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Abstract—1In robotics, the term body schema refers to the
representation of the own body and its sensorimotor relations
that are obtained by machine learning, ideally, from self-
observation. It grants the robot a higher degree of autonomy
as it allows the compensation of deformations of the body, for
instance, those induced by holding a tool, without the need of
a manually created explicit model. The forward Kinematics is
an important aspect of the body schema and the Kinematic
Bézier Maps are a class of generic linear implicit models that
can exactly encode it. Under ideal circumstances, the learned
model can reliably predict the forward kinematics even for joint
configurations that lie far away from those used for training
(extrapolation). This does not hold, however, if the training
samples lie very close together and the sensor signals are
noisy—which is a common case when movement is limited when
learning on a humanoid robot from pure self-observation. The
model found by learning that minimizes the mean squared error
(MSE) is then degenerated and not capable of extrapolation.
This paper presents a solution to this problem by optimizing
additional non-linear symmetry constraints in parallel to in-
cremental learning. That way, the tolerance to noise can be
increased and extrapolation be improved even under difficult
conditions.

I. INTRODUCTION

Learning forward sensorimotor maps—an important as-
pect of the body schema—is a supervised function regression
process that creates an implicit model function of the non-
linear sensorimotor relations from demonstrated examples of
control signals (input) and sensor signals (output) during
training. While many sensorimotor maps are important to
robot control, such as dynamics and haptic, this work focuses
on the forward kinematics only. Many different models and
associated learning algorithms have been proposed for this
task in the literature (see [1], [2] for surveys). Artificial
neural networks, for instance, Kohonen maps [3], have been
used successfully for robots with few degrees of freedom [4],
[5], [6], [7] while, more recently, locally weighted learn-
ing techniques such as receptive fields weighted regression
(RFWR) [8] and Locally Weighted Projection Regression
(LWPR [9], and the related Gaussian Mixture Regression
(GMR) [10] and the eXtended Classifying System for Func-
tions (XCSF) [11] are currently the predominant methods.
Their model function is a composition of linear models that
partially approximate the latent function in the vicinity of ob-
served training data. The model predicts values by evaluating
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their sum while each model is weighted by its distance to the
query signal. Local learning usually is very fast but, on the
downside, it generalizes only between samples it observed
during training. To cover a large workspace of the robot
generally requires an amount of linear models exponentially
in the number of the robot’s degrees of freedom (i.e., the
number of input signals the output relates to). The algorithms
mainly differ in how they create linear models. GMM and
XCSF optimize their location and orientation, while LWPR
reduces the local input dimensions with an incremental
modification of the Parial Least Squares algorithm [12].
Another alternative for sensorimotor learning is Gaussian
Process Regression (GPR) [13], [14]. In this probabilistic
approach, model predictions are based on the similarity of the
query input to the experienced training data. This measure
of similarity is encoded in a covariance function which, for
instance, results in a smooth approximation of the latent
function when using the squared exponential kernel.

On the one hand, these models are very general an can
be applied to any function regression problem. This means
also, on the other hand, that a better performance is to
be expected from more specialized methods. The recently
presented Kinematic Bézier Maps [15], [16] are such models
that are specialized to kinematic learning and permit exact
encoding (although they can be modified for learning the
inverse dynamics [17]). The models are global and can hence
not only generalize between observed configurations but also
make predictions for completely unknown configurations—
given ideal training. This is the case, if during training, a
wide range of joint configurations is observed, the signals
are not very noisy, and a sufficient quantity of training data
can be acquired. In reality and especially in the case of
humanoid robots learning from self-observation, this is often
not the case for the following reasons: i.) Self-observation
is a constraint that limits possible movements as the robot’s
hand or tool center point (TCP) have to remain in the field
of vision. ii.) The output signals used for learning (i.e., the
position of the TCP) has to be reconstructed from stereo
vision which is an error prone process. iii.) The arms of
an anthropomorphic robot have many degrees of freedom
and the latent function depends on many independent inputs
as a consequence. The amount of observations required for
learning exponentially grows with this number, a problem
that is inherent in sensorimotor learning and is that referred
to as the curse of dimensionality.

On a humanoid robot, it is consequently complicated to
gather enough data to build a globally valid model. This may
result in a degenerated implicit representation that prevents



Fig. 1. The implicit KBM representation of the workspace of a simple robot
with two revolute joints with perpendicular axis. The robot’s workspace (all
reachable positions) lies on the surface of a torus (green) and its implicit
representation defined by the KBM forms a net of connected vertices (blue).

accurate extrapolation. This problem can be addressed by
decomposition techniques [18] and incremental refinement.
In this work, we present a third option that compensates
difficult training conditions to a certain degree. The KBM are
geometric models and can be further restricted to kinematics
by means of non-linear symmetry constraints that cannot be
considered in the existing (linear) learning algorithms. In this
work, their application in parallel to the incremental learning
is presented on a theoretical basis.

This paper is structured as follows: The following section
briefly presents the KBM and its learning algorithm. Af-
terwards, the conditioning during learning is presented and
illustrated for low-dimensional cases. In the experiments sec-
tion, a comparison between unconditioned and conditioned
learning performed in simulation is presented. The document
concludes with a summary and an outlook on future research.

I1. KINEMATIC BEZIER MAPS

A. Learning the model

The KBM originate from the domain of projective geome-
try and are based on the observation that any conic, including
circles, can be mapped onto a parabola by a projection [19].
That way, it is possible to parametrize the circular trajectories
the TCP moves on when only one revolute joint is moving.
In the KBM, this circular movement is represented by in
a rational Bézier form. The whole kinematics—the product
space of all rotations—can then be formulated the tensor
product
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where

d is the number of joints the forward kinematics
depends on,
6 is the robot’s joint configuration (61,...,04),
i € I, is an index out of an index set I? = {0,1,2}¢ that
addresses the 3¢ model parameters,

Bi(t) =Il;e; B2(t) are products of Bernstein polynomi-
als,
b; are vertices of the control net—these are the model
parameters determined by learning—,
v; the projective weights of the control vertices,
7(0) is a tangent half-angle substitution that maps the
joint angles to the necessary parameters where =
(1(61) ...7(64).

There is a-priori knowledge embedded in this formula
that specializes it to kinematics: i.) The approximation with
rational quadratic functions itself and ii.) the values for the
weights ;. For every three points with identical indices
except for the j-th coordinate, that is,

it=(..,0,..)
igz(...,},...% 2)
iy =(120)

it has to apply that the points form an isosceles triangle with
a common angle « and that

vi, = cos(a) - yi, = cos(a) - V4, 3)

holds. Only then, the resulting Bézier curve is a circular
arc. That way, the only unknown parameters remaining in
Eq. 1 are the control vertices b; that appear linear in the
equation. Learning consequently reduces to solving a system
of linear equations. Exact batch learning can be achieved
by linear least squares and incremental online learning by
normalized least squares which is also known as é-rule in
machine learnig [20]. An example of a learned KBM is
illustrated in Fig. 1 for a kinematics with—for the purpose
of visualization—only two rotary degrees of freedom with
orthogonal axes such that its workspace has the shape of a
torus.

However, the first condition requiring the triangle o to be
isosceles with a common angle cannot be expressed in linear
terms. It can be neglected under good conditions but, if not,
the circular trajectories degenerate to ellipses that produce a
high extrapolation error (see Fig. 3). The novel conditioning
presented in the following resolves this problem. Despite the
complex mathematics, the model and its learn algorithms can
be implemented and verified very easily.

B. Additional symmetry conditions, o the only parameter

The symmetry constraint that three neighboring control
vertices with respect to their indices (see Eq. 2) have to
form an isosceles triangles with a common angle « cannot
be stated in a linear form. One possibility solution—without
the need to modify the existing learning algorithms—is the
parallel execution of the incremental online learning and a
non-linear optimization enforcing the symmetry constraint.
This optimization can be achieved with the Gauss-Newton
method. The formulae for the isosceles constraint is derived
first: For every control vertex b;, an error function d(b;) can
be defined for which the minimizing control point’s location



is searched for:
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where, using the following substitution for simplification,

a = b(.,.,?,...)y b= b(.,.,]{,,..)y C .= b(...,2,...)

the mean of the squared sum of the residues r;

rii = lla—b]* = [b—c|* ®)
is minimized. Together with the Jacobian of r;
2(aj —bj): i =0,
2(¢j—a;): =1, (6
2(b; —¢j) 4 =2,
the control vertex can be updated according to

bi=b;+v-(J-J)-J' 1, (7

where the factor v € (0, 1) regulates the step size.
In order to further ensure the that the common angle equals
«, another minimization term with residuals 7; is defined:

7ii = [[Y/2(a + c) = bl — Yatan® (@) - [|/2(a — €)|I* (8)

Analogously, the Jacobian can be derived,

(aj 4+ cj — 2bj) —1/2tan?(a)(a; —¢;) :i; =0,
Ji = 2-bj—(aj+cj) vip =1,
(aj 4+ cj — 2b;) +1/2tan®(a)(a; —¢;) @4 = 2.
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The concatenation of r;, J and 75, J inserted in Eq. 7 yields
the final formula of the optimization.

III. EVALUATION

Fig. 2. Learning from noisy data with symmetry conditions. Despite the
noise, the manifold that represents the expected workspace (green) still
resembles the real workspace (torus) in Fig. 1 as the vertices of the KBM’s
control net (blue) form isosceles triangles.

We conducted two experiments to evaluate the condition-
ing of the incremental learning. They vary in the number
of degrees of freedom the simulated kinematics used in the
experiments. The first aims at the visualization of the differ-
ences and the second simulates a more lifelike application
scenario.

Fig. 3. Learning from noisy data without applying symmetry conditions.
After learning from noisy data, the manifold that represents the expected
workspace (green) is clearly deformed. The vertices of the KBM’s control
net (blue) do not form isosceles triangles.

A. Simulation with two degrees of freedom

In the first experiment, the same simulated kinematics used

to produce Fig. 1 provided the training data for the incre-
mental learning. Its first segment has a length of 200mm,
its second is of length 75Smm. The joint axes of its revolute
joints are perpendicular, thus its work space is shaped like
the surface of a torus. In addition, artificial noise with an
standard deviation of 20mm is added to the position of
the TCP. Two KBM models—only one of them fulfilling
symmetry conditions—are trained with identical 30 training
samples created from random joint configurations between
+45°. The models and their prediction of the complete
workspace of the robot are depicted in Fig. 2 and Fig. 3.
The first picture shows that the symmetry constraints leads
to a good approximation of the complete workspace despite
the noise. During learning, the J-rule and the non-linear
optimization were performed in parallel. It turned out that
results were best for a smaller adaptation rate v = 0.3.
Higher values gave a higher priority to maintaining the
symmetry than the regression to the kinematics.
The second picture shows that the missing symmetry in
the control net affects the extrapolation of the KBM. The
manifold is deformed and has little in common with the
real workspace of the robot. An important observation made
during the experiments is that the errors over the training data
is almost identical for both models. It can be concluded that
the constraints during learning mainly affect the extrapolation
of the model.

B. Simulation with five degrees of freedom

In this experiment, we used a simulated kinematics with
five revolute joints with perpendicular axis and identical arm



TABLE I
RESULTS OF THE EXPERIMENTS WITH FIVE DEGREES OF FREEDOM.

Experiment Constrained learning  Unconstrained learning  Batch learning  Expected (Noise)
Training data set mean 129.98 136.80 75.135 79.526
std 58.870 60.306 32.860 33.152
median 120.84 132.80 71.055 78.182
iqr 72.139 79.746 45.879 44.381
max 457.20 374.74 197.48 240.97
Test data set (extrapolation) mean 464.68 527.80 1742.8 —
std 475.80 512.56 4854.5 —
median 303.45 365.93 368.12 —
iqr 407.22 462.46 1267.6 —
max 32333 5024.5 6.8924e+04 —

elements of length 200mm. Again, we incrementally trained
two KBM where only one used the constrained learning.
The adaptation rate v of the non-linear optimization has
been set to 1.0 in this experiment as the step size decreases
with the number of degrees of freedom. Training samples
(800) were created using joint configurations with angles
between +22.5°. Artificial noise with a standard deviation
of 50mm simulates the difficult conditions expected on a
real robot. After training, the models are evaluated against
600 configurations with joint angles between +90° (without
noise) and the statistics of the prediction error is computed
(mean, standard deviation, median, interquartile range and
maximum). Additionally, the models are compared against
a KBM learned with unconstrained batch learning from the
same training set. The results are shown in Table 1. From
the table, it can be concluded that the constrained learning
performs best in terms of the extrapolation. The higher error
(compared to batch learning) on the test set can be explained
because of the slow final convergence rate of the d-rule.
The highest error on the extrapolation has the batch learning
which can be explained by over fitting. This also explained
why its errors on the training data is lower than the expected
errors.

IV. CONCLUSION

In this paper, we presented a novel method to increase the
performance of learning robot kinematics with KBM models
under difficult conditions. By means of symmetry constraints
enforced by a simultaneous non-linear optimization the ex-
trapolation capabilities of the incremental learning can be
drastically improved. That way, the algorithms can be better
applied on robots learning their kinematics from pure self
observation—especially humanoids.

Future research will include the investigation of the impact
of the adaptation rates and the inclusion of the non-linear
constraints into a batch learning algorithm.
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