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Abstract— The kinematics of a robot with many degrees of
freedom is a very complex function. Learning this function for a
large workspace with a good precision requires a huge number of
training samples, i.e. robot movements. In this work, we introduce
the Kinematic Bézier Map (KB-Map), a parametrizable model
without the generality of other systems, but whose structure
readily incorporates some of the geometric constraints of a
kinematic function. In this way, the number of training samples
required is drastically reduced. Moreover, the simplicity of
the model reduces learning to solving a linear least squares
problem. Systematic experiments have been carried out showing
the excellent interpolation and extrapolation capabilities of KB-
Maps and their low sensitivity to noise.

Index Terms— Learning, robot kinematics, humanoid robots.

I. INTRODUCTION

W ITH increasingly complex robots—especially
humanoids—the calibration process of the arms

and other kinematic chains becomes a difficult, time-
consuming and often expensive task. This process has to be
repeated every time the robot accidentally suffers deformation
or –even more important– if the robot intends to interact
with its environment with a tool. The hand-eye calibration
by traditional means then becomes nearly impossible.
Nevertheless, the accuracy of kinematics is important in many
prominent robotic problems [2]. Humans solve the problem
successfully by pure self-observation, which has led to the
adaptation of biologically-inspired mechanisms to the field of
robotics.

Following this trend, a rather novel approach to deal with
the kinematic problem is learning. In order to get training
samples, the end-effector cartesian coordinates associated to a
given joint value vector must be obtained using some kind of
sensorial system. Learning can provide approximate solutions
when the kinematic functions are difficult or slow to compute.
It is also the only way of having accurate solutions when there
are uncertainties in the kinematic parameters.

A very preliminary version of this work was presented at Humanoids-
2009 [1].
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Fig. 1. The workspace of a simple 2-DoF robot with orthogonal axes is the
surface of a torus. A KB-Map can learn an exact parametrization of such a
workspace in the absence of noise. Here, the resulting manifold (green) and
the control net (blue) that contains all learned information are shown.

Another important advantage of the learning approach is
adaptability. For an industrial robot (especially high-precision
ones), this means self-calibration while working. For au-
tonomous robots it is even more interesting, since they are
more prone to offsets in sensor readings, geometric changes
due to wear and tear, deformations, tool usage, etc. The robot
should be able to cope with these problems without human
intervention.

Each set of values for the robot joints determines a unique
end-effector pose (position and orientation). This is a physical
realization of the Forward Kinematics (FK) mapping from
joint angle values θ ∈ Rd, d being the number of robot
degrees of freedom (DoF), to coordinates x in the cartesian
workspace. The Inverse Kinematics (IK) mapping, from x to
θ, is difficult to handle because of two reasons. First, it is
a one-to-many mapping. Second, obtaining an IK solution is
computationally much more demanding than finding a FK one.
Moreover, analytical or geometrical solutions are not known
for manipulators with many redundant degrees of freedom.

The learning of the relation between the joint coordinates θ
and the pose x of the end-effector can be approached in three
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ways:

1) x→ θ, that is, direct learning of IK. When confronted
with different outputs for a same input, most learning
systems resolve the uncertainty by averaging the output.
Unfortunately, the average of IK solutions is not an IK
solution in general. Thus, with this strategy one can
only learn the IK of non-redundant systems [3], [4].
Even for robots not commonly considered as redundant,
because only a finite number of solutions exists (like the
PUMA), the joint space must be restricted so that only
one solution is possible.

2) (∆x,θ) → ∆θ. The problem above can be avoided
with a different input-output representation. Instead of
mapping directly end-effector poses to joint values, one
learns how to modify slightly x by means of small
movements of the joints. When these movements are
made in the vicinity of a given θ, the average is
truly a IK solution. Therefore, incorporating θ to the
input allows valid localized solutions [5], [6]. It is also
possible to bias the movements of the robot toward
configurations satisfying a constraint, so that it becomes
incorporated in the learned mapping. To carry out a
complete movement, a number of intermediate points
must be calculated, close enough to allow the system to
provide good approximations for the gaps between them.
Anyway, to avoid the progressive accumulation of errors,
this kind of strategy may require visual feedback.

3) θ → x. This strategy consists in learning the well
defined function FK. The learned forward model can
then be processed in several ways to obtain IK infor-
mation. Iterative procedures for solving a system of
non-linear equations are usual, in particular Newton’s
methods based on successive linear interpolation of
FK equations or model [7]. For redundant robots, an
extra optimization term can be locally minimized at
each step [8], [9]. This term can be changed during
run-time without further learning, therefore being a
much more flexible strategy than the preceding one.
There are neural architectures conceived to solve this
constrained minimization at a fast convergence rate [10].
Another possibility is to calculate small steps ∆x (that
can be accurately calculated in a single step by the
same techniques) and generate incrementally a reaching
trajectory [11]. Still another option is to minimize a cost
function whose minimum is the IK solution, as made by
Parametrized Self-Organizing Maps (PSOMs) [12] and
its extension, PSOM+ [13]. This cost can also include
other optimization criteria. All these approaches require
the calculation of the Jacobian of the FK, although there
exist also techniques avoiding this step [14].

The current work follows the third approach, learning the
FK mapping from tuples (θ,x), which will be referred to
as training experiences, samples or training data. The main
difficulty of the approximation of the FK lies in the fact that
it is a highly non-linear function with non-redundant input
variables, each of them significantly influencing the result.
Hence, it requires a large amount of training experiences that

Fig. 2. Plot of workspace similar to that in Fig. 1 but learned by a PSOM. The
underlying lattice has 5× 5 knots (polynomial degree 5) and all angles were
chosen equidistantly between 0◦ and 160◦, thus sampling nearly a quarter
of the torus’ surface, 25 configurations in total. Good interpolation can be
clearly recognised on the lower left.

grows exponentially with the number of DoF of the kinematic
chain. To get a feeling of the problem, imagine one has
obtained 3 samples for each DoF of a PUMA in a regular
grid, thus 36 = 729 samples in total. The best that a usual
interpolator can do when all inputs but one are fixed is to
behave like a quadratic function—what PSOMs really do. But
a quadratic polynomial can only approximate the true function
with good precision in very narrow ranges. To cope with
the complete joint workspace of the PUMA, therefore, many
more samples for dimension are needed, which makes the total
number of sample points explode.

An approach that attacks directly this “curse of dimen-
sionality” is to decompose the kinematics function into lower
dimensionality functions, requiring a number of samples or-
ders of magnitude lower than raw kinematics. However, one
previously proposed decomposition is restricted to certain
types of manipulators [15] and another requires a complex
learning architecture [16] difficult to manage and also a more
complex sensorial set-up.

An alternative way to reduce the number of required
samples without reducing the size of the workspace or the
versatility of redundant systems is possible: the introduction
of a priori knowledge of the function to be learned. The only
work following this line was recently proposed by Hersch
et al. [17]. The parameters of the FK in Denavit-Hartenberg
convention are learned directly by an optimization algorithm.
This optimization eventually leads to a kinematic mapping
with good extrapolation capabilities and even converges to an
exact model in simulation. However, this method suffers from
a low learning speed—even in simulation.

To the best of our knowledge, there does not exist yet an
algorithm that can learn a FK mapping exactly and in an
efficient way. We present a learning model for the θ → x
mapping (i.e., FK) that incorporates a lot of a priori knowledge
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embedded into the model. This allows to interpolate and even
extrapolate with zero error using only 3d samples in the
absence of noise, which none of the previous works is able
to accomplish. But, at the same time, our model encompasses
a family of functions wider than that of FK, which can be
useful to approximate for example FK’s deformed by gravity.
The Jacobian of this forward model can be efficiently obtained.
Our approach is based on techniques from the field of Com-
putational Geometry—namely, rational Bézier tensor-product
functions. Derived from these functions the Kinematic Bézier
Maps (KB-Maps) were created. This representation permits an
exact encoding of the FK, which is robust to sensor noise, and
allows the learning algorithm to keep the same complexity
regardless of the number of training experiences. Moreover,
it exhibits good extrapolation capabilities even when only a
relatively small number of experiences can be provided that
lie close to one another. The key aspect of the KB-Maps is
that they transform a highly non-linear problem into a higher-
dimensional, but linearly solvable, equation system.

In 1 and Fig. 2, some of the advantages of the new approach
are illustrated. A PSOM and a KB-Map were trained with 25
points of a 2-DoF mechanism (a torus workspace) lying in a
range of [0◦, 160◦] in each joint angle. The PSOM interpolates
very well in the trained region, but extrapolates badly. The
KB-Map exactly estimates the workspace shape inside and
outside the training region and, as a matter of fact, 32 = 9
points would suffice to obtain the same result.

This paper is structured as follows. In the next section, a
brief introduction to the underlying geometrical techniques is
provided, followed by a description of their application in the
KB-Maps to encode FK. Two algorithms suitable to perform
the learning are presented in Section III. Then, in Section IV,
the proposed method is applied to two simulated robot arms
and to the humanoid robot ARMAR-IIIa [18], and the obtained
results are discussed. The paper concludes with a brief account
of the contributions and an outlook on future work.

II. FORWARD KINEMATICS REPRESENTATION IN BÉZIER
FORM

A. Mathematical Fundamentals

1) Bézier Curves: In affine space, every polynomial spatial
curve b(s) of degree n has an unique Bézier form [19] [20]:

b(s) =

n∑
i=0

bi ·Bni (s), with Bni (s) :=

(
n

i

)
· si · (1− s)n−i,

(1)
where every point b(s) on the curve is the result of an affine
combination of a set of n+1 control points bi weighted by the
well-known Bernstein polynomials Bni (s) that serve as a basis
for all polynomial curves of degree n. These combinations are
convex so that the curve lies within the convex hull formed
by the control points for s ∈ [0, 1]. At s = 0 and s = 1 the
curve coincides with the first and the last control point b0 and
bn, respectively. The Bézier form of the curve’s derivative

ḃ(s) = n ·
n−1∑
i=0

∆bi ·Bn−1i (s) (2)

can be obtained easily by the construction of the forward
differences ∆bi with

∆bi := bi+1 − bi.

2) Tensor Product Bézier Surfaces: Polynomial surfaces
and higher multivariate functions can also be expressed in
Bézier form. If they are polynomial of degree n in their
main directions (when only one parameter is variable), the
function can be expressed as a tensor product of two or more
Bézier curves. For example, a polynomial surface of degree
n, b(s1, s2), has the tensor product Bézier form

b(s1, s2) =

n∑
i1=0

·
(

n∑
i2=0

bi1,i2 ·Bni2(s2)

)
·Bni1(s1). (3)

The net of (n + 1)2 points bi1,i2 forms the control net. In
general, a d-dimensional tensor product Bézier of degree n
can be represented as

b(s) =
∑
i

bi ·Bni (s), (4)

where i :=(i1, i2, . . . , id) is a vector of indices going through
the set In = {(i1, i2, . . . , id) s.t. ik ∈ {0, . . . , n}} of
index vectors addressing the points of the control net, s :=
(s1, s2, . . . , sd) is the parameter vector, and

Bni (s) :=

d∏
k=1

Bnik(sk) (5)

are the products of all Bernstein polynomials within each
summand. In total, the control net of the tensor product Bézier
representation is formed by (n+ 1)d control points.

3) Rational Polynomials and Rational Bézier Form: Al-
though the FK can be approximated by polynomials, an exact
representation of the FK requires a more complex class of
functions, e.g. rational polynomials [21]. In this section, a
brief introduction to rational polynomials, projective geometry
and the rational Bézier form will be presented, while [20],
[21] provide more detailed information. Rational polynomial
functions are similar to affine polynomial functions except
for the fact that they are defined in the projective space P .
Simplifying, P is a space with an additional dimension and
elements of the form

p =

[
γp
γ

]
, γ ∈ R \ 0,

where p is an affine point and γ is called homogeneous
coordinate or weight of p. Any projective point p ∈ P can be
understood as a ray that originates from the projective center(
0, . . . , 0

)T
and intersects the affine space at p when γ = 1.

The intersection point is called the affine image of p and
division by γ is called projection (into the affine space).

On projection into the affine space, rational polynomials
generally become more complex functions and may loose
their polynomial characteristics (see Fig. 3). Still, in projective
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space, there does exist the same previously introduced unique
Bézier form for curves and surfaces

b(s) =
∑
i

bi ·Bni (s) =

[∑
i γibi ·Bni (s)∑
i γi ·Bni (s)

]
=

[
γ(s)b(s)
γ(s)

]
.

and, after affine projection, the rational Bézier form

b(s) =
γ(s)b(s)

γ(s)
=

∑
i γi · bi ·Bni (s)∑
i γi ·Bni (s)

. (6)

The greater their values, the closer the function approaches the
corresponding control point. If one weight gets smaller than
zero, then the curve does not lie in the convex hull of the
control polygons anymore.

Maßstab in cm: 1:3
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Fig. 3. The rational parameterization of a circle. On the left, the rational
parabola (blue) with the weights γi and its affine image (green) are shown in
P2. The projection is indicated by the dotted lines. On the right, the circle
and the circle condition are shown in A2.

B. Forward Kinematics Representation: The One-dimensional
Case

In this section, we show how to use the techniques presented
above to define the Bézier representation of the forward
kinematics of a robot with rotational joints.

The end-effector of a single-joint ideal robot moves along
a circular trajectory when the value θ of its joint changes.
In general, the FK of a robot with d degrees of freedom is
simply the product space of d circles. Therefore, the basic
geometric objects that we need to represent are circles and
more generally their deformations. Currently, the deformation
of circles that we focus on are ellipses. We expect that this
flexibility contributes to a better conformation to the real
function that has to be learned, that may be biased by the
sensorial system or gravity.

To explain more clearly our representation of FK, we begin
by showing it for a single degree of freedom. As declared
before, our model is able to represent a family of ellipses
including the circle.

Homogeneous polynomials of degree two become conics
when projected onto the affine space and, for every conic, there
exists a rational Bézier representations of degree two [21]. In
particular, a rational Bézier curve

b(s) =

∑2
i=0 γi · bi ·B2

i (s)∑2
i=0 γi ·B2

i (s)
(7)

is an ellipse if

1) the weights γ0 and γ2 are equal, and
2) γ1/γ0 = γ1/γ2 < 1.
To be a circle, it additionally has to satisfy that a) the

control points form an isosceles triangle with a common angle
α, and b) γ1/γ0 = cosα. Note that all conditions refer to
proportions between weights because multiplying every weight
by a constant leaves (7) unchanged.

Imposing γ0 = γ2 = 1 and fixing γ1 to an arbitrary constant
smaller than one, the ellipse conditions are satisfied. At the
same time, by doing this, the circle is not excluded from
the family of ellipses potentially represented by the Bézier
form. For any γ1, it is possible to find a set of control
points forming an isosceles triangle with a common angle
whose cosine is γ1. Thus, if learning data come from a circle
and we have enough points to constrain the model, we will
obtain a circle. By imposing γ0 = 1, the redundancy in the
representation induced by proportionality in the weights is
eliminated. Imposing γ0 = γ2 and fixing γ1 to a constant
has the effect of limiting the kind of ellipses that can be used
to fit the FK data.

The joint effect of these constraints is that the number of
sample points required to determine the Bézier form is greatly
reduced (see Section III): in the one-dimensional case, it is
reduced from 5 (required in general for an ellipse) to 3. Note
that this is also the minimum number of sample points required
if we would have assumed a model based only on circles. As
a consequence, we have a more flexible model without having
to pay a tribute in increased number of required data.

Our model is still incomplete. For b(s) to represent a
complete ellipse, s must go from −∞ to ∞. Instead, the data
samples and the robot commands are joint encoder values θ,
ranging from −π to π. We must transform θ before being used
as input to the Bézier form. We have chosen the following
transformation

τ : [−π, π] 7→ R, τ (θ) =
tan (θ/2)

2 · tan (α/2)
, (8)

where α = arccos(γ1), see Fig. 4(a). In fact, it is more
practical to fix indirectly γ1 by first choosing an arbitrary angle
α and setting γ1 = cos(α). The meaning of this transformation
is that, when b(s) becomes exactly a circle, α becomes the
common angle in the isosceles triangle formed by the control
points, see Fig. 4(b). Appendix I proves that, in this case,
b(τ (θ)) becomes the angular parameterization of the circle
measured in radian units, which is the final form of the one-
dimensional KB-Maps.

C. Forward Kinematics Representation: The Multidimensional
Case

We like to represent a composition of d ellipses with a
Bézier form, understood in the same sense that a pure FK is a
composition of d circles: when all variables but one are fixed
the resulting curve must be an ellipse, i.e., the isoparametric
curves of the Bézier form are ellipses. To accomplish this,
we set the weights γi1,i2,...,id of control points bi1,...,id to
γones(i1,...,id), where

ones() : {0, 1, 2}d → N
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(a) The τ transformation
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(b) The parameterization

Fig. 4. Transformation τ from a joint angle θ to the corresponding parameter
of the Bézier form s.

returns the number of ones in the arguments and γ is an
arbitrary constant minor than one. The proof is in Appendix
II. The value γ can be selected like in the one-dimensional
case, via the cosine of an arbitrary angle α, i.e. γ = cosα.

With arguments similar to those for the one-dimensional
case, we can state that each of the ellipses defined by the
isoparametric curves in the main directions can take the
shape of a circle. Therefore, if we have enough data points
to determine the surface (3d, see Section III) coming from
an exact FK, the Bézier form will reproduce exactly the
robot kinematics. In this case, the implicit control points
(named qk in Appendix II) appearing in the expression of
the isoparametric curves in the main directions will form an
isosceles triangle. In fact, the triangles will be congruent for all
main directions, having all the same common angle α. But, of
course, the circles in the main directions are anyway unrelated
and can be completely different.

Finally, to complete the model we must include the trans-
formation τ(θ) of the input encoder vector, θ = (θ1, . . . , θd)

t.
The reason is, as in the one-dimensional case, to establish a
correspondence between the encoder values that are given in
uniform angular units (radians) and the Bézier parameters s
that yield the adequate Bézier surface points in the context of
an exact FK. In sum, this is the KB-Maps model for FK:

f(θ;G) ≡ b(τ(θ)) =

∑
i γi · bi ·B2

i (τ(θ))∑
i γi ·B2

i (τ(θ))
, (9)

γi = γones(i), γ < 1

which is the projection onto the affine space of

f(θ;G) ≡ b(τ(θ)) =
∑
i

[
γibi
γi

]
·B2

i (τ(θ)), (10)

where i goes through I2 in the summands in both (9) and
(10). G is the 3d × 3 matrix of parameters of the model, in
which each row i is bI−1

2 (i).
Computing the IK using this FK model by some kind of

optimization requires the Jacobian of (9). In Appendix III we
show how to calculate it very efficiently.

In many applications, not only the position of the end-
effector is of interest but also its orientation. The easiest way
to also represent the orientation using KB-Maps is to represent

the kinematics of the unit vectors e1, e2 and e3 of the end-
effector coordinate system separately in different KB-Maps.
If f : Rd → R4×4 maps joint values to the transformation
matrix associated to the end-effector, the complete Bézier
representation is

f(θ) ≡ B(θ) :=

[
e1(τ(θ)) e2(τ(θ)) e3(τ(θ)) b(τ(θ))

0 0 0 1

]
,

where B : Rd → R4×4 is the composed KB-Map, and e1(θ),
e2(θ) and e3(θ) denote the KB-Maps of the kinematics of
unit vectors.

D. Forward Kinematics Representation: Bézier Splines

The presented Bézier representation still has a shortcoming.
Evaluating the forward model at angles close to ±180◦ can
lead to numerical instability (see Fig.4(b)). The convergence
speed of the gradient method (see next section) was observed
to be slower for angles in that region of the joint values.

One possibility to solve these problems is to use Bézier
splines—curves that are piecewise in Bézier form—rather than
a single Bézier curve. We represent the ellipses in the main
directions with three Bézier curves, each of them used in a safe
range. This alternative representation does not involve a larger
number of parameters and it is completely compatible with
the techniques shown in the next sections. Its construction is
explained in detail in Appendix III. If not stated otherwise, the
term KB-Map refers to the new spline representation during
the rest of this work.

III. LEARNING ALGORITHMS

Let us define a square cost function for a training set
{(θj ,pj)}j=1,··· ,m:

E(G) =
∑
j

Ej(G) =
∑
j

‖f(θj ;G)− pj‖2. (11)

The minimization of E(·) can be used to fit f to the set of
training points. We can highlight the linearity of f by rewriting
(9)

f(θj ;G) =
∑
i

γi ·B2
i (τ(θj))∑

i γi ·B2
i (τ(θj))

· bi = (12)

∑
i

γi ·B2
i (τ(θj))

γ̂j
· bi = (13)∑

i

wi,j · bi, (14)

where γ̂j =
∑
i γi · B2

i (τ(θj)) and wi,j =
γi·B2

i (τ(θj))
γ̂j

.
The quantity γ̂j is common for all summands in sample j,
and it can be computed only once. It corresponds to the
homogeneous coordinate that must be associated to pj to
belong to the surface in projective space (10), hence the
notation. Clearly, the selection of the best fitting parameters
G∗ by means of the minimization of E(·) is a linear least
squares problem:



6

G∗ := argmin
G

E(G) =
∑
j

‖
(∑

i
wi,j · bi

)
− pj‖2. (15)

We can use two kinds of methods to solve this problem:
exact methods and gradient methods. Both are able to cope
with irregular distributions of data in the training set, in
contrast to some models like the original PSOM that require
a grid arrangement of the data. Besides, the gradient methods
are naturally suited to deal with non-stationary data, a feature
that is not available to PSOM or even to PSOM+ [13]. And
since the cost function is purely quadratic, it does so without
risk of failing, because there is only one global minimum.

A. Exact methods

In order to express the learning equations in matrix notation,
we need to introduce a bijective function In(i) that enumerates
all possible index vectors i pertaining to I2 from 1 to (n +
1)d = 3d. The linear system being fitted in the least squares
sense by (15) is:

W ·G = P , (16)

where W is a m× 3d matrix composed of columns

wj = (wI−1
2 (1),j , . . . , wI−1

2 (3d),j),

and P is an m×3 matrix in which row j is pj . This system has
enough data to determine a solution for G if m ≥ 3d. In this
case, the linear least squares problem has a unique solution
(if the columns of W are linearly independent) obtained by
solving the normal equation:

(W TW ) ·G∗ = W T · P . (17)

G∗ can be determined by some standard method, such as QR-
decomposition. If the data {(θj ,pj)}j=1,··· ,m comes from a
noise-free FK equation (16), they will be fitted exactly, i.e,
E(G∗) = 0. This is because any FK of d degrees of freedom
can be expressed with f(θ;G). Since the solution is unique,
f(θ;G∗) is the only FK function fitting the data and, thus, the
one that generated them. Consequently, generalization (both
interpolation and extrapolation) will be perfect.

Of course, this happens in the absence of noise, but as
shown in the experimental Section IV, even with noisy data
we only need a low number of samples to get a good
approximation of the underlying FK.

In case there is no possibility to acquire enough data, i.e.
the system of linear equations is underdetermined, it is still
possible to find the solution that lies closest to an a priori
estimate of the model (e.g. as a result of simulations). This
can be done using, for instance, the Moore-Penrose pseudo
inverse [22]. Finally, these exact learning techniques can be
used repeatedly when some new data are acquired to generate
successively improved models. Optionally, old data could be
discarded when new ones are acquired, leading to an adaptive
model.

B. Gradient methods

The derivative of Ej(G) with respect to bi (a row of G) is
obtained in the following way:

∂Ej(G)

∂bi
= (f(θj ;G)− pj) wi,j . (18)

This permits the application of an on-line implementation
of linear regression, by updating each bi after the presentation
of a new sample (θj ,pj):

bi ← bi − µ(f(θj ;G)− pj) wi,j , (19)

where µ is the learning rate parameter. This update rule has
been called Widrow-Hoff rule [23], delta rule, or LMS (Least
Mean Squares) algorithm. Its application minimizes the mean
squared error of the linear fit. It is a common practice to set

µ = µ0/||wj ||2, 0 < µ0 6 1,

a variation denoted as Normalized LMS.
For linear cost functions, just as Ej , when µ0 = 1 the

application of the learning rule reduces the cost function
to zero (i.e. the sample is completely learned). Learning
by gradient methods is notoriously slower than with exact
methods if high precision is required. However, it has some
advantages. The more important one is that, computationally,
it is considerably lighter than exact methods, with respect
to speed and memory. Besides, it responds very quickly to
dynamically changing conditions, such as easily deformable
systems or the application of different tools. In general, it is
naturally suited to approximate a non-stationary function.

IV. EXPERIMENTS

This section is divided into three parts. First, a low-
dimensional case with two rotational DoF, i.e., a 2R mecha-
nism will be considered. The learned manifold is a surface and
can hence be easily visualized. The advantage of the presented
algorithms and some basic observations will be discussed. Af-
terwards, the algorithms will be applied to higher-dimensional
cases. Finally, the presented techniques will be used to create
a model from the perceptions collected by a real humanoid
robot.

A. 2R-Mechanism

The first experiments were performed with a very simple
2R-mechanism in simulation. In general, the constraint space
(or workspace) is a biquadratic surface. It hence becomes
possible to visualize this manifold in order to give an insight to
its structure. In this example, the parameters of the kinematics
were chosen in a way that the constraint manifold coincides
with the surface of a torus (a1 = 100 mm, d1 = 0 mm,
α1 = 90◦, a2 = 50 mm, d2 = 0 mm and α2 = 0◦).
This example begins with a PSOM being trained by regularly
sampling a portion of the torus surface, see Fig. 2. The
underlying lattice in the parameter space has 5 × 5 knots
and, thus, the learned surface is a polynomial of degree 5. All
angles were chosen equidistantly between 0◦ and 160◦. As a
consequence, nearly a quarter of the torus’ surface is sampled,
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Fig. 5. PSOM surface learned from samples distributed over the whole torus-
shaped workspace. As in Fig. 2, an underlying lattice with 5×5 knots is used.
The training samples were degraded by artificial noise with σ = 2◦.

yielding 25 configurations in total. The very good interpolation
of the samples can be clearly seen on the lower left of Fig. 2.
In order to show the algorithm’s extrapolation capabilities,
the surface over the whole parameter space is shown in this
picture. It diverges quickly from the torus’ surface as soon as
one of the angles leaves the area covered by the lattice (i.e.
the area spanned by the samples).

If a KB-Map is trained under the same conditions, the
learned constraint space coincides exactly with the torus.
This is because there was no error in the training data and
32 = 9 points suffice to define the surface. The manifold and
the control net that carries all the information gained in the
learning process are displayed in Fig. 1.

Next we investigate the impact of simulated noise on these
results. To every angle θ1 and θ2 we add noise that is
normally distributed around 0◦ with standard deviation σ =
2◦. Since, even without noise, extrapolation is unacceptable
for the PSOM, in Fig. 5 we show the results of training
it with learning samples coming from the whole workspace.
The interpolation passes necessarily through all erroneous data
which results in a distortion of the surface. This drawback of
the PSOM algorithm, however, is solved in the algorithm’s
extension, the PSOM+ [13]. The effect is much less drastic as
the points the surface interpolates are determined by a metric
that regulates the curvature. This also removes the restriction
that bounds the training data to be on the knots of the
underlying lattice. The KB-Map reacts differently to the noise
(Fig. 6). On the one hand erroneous data are not interpolated
exactly as long as more than the minimum amount of samples
is provided (in order to find the least mean squares solution).
Moreover, the curvature is limited due to the biquadratic nature
of the surface much like that of the PSOM+. On the other hand,
extrapolation accuracy decreases largely but, in contrast to
PSOM, the curve always lies on ellipses in the main directions.
As a consequence, the extrapolation will always resemble a
distorted torus. In Fig. 6, the noisy samples come from the
same restricted workspaces as in Fig. 1 and 2. But, in spite
of this, the degradation of the topology in the whole domain
is more graceful than with the PSOM. Another important
observation is the fact that the extrapolation remains very good
if only one of the angle parameters (θ1 or θ2) lies outside the
interval used for training. In Fig. 8, the extrapolated regions are

Fig. 6. Illustration of the extrapolation capabilities and noise robustness of
the KB-Map (spline extension). The same setup used in previous experiments
(see Fig. 2 and Fig. 5) was used for training. Again, 25 samples obtained
with angles between 0◦ and 160◦ were degraded by artificial noise with
σ = 2◦. This time, however, they were not chosen equidistantly from the
interval but uniformly distributed. In the image one can see that, despite the
noise, the estimate still resembles greatly a torus. This is due to the KB-
Map’s property that all of the estimate’s main directions (optimally circles)
are never transformed to anything different than ellipses. Further, the estimated
surface does not necessarily pass through the erroneous training samples as
the number of samples is greater than the system parameters (32 = 9) and
a least squares solution can be found. These parameters are the points that
form the blue colored control net surrounding the surface, which lies in their
convex hull.

highlighted in red on the torus, whereas the original training
range is tinted blue.

In the following experiments, these regions are used for
measuring the quality of the extrapolation. They are subsets
of the n-dimensional parameter space that
• have the same volume as the training region,
• are connected to it in n−1 dimensions and are completely

disjoint with it.
The last two experiments on the torus deal with the in-
cremental gradient algorithms provided with KB-Maps. The
same torus as in the previous examples is learned with an
initial control net where all vertices lie at the origin. In
the sequence partially shown in Fig. 9, one can observe the
unfolding net and the manifold as it is adapting to the torus.
From the number of learned training samples one can see
that incremental learning is significantly slower than batch
learning. This is especially true if no approximate initial model
is available and the samples are learned only once.

Finally, a perfect model of the known torus is used as the
initial model for the incremental learning. Now we double the
minor radius, i.e. a2 = 100 mm. Fig. 7 displays the new model
after a single learning step (µ0 = 1). The new constraint space
is shown as a transparent surface in this image. One can see
that the new model touches the constraint space in the learning
sample whose position is indicated by the blue dot. In its main
direction the model still consists of ellipses. Hence, just one
learning step creates a model that is valid within a small region
around the training sample.
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(a) 5 samples (b) 10 samples (c) 20 samples (d) 40 samples

Fig. 9. Sequence showing the online learning process of a KB-Map at different numbers of learned samples. Unlike in the previous experiments, these
samples are uniformly distributed over the whole parameter space.

Fig. 7. Result of incremental learning after showing the fist training sample
(blue) when the kinematics has changed. The transparent surface depicts the
new constraint space after the minor radius was doubled.

Fig. 8. Example of a parametrized constraint space of a 2R-mechanism.
Highlighted are the regions from where training and test samples originate
(blue) and those used for testing the accuracy of the extrapolation (red). The
latter are portions of the parameter space that have the same volume as the
training region, that are connected to it but are completely disjoint with it.

B. Generic 6R-Mechanism

Now we explore if the conclusions above hold for a higher
number of active DoF. For the following experiments, a
simulated generic 6R-mechanism with six active rotational
DoF has been used. It is defined by the following Denavit-
Hartenberg parameters:

ai = 200 mm, di = 0 mm, and αi = 90◦ ∀i ∈ 1 . . . 6

An interpolation workspace, Θ6
in(δ), and an extrapolation

workspace, Θ6
out(δ), dependent on a wideness parameter δ,

ν

0

250

500

E
rr

or
[m

m
]

2·36 3·36 4·36 5·36 6·36 7·36 8·36 9·36 10·36

# samples

63, 81

Median interpolation error

Mean interpolation error

Median extrapolation error

Mean extrapolation error

Fig. 10. This diagram shows convergence of the KB-Map learning algorithm
when handling noisy training data. The green curves and regions show the
accuracy of the general test data from Θ6

in(45◦) and the blue indicates the
extrapolation test data from Θ6

out(45◦). For the general accuracy the bright
and dark green areas depict the standard deviation and the interquartile range.
Only the interquartile range is shown for the extrapolation test, i.e. 75% of
all errors lie within this interval. The average error in the localization of the
end-effector due to the artificial noise in the angle encoders is ν = 63, 81 mm.

are defined in analogy to Fig. 8 as:

Θ6
in(δ) = {(θ1, . . . , θ6) : |θi| ≤ δ, ∀i} (20)

and

Θ6
out(δ) =

6⋃
i=1

{(θ1, . . . , θ6) :

|θj − 2δ| ≤ δ ∨ |θj + 2δ| ≤ δ, ∀j 6= i ∧ |θi| ≤ δ}. (21)

Note that Θ6
out(δ) is twelve times larger than Θ6

in(δ). The
training set and the interpolation test set in our experiments are
built by sampling uniformly Θ6

in(δ). The extrapolation test set
is constructed in the same way from samples out of Θ6

out(δ).
Again, we will first investigate the KB-Maps and PSOM exact
learning and then later the KB-Maps gradient learning.

1) Exact Learning: The first two experiments use the KB-
Maps exact learning algorithm. They examine the relation
between accuracy, and noise intensity and number of training
samples, respectively. The goal is to assess the noise tolerance
of the KB-Maps. A normally distributed noise with a standard
deviation σ = 2◦ was added to each angle in the training
sets of different KB-Maps. The KB-Maps differ only in the
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2 · 3n = 1458
3 · 3n = 2187
4 · 3n = 2916
5 · 3n = 3645
Position noise

Fig. 11. Relation between accuracy and noise intensity when applying KB-
Maps exact learning. Models with differently sized training sets are compared.
The mean errors over the test data from Θ6

in(90◦) and extrapolation data from
Θ6

out(90◦) are indicated as continuous and dashed lines, respectively.

cardinality of their training sets, with elements drawn from
Θ6
in(45◦). After learning, the models were validated using

a test set of 3000 samples drawn from the same workspace
to test interpolation accuracy and using another set of 3000
samples drawn from Θ6

out(45◦) to evaluate the extrapolation
accuracy. Unlike the training sets, there was no noise in these
two validation sets. The results are shown in Fig. 10. One
can see that with the acquisition of about 36 samples, the
mean error drops below the mean error of the training data.
This means that it is even possible—given enough data—to
compensate an erroneous perception up to a certain degree.
Thanks to the information on the kinematics function encoded
in the model, the amount of data required is small.

Furthermore, it is possible to see that the error is not
normally distributed (as the mean and median errors do not
coincide) and that few outliers with high errors occur.

During the second experiment, the noise intensity is vari-
able. The training set and the interpolation test set were drawn
from Θ6

in(90◦), while the extrapolation test set was drawn
from Θ6

out(90◦). Except for that, the conditions were the
same as in the experiment before. The outcome is shown
in Fig. 11. As has been visualized in Fig. 6 for the 2R-
mechanism, the extrapolation error increases rapidly as soon as
training data is noisy. Interestingly, the position errors and the
noise intensity are proportional in this diagram. The estimates
produced by the models, again, can be more accurate than the
noisy observations. For interpolation this happens with about
3 ·36 samples. As a consequence, this means that this number
suffices to deal with any (reasonable) intensity of noise.

The last experiment in this section compares these results
with those from the PSOM+ algorithm. A regular lattice of 36

was created in Θ6
in(90◦) and used by PSOM+ nets that differed

in the cardinality of their training sets and the smoothness
parameter denoted as λ that influences the curvature metric.
Results are depicted in Fig. 12. It is easy to see that using
PSOM+ it is not possible to create an exact or even an
accurate model. One can observe that the influence of noise is
smaller than for the KB-Map, but even in the absence of noise
(σ = 0◦) the mean error in interpolation never falls below
300 mm. For a lattice of this size, the error cannot be improved
by increasing the number of training samples. To achieve
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σ
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λ = 0.5, 2 · 36 = 1458

λ = 0.5, 3 · 36 = 2187

λ = 0.5, 4 · 36 = 2916

λ = 0.5, 5 · 36 = 3645

λ = 0.1, 2 · 36 = 1458

λ = 0.1, 3 · 36 = 2187

λ = 0.1, 4 · 36 = 2916

λ = 0.1, 5 · 36 = 3645

Position noise

Fig. 12. Results of the PSOM+ algorithm learning capabilities in the
conditions used in Fig. 11. Mean errors for interpolation and extrapolation
(dashed lines) are shown in relation to variable noise.
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δ = 10◦

δ = 10◦

δ = 15◦

δ = 15◦

δ = 25◦

δ = 25◦

δ = 45◦
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δ = 45◦
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Mean interpolation error

Mean extrapolation error

Mini-Batch learning

Fig. 13. Results of using the KB-Maps incremental learning algorithm to
adapt to the usage of a tool. Workspace of different size δ (see (20) and (21))
were used. The horizontal grey line represents the mean data noise.

a higher interpolation accuracy, the number of knots has to
be increased, resulting in a higher computational demand
w.r.t. time and memory and possibly number of samples. In
extrapolation, the difference in error is more blatant, especially
when the intensity of noise is low.

2) Incremental / Gradient Learning: This experiment
demonstrates the capability to learn the robot usage of a
tool with an incremental learning scheme using the gradient
algorithm of KB-Maps. Instead of learning the kinematics
model ‘from scratch’, we use an initial model, i.e. the exact
representation of the robot kinematics without the tool. After
having created this initial model, the length of the last element
of the kinematic chain was increased from the initial a6 =
200 mm to a′6 = 400 mm. As in previous experiments, a
noise with standard deviation σ = 2◦ was applied to only
the training data angles. The experiment was performed with
KB-Maps using sample sets from Θ6

in(δi) and Θ6
out(δi) with

different angles δi. The goal is to evaluate the hypothesis
that the gradient algorithm improves local estimates quickly.
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The results are shown in Fig. 13. The error drops very fast
for small values of δ and soon approaches the error in the
perception caused by noise. It is important to see that this
happens at a number of training samples smaller than the
minimal number required for learning, which is 36 = 729.
However, the more locally the training samples are distributed,
the less the learning affects the extrapolation accuracy. This
means that incremental learning very quickly improves the
accuracy in a region of the workspace. If the robot has to
perform a single action repeatedly then this means that the
required kinematics knowledge for this action can be acquired
really fast. In Fig. 13, one KB-Map applies a variation of the
learning scheme known as mini-batch. The learning samples
are divided into blocks of constant size (in this experiment
the size is 27) that are learned one after another. The data
contained in the blocks are learned, however, more intensively
by being fed to the algorithm repeatedly. Using this method,
convergence proved to be quicker the bigger the block size
chosen. Note that this evaluation can be performed at any
arbitrary configuration of the robot when using the Bézier-
Spline variant, whereas the classical KB-Map is more bound
to their origin in the parameter space.

C. Humanoid Robot

(a) Manual movements via zero-
force control.

(b) Close-up of the optical
marker attached to the right
hand.

Fig. 14. The humanoid robot ARMAR-IIIa that was used for the experiments.

Here we evaluate KB-Maps on the humanoid platform
ARMAR-IIIa [18] (see Fig. 14(a)). The ARMAR-IIIa robot
contains seven independent degrees of freedom (DoF) in each
arm, one in the hip and three in the head. As our approach
aims at hand-eye coordination, all experiments include joints
of both the head and one arm. Training samples were generated
by manually moving the robot arm via zero-force control (see
Fig. 14(a)). Joint values were then read directly from the motor
encoders, which provided very noisy values in this robot.
An optical marker (a red ball signaling the end of a tool)
attached to the wrist was tracked by the built-in stereo camera
system (see Fig. 14(b)) and was considered as the end-effector.
The two experiments presented below use original KB-Maps
without Bézier splines.
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Mean simulation error

Fig. 15. Performance of the exact learning method for different numbers of
training samples. The mean and median errors (dark green), the interquartile
range (green area) and the standard deviation (light green area) are shown for
the experiment on real data. For comparison the mean errors from simulation
(blue) are also included in this image.

In the first experiment, only five joints of the robot were
effectively sampled as described to produce 1500 kinematic
samples, of which 1000 were used as training samples and the
remaining 500 ones as test set. Fig. 15 displays the result of
using the exact algorithm with several sets of training samples
of different cardinality. A second KB-Map was trained using
exactly the same joint angles, but with the associated CAD-
generated positions (simulated kinematics) and with an added
noise of σnoise = 20 mm, which is approximately of the same
magnitude as the one in the perception system. As one can
see from the similarity of both curves, the algorithm performs
on real hardware as predicted by the simulation.

In the second experiment, the initial KB-Map implements
an exact representation of the FK obtained from the CAD
model of ARMAR-IIIa. Training and test data were produced
in the same way as above after shifting the optical marker
250 mm to simulate tool usage. In this case, six joints were
used to obtain 2200 samples, distributed in two sets of 700
and 1500 for training and testing, respectively. The gradient
algorithm using a mini-batch size of 10 samples was used for
learning. The results, displayed in Fig. 16), show that even
with the high amount of noise in the encoders of ARMAR-
IIIa plus the intrinsic noise in the tracking system, KB-Maps
are able to quickly reduce the error to less than a quarter of
the initial one using only 10 training samples. Note that this
happens in the context of a rather high-dimensional kinematics
(6 effective DoFs).

V. CONCLUSIONS

A novel approach for learning the FK mapping based on
a special-purpose model was presented. Inspired by PSOMs,
we aimed to overcome the large number of robot movements
required to get a good approximation of FK.

First, since FK of angular robots is a composition of
circles, models based on polynomials (as PSOM) cannot
exactly represent FK. Thus, we have chosen a model based on
rational Bézier polynomials—the Kinematic Bézier Maps—
which are a family of functions that includes the description
of any angular FK. Besides, these functions have an important
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Fig. 16. In this image, the results of the gradient learning algorithm on the
humanoid robot ARMAR-IIIa are presented. Maximal and median errors and
the standard deviation (indicated by the green area) are shown in relation to
the number of training samples.

advantage: adjusting the model to a set of sample points is a
linear least squares problem.

Second, we have introduced a priori knowledge of the
function to be learned in the model which is the key to
reducing the number of samples. This has been achieved by
restricting the model to represent only compositions of ellipses
of a certain family which always includes the circle. The
constraints implied by this restriction are easily integrated
in the linear least square problem. The approach can be
summarized as reformulating the problem in a larger space—
the positions of the Bézier control points in projective space—
where it becomes linearly solvable.

This higher-dimensional problem can be easily solved with
any standard linear least-squares method, yielding our exact
learning method. Alternatively, the least squares cost has a
simple derivative, encouraging alternative algorithms, the so-
called gradient learning methods, which are well suited for
online learning. Using the exact method, in the absence of
noise, it is possible to learn exactly a FK with only 3d

samples, where d is the number of robot DoFs, which none
of the previous works was able to accomplish. And so, with
an arbitrary sample distribution. This means that, even if
samples are grouped in a very reduced zone of the workspace,
interpolation and extrapolation are perfect.

Another advantage of the model is that the Jacobian can be
calculated very efficiently. This means that KB-Maps are very
appropriate for approaches computing IK using a FK model
through some kind of optimization. KB-Maps may potentially
suffer from numerical problems when joint values are very
close to ±π, but these can be easily avoided with a variation
using Bézier-Splines, i.e., a combination of three Béziers with
common parameters always in a safe domain range.

We have carried out a lot of simulated experiments studying
the relation between interpolation (and extrapolation) accuracy
and the number of training samples and level of noise. The
result is that, with a low level of noise, KB-Maps can be
extremely accurate—even in extrapolation—with relative few
training samples. Even under moderate noise, KB-Maps can
be as accurate as desired if enough data are provided. And
this accuracy is obtained with few parameters. This is in con-
trast to approaches using general-purpose models that do not

only require progressively larger number of samples to reach
arbitrary levels of accuracy, but also an indefinite increase in
their complexity (hidden units in feedforward networks, grid
points in PSOMs, stored points in Locally Weighted Projected
Regression).

Another conclusion of our experiments is that there seems
to exist a threshold number of training samples that suffices to
get an accuracy better than that in the training data, no matter
the level of noise. In general, our learning algorithm performs
very well if enough noisy samples from the whole workspace
are provided. Even if the noisy samples are restricted to a
local zone of the workspace, we obtain good interpolation
and extrapolation, although the last one requires more sam-
ples. In comparison to other approaches, KB-Maps are more
advantageous when the level of noise is not very high.

Finally, we have carried out experiments on real hardware,
a humanoid robot under noisy conditions, proving that our
algorithms are able to quickly learn a good approximation of
the kinematics of the robot from inaccurate measures.

The behavior of KB-Maps is thus satisfactory in a wide
range of conditions. But, if the samples are noisy, few and
local, the algorithm performs poorly, especially in extrapola-
tion, where it can exhibit very large errors. This is due to
the fact that with noise and scarce data, the isoparametric
curves of the model become often strongly elliptical. This
provides an idea of how to improve our system under these
conditions, although there does not exist any easy solution
because the constraints to enforce complete circularity are non-
linear. Another challenging future work is to deal not only with
rotational joints, but to generalize the model for robots having
any combination of prismatic and rotational joints.

Finally, we have to point out that KB-Maps—in spite
of their improvements—cannot escape from the exponential
growth of required training samples as the number of robot
DoFs increases. Because of this, for robots of seven or
more DoFs, it is advisable to complement KB-Maps with a
decomposition approach.

APPENDIX I
PROOF 1

In this section, it will be shown that the tangent of the
half angle substitution applied to a Bézier satisfying the circle
conditions presented in Section II-B exactly coincides with
the angular parameterization of a circle. This will be shown
for angles on the two-dimensional unit circle without loss of
generality1. The following is a set of control points satisfying
the conditions in 2D space:

b0 =
(

cosα, sinα, 1
)T
,

b1 = cosα ·
(
0, 1

cosα , 1)T ,

b2 =
(
− cosα, sinα, 1

)T
.

Since the affine image of the two-dimensional Bézier

spanned by these control points b =

(
b1
b2

)
is a rational

1A general circle in 3D space can be obtained by adding a zero-valued
affine coordinate and then translating, scaling, and rotating the control points
of the unit circle. Affine transformation of the control points results in affine
transformation of the Bézier curve.
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parameterization of the circle, for each |θ| < 180◦ there exist
a unique s such that(

cos(θ)
sin(θ)

)
!
=

(
b1(s)
b2(s)

)
=

(
4s2·cosα−4s2+cosα+1
−4s2·cosα+4s2+cosα+1

4s sinα
−4s2·cosα+4s2+cosα+1

)
(22)

The relation between θ and s can be determined by the
trigonometric identity

tan(
θ

2
) =

sin θ

1 + cos θ
=

b2(s)

1 + b1(s)

= 2s · sinα

cosα+ 1
= 2s · tan(

α

2
),

This leads to

s =
tan(θ/2)

2 · tan(α/2)

Note that for θ = ±180◦ the Bézier parameter maps to ±∞.

APPENDIX II
ISOPARAMETRIC CURVES OF THE MULTIDIMENSIONAL

MODEL

A d-dimensional tensor product Bézier form of degree 2 in
which the vector i is spelled out for convenience has the form:

b(s1, . . . , sd) =

2∑
i1,...,id=0

bi1,...,id ·B2
i1,...,id

(s1, . . . , sd). (23)

Without loss of generality, we show the isoparametric curve
of this Bézier form when s1 is the free variable. The above
equation can be rewritten as:

2∑
k=0

B2
k(s1)

( 2∑
i2,...,id=0

B2
i2,...,id

(s2, . . . , sd) · bk,i2,...,id
)
. (24)

We can define a new function qk(s2, . . . , sd) to rename the
expression in the big parenthesis; when s2, . . . , sd are fixed,
qk is a constant and (24) becomes a single-variable Bézier
curve defined by the control points q0, q1 and q2 :

2∑
k=0

B2
k(s1) · qk(s2, . . . , sd). (25)

Let the homogeneous coordinates of q0, q1 and q2 be
ω0, ω1 and ω2, respectively. To be an ellipse, ω0=ω2 and
ω1/ω0 < 1 must be satisfied. Remember that we set the
weights γi1,i2,...,id of control points bi1,...,id to γones(i1,...,id),
where ones() is defined as in section II-C and γ is an arbitrary
constant minor than one.

The values of the ω’s are then

ω0 =

2∑
i2,...,id=0

B2
i2,...,id

(s2, . . . , sd) · γ0,i2,...,id

ω1 =

2∑
i2,...,id=0

B2
i2,...,id

(s2, . . . , sd) · γ1,i2,...,id

ω2 =

2∑
i2,...,id=0

B2
i2,...,id

(s2, . . . , sd) · γ2,i2,...,id

Everything in the development of ω0 is the same as that in ω2,
except the first index in the weights, which is 0 for ω0 and
2 for ω2. Since γ0,i2,...,id = γones(i2,...,id) and γ2,i2,...,id =
γones(i2,...,id), we conclude that ω0=ω2. Similarly, ω0 and ω1

differ only in the first index of all involved weights. Those
in ω1 are γ1,i2,...,id = γones(i2,...,id)+1, which means that they
correspond to those involved in ω0 multiplied by γ. Therefore,
the conditions ω0 = ω2 and ω1/ω0 = γ < 1 are met which
concludes the proof that, with the chosen weights for control
points bi1,...,id , the isoparametric curves of (23) are ellipses.

APPENDIX III
BÉZIER SPLINE CIRCLES

The parameter transformation τ quickly produce large func-
tion values when it approaches the pole θ = ±π (see App.
I). The main idea to avoid this numerical problem is to divide
each main direction ellipse of the tensor product representation
into three curve segments. Each segment will have its own
Bézier form whose parameter will always lie within the safe
domain [−π3 , π3 ). The domain of θ is subdivided into three
sub-ranges, [−π,−π3 ), [−π3 , π3 ) and [π3 , π). For each input
joint angle, the right Bézier has to be chosen depending on
the sub-range θ lies on. Since the non-central control points
of each Bézier will be shared by two Bézier’s, we need in
total six control points. In a Bézier curve with control points
b0, b1 and b2, the straight segment b0b1 is tangent to the
curve at b0 and the segment b1b2 is tangent at point b2.
Therefore, to guarantee an smooth connection from one Bézier
to the next, the control point common to two Bézier curves
must be collinear with the central control points of the two
Bézier forms. Moreover, we will require that this common
point is just in the middle of the two central control points.
These additional constraints compensate for the increase in the
number of control points that, otherwise, would require also a
higher amount of training data to determine the model. Finally
we set α = cos π3 , because in the case of the ellipse being a
circle, this setting allows to represent it without error (see the
equilateral triangle formed by the control points in Fig. 17).

All this will be illustrated for the blue spline segment at the
top of Figure 17. The affine part of the spline is

b0 ·B0(τ(θ)) + α · b1 ·B1(τ(θ)) + b2 ·B2(τ(θ)), (26)

while the homogeneous coordinate is

B0(τ(θ)) + α ·B1(τ(θ)) +B2(τ(θ)), (27)
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θ

Fig. 17. The subdivision of a circle into the three segments of the Bézier
spline representation.

which is the same for the three splines. After applying the new
constraints we get:

b0 =
c0 + c1

2
,

b1 = c1,

b2 =
c2 + c1

2
. (28)

Inserted in eq. 26, this results in

c0 + c1
2

·B0(τ(θ)) + α · c1 ·B1(τ(θ))

+
c2 + c1

2
·B2(τ(θ)).

Finally, this leads to a reformulation of this spline segment:

c0 · C0
0 (θ) + c1 · C0

1 (θ) + c2 · C0
2 (θ), (29)

using a new set of basis polynomials defined as:

C0
0 (θ) := 1

2 ·B0(τ(θ)),

C0
1 (θ) := 1

2 ·B0(τ(θ)) + α ·B1(τ(θ)) + 1
2 ·B2(τ(θ))

= 1
2 · τ(θ)2 + cos 60◦ · 2(1− τ(θ)) · τ(θ)

+ 1
2 (1− τ(θ))2 = 1

2 (τ(θ) + (1− τ(θ)))2

= 1
2 ,

C0
2 (θ) := 1

2 ·B2(τ(θ)). (30)

The other spline segments can be constructed analogously
by swapping the control vertices in eq. 30 and mapping the
angle θ into the support interval of the Bézier segments. Hence,
the more general definition of the whole spline curve is given
by:

b(θ) = c0 · C0(θ) + c1 · C1(θ) + c2 · C2(θ),

where

C0(θ) =


1
2 , θ ∈ [−π,−π3 )
1
2 ·B0(τ(θ)), θ ∈ [−π3 , π3 )
1
2 ·B2(τ(θ−π3 )), θ ∈ [π3 , π)

C1(θ) =


1
2 ·B2(τ(θ+π

3 )), θ ∈ [−π,−π3 )

(τ(θ)) 1
2 , θ ∈ [−π3 , π3 )

1
2 ·B0(τ(θ−π3 )), θ ∈ [π3 , π)

C2(θ) =


1
2 ·B0(τ(θ+π

3 )), θ ∈ [−π,−π3 )
1
2 ·B2(τ(θ)), θ ∈ [−π3 , π3 )
1
2 , θ ∈ [π3 , π)

.

(31)

Still, all techniques presented in the sections above also
apply for the new form of the Bézier models—one only has
to substitute all Bernstein polynomials by the new basis Ci(θ).

APPENDIX IV
THE JACOBIAN OF THE FORWARD KINEMATICS

The Jacobian of the Forward Kinematics

Jb(θ) :=

(
∂

∂τ(θ1)
b(τ(θ)), . . . ,

∂

∂τ(θd)
b(τ(θ))

)
.

plays an important role, for instance, in iterative algorithms
that try to solve the inverse kinematics problem. As it has
to be obtained frequently, a rapid calculation can be crucial
for real-time applications. When using the Bézier form of
the forward kinematics, its calculation is very fast as only
matrix-vector multiplications are involved that can be directly
accelerated by parallel hardware. A partial derivative of a
regular tensor product Bézier function of degree n is another
Bézier function of degree n − 1. Therefore, the Jacobian
is constructed by calculating a control net for each partial
derivation. These control nets are invariant w.r.t. the function
parameters, allowing to be computed only once during an
initializing process. For the KBM, however, we use a sightly
different construction to that in eq. 2 in order to speed up the
calculus:

∂

∂sk
b(s) = n ·

∑
i

∆kbi ·B2
i (s), (32)

where ∆kbi =

{
bi+1k − bi , ik ∈ {0, 2},
1
2 · (∆kbi+1k + bi−1k) , ik = 1,

(33)

i goes through I2, and 1k denotes a vector with a one at the
k-th position and otherwise zeros, and ik the k-th component
of the index vector i. A degree elevation [20] in direction
k takes place directly after the differentiation by defining an
intermediate collinear control vector in eq. 33 (in the case
of ik = 1). This way the derivative is also a quadratic a
function. The advantage of this redundant representation is
that the set of Bernstein polynomials in (32) is the same for
all partial derivatives and the original function. Thanks to this,
the evaluation and calculation of the Jacobian can be greatly
accelerated. The partial derivatives of rational polynomials
b(s) = b(s)

γ(s) resulting from the projection onto the affine space



14

of homogeneous poylynomials

b(s) =

[∑
i γibi ·Bi(s)
γ(s)

]
=

[
b(s)
γ(s)

]
are computed by means of the quotient rule without the need
of a lot of additional calculations:

∂

∂si
b(s) =

∂

∂si

b(s)

γ(s)
=

∂
∂si

b(s) · γ(s) + b(s) · ∂
∂si
γ(s)

γ(s)2
.

(34)
Note that we still have to apply the inner derivative of τ(·) in
order to obtain the final partial derivative.

ACKNOWLEDGMENT

The authors would like to thank S. Klanke and H. Ritter
for providing the PSOM+ toolbox and G. Karich who helped
performing the experiments involving the PSOM+.

REFERENCES

[1] S. Ulbrich, V. Ruiz, T. Asfour, C. Torras, and R. Dillmann, “Rapid
learning of humanoid body schemas with kinematic bézier maps,” in
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