefore the FK
will be estimated with

N(ζ,µ) = N1(ζ) ·N2(µ). (8)

Regarding the inverse kinematics (IK), given a desired pose
T , the joint coordinates θ = (ζ1, . . . , ζk, µ1, . . . , µn−k) form
a valid inverse kinematics solution iff

K(ζ,µ) = K1(ζ) ·K2(µ) = T, (9)

which can be approximated with

N(ζ,µ) = N1(ζ) ·N2(µ) = T. (10)

The constraint (9) can be rewritten in another form:

Kζ(ζ) · Cµ̃ · C−1µ̃ · Kµ(µ) = T

⇔ Kζ(ζ) = T ·Kµ(µ)−1.
(11)

where equations (3) and (7) have been used.
This is the same equality used in [7]: the first subchain

of the robot must be the same as the last one reverted and
transformed to the desired pose. As mentioned earlier, a
limitation of this approach is that, in order to learn Kζ(ζ)
and Kµ(µ)−1, one needs to detect the pose of an intermediate
marker placed in the k-th link. The advantage of (10) is that,
although the underlying constraint is the same, the involved
functions K1 and K2 can be learned by using only the ability
to detect the end-effector pose (see next section).

There exist many ways to satisfy the constraint (10), most
of them involving the Jacobian of N(ζ,µ) [8], [9], [10], [11].
This matrix is obtained by combining the partial derivatives
of each network, N1 and N2, with the outputs of the other
network according to (8):

∂
∂ζi
N(ζ,µ) = ∂

∂ζi
N1(ζ) ·N2(µ)

and ∂
∂µj

N(ζ,µ) = N1(ζ) · ∂
∂µj

N2(µ).
(12)

IV. LEARNING

The learning of K1(ζ) and K2(µ) can be accomplished
with strategies entailing different degrees of parallelism and
sophistication. We show the two main ones below. It is
important to point out that, in every case, we only require
the ability to sense the pose of the end-effector in the chosen
configuration K(ζ,µ).

2The alternative decomposition is L1(µ) = K(ζ̃,µ), L2(ζ) = K(ζ,µ) ·
L1(µ)−1. The kinematics composition is obtained from L2 definition,
K(ζ,µ) = L2(ζ)L1(µ).
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(a) K1(ζ) = Kζ(ζ) · Cµ̃ (b) K2(µ) = C−1
µ̃ ·Kµ(µ) (c) K(ζ,µ) = K1(ζ) ·K2(µ)

Fig. 1. Example of the decomposition for a robot with four rotational degrees of freedom. The first kinematics function K1 is shown in (a). It is the
transformation from the robot base to its end-effector when the last (two) degrees of freedom are assigned to constant values (namely µ̃). The constant part
of the robot is called C−1

µ̃ (see (3)). This part of the robot is rendered transparently in this image. During learning, the end-effector frame is tracked while
moving the first two axes. The second kinematics function shown in (b) is K2. This function is a composition of the last half of the robot (i.e., Kµ) with two
active joints and Cµ̃ (see (7)) which is, again, displayed transparently. That is, K2 is the transformation from the tail of K1 to the real end-effector frame.
When learning this function, the real end-effector (opaque) is tracked while the first two joints are fixed to the reference values in ζ̃. Consequently, as shown
in (c), the combination of K1 and K2 results in the complete robot transformation.

1) Independent learning: The simplest approach is to learn
each function independently in a phase preceding the func-
tional operation of the robot. The learning of K1 and K2,
shown in Algorithms 1 and 2, proceeds sequentially. Algorithm
1 moves the first joints ζ to random values while fixing µ to
a reference value. In Algorithm 2, a little trick is used to learn
K2. Normally, one should select an input µi and then move
to K(ζi,µi) and K(ζi, µ̃) to obtain the desired output

K(ζi, µ̃)
−1 ·K(ζi,µi),

where ζi is arbitrary in each iteration. But if ζi remains always
the same, K(ζi, µ̃)

−1 is a constant that can be obtained before
the loop, and one movement is saved in each iteration. In short,
both Algorithms 1 and 2 consist basically in fixing some joints
and moving the remaining ones.

There are many possible variations of Algorithm 2. If µ is
constrained for some values of ζ (e.g., in order to keep the
end-effector in the field of view), we can run Algorithm 2
several times with a different selection of ζ̂. If the constraints
require a different value of ζ for each value of µi, it is still
possible to learn K2 with only one movement in each iteration.
The selection of ζi must be introduced in the loop (line 1 and
2 are removed), the movement must be performed to (ζi,µi)
and, finally, N1(ζi)

−1 Ti must be used as output for N2. This
approximation follows from equation (10). The drawback is
that these output data depend on an approximation of K1. But
since K1 has a low dimensionality and it has been learned
previously, the error introduced is negligible.

Algorithm 1: Learning of K1(ζ).

1 foreach ζi ∈ Training Set do
2 Move to (ζi, µ̃) and observe Ti = K(ζi, µ̃)
3 Learn N1 with ζi as input and Ti as output.

Algorithm 2: Learning of K2(µ).

1 Select ζ̂
2 Move to (ζ̂, µ̃) and observe Tµ̃ = K(ζ̂, µ̃)−1

3 foreach µi ∈ Training Set do
4 Move to (ζ̂,µi) and observe Ti = K(ζ̂,µi)
5 Learn N2 with µi as input and Tµ̃ Ti as output.

2) Concurrent learning: None of the learning strategies
above can be used to perform on-line learning, that is, learning
that is integrated in the normal working operation. The strategy
that we present now parallelizes the learning of all the func-
tions that compese the kinematic model. And, interestingly,
it permits carrying out arbitrary movements as, for instance,
those required by an application while, at the same time,
refining the estimation of the robot kinematics.

In fact, equation (9) implicitly provides values for K1, (T ·
K2(µ)

−1), and for K2, (K1(ζ)
−1 · T ), which depend on one

another. It is possible to use their estimates N1 and N2 to
obtain new training samples as it is shown in Algorithm 3.

Note that µ̃ is missing completely in Algorithm 3 and, thus,
the algorithm can converge to functions with any value of µ̃.
Moreover, the algorithm converges to whatever functions N1

and N2 satisfying

K(ζ,µ) = N1(ζ) ·N2(µ), (13)

which, in general, would not have the shape of K1(ζ; µ̃) and
K2(µ; µ̃) for any µ̃. But in Appendix A we show that, given
an a priori fixed µ̃, after convergence N1 and N2 can be
expressed as

N1(ζ) = K1(ζ; µ̃) N2(µ̃)
−1, (14)

N2(µ) = N2(µ̃) K2(µ; µ̃). (15)
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There is nothing wrong with these functions, since they
constitute a valid composition. But it should be noted that
N1 and N2 may change suddenly their values when switching
from concurrent learning to independent learning. Anyway, a
slight modification of Algorithms 1 and 2 would allow to learn
the right parts of equations (14) and (15).

The fact that there are many functions yielding a valid
kinematics decomposition has a potential advantage. N1 (or
N2) alone can adapt to certain kinematic changes, absorbing
the required changes for K1 and K2. This is interesting
because learning only one function is much quicker than
learning two interdependent functions. For example, if the
kinematics of the robot undergoes a deformation equivalent
to a linear transformation, that is,

K ′(ζ,µ) = K(ζ,µ) · P,

the system can be quickly adapted by only learning N2, as
shown in Appendix B. A linear transformation includes the
rigid transformations involved in the adaptation to a tool and,
also, some effects that result from a poorly calibrated camera
such as a scaling of the sensor data.

Note that the learning of N1 and N2 is interdependent
because, at each iteration, their corrections aim to reduce
the same error quantity, ||N1(ζ) · N2(µ) − Ti||. To put the
learning of N1 and N2 on an equal ground, in Algorithm 3
the desired outputs for both functions are calculated before
any modification takes place. Anyway, special attention has
to be payed to the learning rates used to learn N1 and N2.
If, for instance, N1 is corrected to make this error 0, a
subsequent correction of N2 of the same magnitude, will result
in N1(ζ) · N2(µ) − Ti having a value opposite to the initial
one, and the same error magnitude. Therefore, the learning
rates should be such that, the correction of N1 (or N2) alone
cancel out no more than half of the error or, in any case, the
sum of the corrections to N1 and N2 must cancel out (partially
or completely) N1(ζ) ·N2(µ)− Ti without reverting its sign.

Algorithm 3: Simultaneous learning of K1(ζ) and K2(µ).

1 foreach (ζi,µi) ∈ Training Set do
2 Move to (ζi,µi) and observe Ti = K(ζi,µi)
3 Set Ti,1 := Ti ·N2(µi)

−1 and Ti,2 := N1(ζi)
−1 · Ti

4 Learn N1 with ζi as input and Ti,1 as output.
5 Learn N2 with µi as input and Ti,2 as output.

V. EXPERIMENTS

We use two simulated robots having eight active DoF,
in the offline learning experiment, and five in the online
learning experiments. The Denavit-Hartenberg parameters of
these robots are equal for each segment i, namely αi = 90◦,
ai = 200mm and di = 0mm. This results in arm lengths of
1600mm and 1000mm at the rest positions. The samples used
for training and testing are generated evaluating the FK in joint
angles drawn from [−45◦, 45◦]. In all experiments, there are
1000 samples in the test sets that are generated randomly by

sampling uniformly angles from this range. The actual learning
is done in all cases by PSOM networks. The orientations of the
end-effector are expressed by means of rotation matrices. Each
of these matrices’ elements are learned independently by the
PSOM algorithm. As a result the output may not always be a
valid rotation matrix which can be critical when concatenating
the individual networks’ outputs. For this reason, a Gram-
Schmidt orthonormalization is applied systematically to the
rotational part of all networks to improve the output quality3.
This includes also the orientation parts of N1 and N2 in line
3 of Algorithm 3. The calculus of the IK using the FK
model will add a numerical error dependent on the algorithm
used for this purpose. Because of this, all experiments in
this paper focus on the evaluation of the accuracy of the FK
representations.

A. Offline Learning

This experiment examines the offline learning as presented
in Algorithms 1 and 2. The kinematics of a robot with
eight independent and active degrees of freedom is learned
by PSOM networks. The input values are fixed to the nodes
of an eight-dimensional rectangular grid that encloses all
possible joint angles of the training data. For learning, the
output values of the forward kinematics at these joint positions
are assigned to the corresponding neurons. Once learned, the
PSOM interpolates between the learned pose values in order
to estimate the forward kinematics. The number of neurons in
each dimension of the grid was different in the PSOMs used
in the experiment. They are indicated by the labels of selected
data points (with a comma separating the grid dimensions of
the two networks in the decomposition case) in Figs. 2, 3
and 4.

Fig. 2 shows the mean error on the test data in relation to
the number of samples (i.e., neurons) on a logarithmic scale.
In this graph, one can directly see that —for higher numbers
of neurons— the curves are nearly parallel to each other.
The curve of the decomposition lies roughly in the middle
between the axis of abscissas and the curve for the single
network. This indicates that, in order to get the same level
of accuracy, in comparison to the single network, only the
square root of the number of samples is required to train the
decomposition networks. In Figs 3 and 4, the same relation is
shown on a linear scale. The most interesting part is amplified
and plotted in Fig. 4. The mean error on the training data
of the decomposition drops much quicker as compared to the
single network. This point of view emphasizes the advantage
of the decomposition when applied to a robot system. Figure
5 shows how many samples are necessary to obtain a certain
level of precision. In the diagram, the 95%-quantiles for the
decomposition and the single networks are displayed, that is,
the precision threshold below which lie 95% of the errors on
the test data. Again, a reduction to nearly the square root of the
required samples can be appreciated thanks to the logarithmic
scale.

3Note that even if one is only interested in learning positions, the orientation
part of N1 and N2 is also involved in the calculation of the position of the
composite kinematics.
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Fig. 2. Comparison of the offline learning using the decomposition and
a single PSOM with different training samples and, consequently, different
numbers numbers of neurons as indicated by the labels. The diagram uses a
logarithmic scale and the standard deviation of the precision is included in
form of error bars.
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a high precision on a robot with eight DoF.
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Fig. 5. Convergence of the decomposition and a single PSOMs for higher
precision. On the logarithmic scale it can seen that, using the decomposition,
the number of training samples required to obtain a given precision is roughly
reduced to its square root.

B. Online Learning

Now we investigate how learning and the refinement of the
decomposition can be performed during the normal operation
of the robot using Algorithm 3. As the regular PSOM
algorithm requires grid-organized data, it is not naturally suited
for online learning. Here, we have carried out a grid-preserving
supervised adaptation by updating part of the weight of the
neurons according to the Widrow-Hoff rule or normalized
least mean squares (NLMS) method (or δ-rule for single layer
preceptrons):

wt+1
a = wta + ε ·Ha(a,θ) · (wta − x), (16)

where wta is the weight subvector of the neuron at grid position
a representing the robot pose, ε ∈ (0, 1] is the learning rate,
and (θ,x) is a sample input/output pair. If the learning rate ε
in equation ( 16) equals one, the network adapts completely
to the currently presented sample, that is, the output of the
network then equals x. According to the discussion at the end
of Section IV-2, the learning rates for N1 and N2 have been
set to 0.5, which adapts completely the combination of the
two networks to the presented sample. In this way, the two
networks cancel out the same amount of error.

This online learning initially adapts very fast to modifica-
tions of the kinematics. In the long term, however, this way of
learning is much slower compared to offline learning, that is,
a much higher number of samples is required to gain the same
level of precision. For this reason, we have reduced the number
of effective degrees of freedom to five in this experiment.

In this section, we investigate how the decomposition of
a robot with five revolute joints adapts to two modifications
that are likely to occur in real application. Training and test
samples are generated with the modified robot by moving to
random configurations with angles out of the same angular
range as during the initial training (i.e., [−45◦, 45◦]). The
refinement starts with initial models that are approximations
of the intact robot FK consisting of a single PSOM with
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Fig. 6. Learning curves of the new incremental online learning algorithm after
a deformation simulating tool use (last element extended 400 mm). Leaning
begins from models of the original kinematics learned offline. The Standard
deviations are shown as error bars.

55 = 3125 neurons and a decomposition with 53 + 52 = 150
neurons.

The first modification of the kinematics is a translation of
400mm applied to the end-effector in order to simulate tool
use. Another kind of modification can occur with incremental
encoders that require calibration upon each startup. We sim-
ulated a modification of this type, by adding a constant of
10◦ to all robot joints. The results of learning after these two
deformations have taken place are presented in the diagrams
in Fig. 6 and Fig. 8, respectively. In both diagrams, it can be
immediately seen that the decomposition leads to better levels
of accuracy much more quickly as compared to the single
network. Note also that the error bars of the single PSOM
curve remain in both figures almost constant, while in that of
the decomposition they shrink notoriously. Adaptation for the
first training samples is very fast and afterwards the curves
converge to the optimal solution even though slowly. For the
first deformation, we further investigated if learning can be
accelerated by adapting only one of the individual networks
N1 and N2 (see Fig. 7). One can see that only the second
network N2 is able to compensate the deformation and, as
a matter of fact, it does significantly quicker than learning
simultaneously both functions: the error reached after learning
500 samples with N2 alone is lower than that obtained after
adapting to learn 1500 samples both networks. Consequently,
this learning strategy is useful to learn deformations known to
be linear transformations of the original kinematics. The most
prominent example in this context is tool-use.

VI. CONCLUSION

In this paper, we pointed out the importance of modeling
kinematics functions by means of machine learning tech-
niques. The main difficulty, hereby, lies in the fact that the
number of training samples required to acquire an adequately
accurate model grows exponentially with the number of de-
grees of freedom. Decomposition techniques have proved to
be an effective means to solve this problem by reducing the
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Fig. 7. This image shows the performance of learning only one of the
networks in the decomposition after the same deformation as in Fig. 6).
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Fig. 8. Learning curves of the new incremental online learning algorithm
when suddenly a constant of 10◦ is added to each angle.

amount of training samples to about its square root (in the case
of one single decomposition). However, the decomposition
schemes presented in previous works either impose restrictions
to the kinematics (e.g., three intersecting axes) or require more
parts of the robot to be visualized, increasing the demand for
additional sensors.

This work presents a new strategy to learn a decomposition
that overcomes these restrictions. The kinematic function is
split up into two dependent sub-functions that can either be
learned offline—one after another—or can be simultaneously
refined in an incremental online learning process. The theoreti-
cal insights were verified using two simulated robots with eight
and five active revolute degrees of freedom, respectively. We
chose the parameterized self-organizing maps (PSOM) as the
underlying machine learning algorithm and further enhanced
it by incorporating a supervised incremental learning rule—
namely the Hoff-Widrow rule. In a series of experiments, we
demonstrated that the learning was sped up drastically (i.e.,
the number of required training samples was reduced to its
square root) as predicted and we showed the relation between
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learning speed and the resulting model precision. In further
experiments, we showed that the decomposition can speed up
enormously the convergence of the online refinement of initial
models, for example in the case of tool-use or while recovering
from a shift in the joint encoders. Altogether, the combination
of both learning methods—creating an initial model, in simula-
tion for instance, and refining it online afterwards—leads to a
very efficient method to learn the complete kinematics of even
very complex robots with many active degrees of freedom. The
new decomposition is compatible with most of the algorithms
devised to learn FK [12], [13], [14], and it can make the use
of a learned FK affordable to those approaches using a known
FK to obtain IK information [15], [16], [11]. Because of its
greater simplicity and generality, the decomposition presented
here clearly outperforms the approach in [4]. Instead, the
comparison with [7] is more intrincate. If only offline learning
is required, the new decomposition is again advantageous,
since it offers the same results with less sensorial requirements.
But, if these requirements can be easily fulfilled (thanks
for example to external cameras), online learning is simpler
and quicker in [7], because the learned functions are not
interdependent. Extending the presented two-function decom-
position to involve more than two functions (with less DoF) as
in [7] is a feasible future work. Our future plains include the
application of this decomposition technique to the ARMAR
humanoid robot [6].

APPENDIX

A. Functions satisfying the decomposition

We will prove that all functions N1, N2 satisfying the
composition equation (13) used in Algorithm 3, have the form

N1(ζ) = K1(ζ; µ̃) · C−1
N2(µ) = C ·K2(µ; µ̃),

(17)

where C is equal to N2(µ̃).
First, we show that functions of the same form as (17) do

in fact satisfy (13),

N1(ζ) ·N2(µ) = K1(ζ; µ̃) · C−1 · C ·K2(µ; µ̃)

= K1(ζ; µ̃) ·K2(µ; µ̃) (18)
= K(ζ,µ),

and that, given that form, C must equal N2(µ̃):

N2(µ̃) = C ·K2(µ̃; µ̃) = C · I = C, (19)

where I is the identity matrix. Now, we show that no form
other than (17) is possible for N1, N2. We begin by defining
the functions

ε1(ζ) ≡ K1(ζ; µ̃)
−1 ·N1(ζ)

ε2(µ) ≡ N2(µ) ·K2(µ; µ̃)
−1.

(20)

Note that these functions always exist, because K1 and K2

are rigid transformations, and thus invertible. Multiplying ε1
and ε2:

ε1(ζ) · ε2(µ) =
K1(ζ; µ̃)

−1 ·N1(ζ) ·N2(µ) ·K2(µ; µ̃)
−1,

using the composition equation (13) that N1 and N2 are
assumed to satisfy,

ε1(ζ) · ε2(µ) = K1(ζ; µ̃)
−1 ·K(ζ,µ) ·K2(µ; µ̃)

−1,

and applying (4) and (2),

ε1(ζ) · ε2(µ) = K1(ζ; µ̃)
−1 ·K1(ζ; µ̃),

we obtain:
ε1(ζ) · ε2(µ) = I. (21)

Since ε1 and ε2 are functions dependent on different vari-
ables, they cannot cancel out the variable dependency of each
other by means of multiplication. The only way of satisfying
(21) is having ε1 = C−1 and ε2 = C for some constant C.
Substituting ε1 and ε2 by these constants in (20),

C−1 = K1(ζ; µ̃)
−1 ·N1(ζ)

C = N2(µ) ·K2(µ; µ̃)
−1,

(22)

yielding that (17) is the only form that N1 and N2 can exhibit.
We have demonstrated that all possible decompositions

build by multiplying two functions of the two subsets of joints
are the same up to a constant. This is the case for functions
K1 and K2 with different reference values, µ̃ and µ̃′:

K1(ζ; µ̃) = K1(ζ; µ̃′) · C−1µ̃′ · Cµ̃
K2(µ; µ̃) = C−1µ̃ · Cµ̃′ ·K2(µ; µ̃′).

(23)

These relations are deduced from (3) and (7), respectively.
The result applies also to the alternative decomposition

mentioned in Section II,

K(ζ,µ) = L2(ζ) · L1(µ),

for which it can be shown that

L2(ζ) = K1(ζ) · C
and L1(µ)

−1 = C−1 ·K2(µ).

B. Deformations learnable with only one function

When the learning of N2 is removed from Algorithm 3 (i.e.,
only N1 is learned), it is still possible to adapt the composition
to certain deformations. Let K ′ denote the new deformed
kinematics and let K ′1 and K ′2 be the new component functions
for the chosen µ̃. All deformations for which there exists a
constant C satisfying

K ′(ζ,µ) ·N2(µ)
−1 = K ′1(ζ) · C (24)

can be learned by N1 alone. The left side of the equation is
the function learned by N1 in Algorithm 3 when N2 is fixed.
The right side is the form of the functions that N1 is allowed
to encode to yield a valid composition. If N2 is assumed to
be correctly learned before the deformation (i.e., N2(µ) =
Cold ·K2(µ)), a simpler condition can be stated:
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K ′2(µ) = C ·K2(µ) (25)

In fact, using the assumption, it is easy to prove that (25)
implies (24):

K ′(ζ,µ) ·N2(µ)
−1 = K ′(ζ,µ) · (Cold ·K2(µ))

−1

= K ′(ζ,µ) ·K2(µ)
−1 · C−1old

= K ′(ζ,µ) · (C−1 ·K ′2(µ))−1 · C−1old
= K ′(ζ,µ) ·K ′2(µ)−1 · C · C−1old
= K ′1(ζ) · C · C−1old.

The condition equivalent to (25) for the case of learning N2

alone is that

K ′1(ζ) = K1(ζ) · C (26)

for some C.
Now it is easy to see that if the kinematics of the robot

undergoes a deformation equivalent to a linear transformation,
that is,

K ′(ζ,µ) = K(ζ,µ) · P,

the system can be quickly adapted by learning N2 alone. A
linear transformation includes rigid transformations, as those
involved in adaptation to a tool. And also includes some
camera miscalibrations leading for example to a scaling of
the sensor data. In effect, since

K ′1(ζ) = K ′(ζ, µ̃) = K(ζ, µ̃) · P (27)
= K1(ζ) · P, (28)

condition (26) is fulfilled. Instead, learning N1 alone does not
work. Using (6),

K ′2(µ) = K ′(ζ,µ)−1 ·K ′(ζ, µ̃) (29)
= (K(ζ, µ̃) · P )−1 ·K(ζ,µ) · P (30)
= P−1 ·K(ζ, µ̃)−1 ·K(ζ,µ) P, (31)

and using again (6),

K ′2(µ) = P−1 ·K2(µ) · P. (32)

There is no possibility to satisfy (25), except for the case
when P = I .
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