
Efficient Motion Planning for Humanoid Robots using Lazy Collision
Checking and Enlarged Robot Models

Nikolaus Vahrenkamp, Tamim Asfour and Rüdiger Dillmann
Institute of Computer Science and Engineering

University of Karlsruhe,
Haid-und-Neu-Strasse 7, 76131 Karlsruhe, Germany

Email: {vahrenkamp,asfour,dillmann}@ira.uka.de

Abstract— Motion planning for humanoid robotic systems
with many degrees of freedom is an important and still
generally unsolved problem. To give the robot the ability of
acting and navigating in complex environments, the motion
planner has to find collision-free paths in a robust manner. The
runtime of a planning algorithm is critical, since complex tasks
require several planning steps where the collision detection
and avoidance should be accomplished in reasonable time. In
this paper we present an extension of standard sampling-based
techniques using Rapidly Exploring Random Trees (RRT). We
extend the free-bubble path validation algorithm from Quinlan,
which can be used to guarantee the collision-free status of a
C-space path between two samples. By using enlarged robot
models it is possible to avoid costly distance calculations and
therefore to speed up the planning process. We also present
a combined approach based on lazy collision checking that
brings together the advantages of fast sampling-based and exact
path-validated algorithms. The proposed algorithms have been
evaluated by experiments on a humanoid robot in a kitchen
environment and by a comparison to a validation based on
Quinlan’s free bubbles approach.

I. INTRODUCTION

Motion planning is an important and generally unsolved
topic for robotic systems with many degrees of freedom
(DoF). A motion planning algorithm should find a trajectory
of a kinematic chain that is collision-free and moves the
tool center point (TCP) from a start to a goal position. The
algorithms have to fulfill several requirements, such as low
runtime, short path length or high obstacle distance. Since the
motion planning problem is known to be PSPACE-hard [1],
complete algorithms ([2], [3]) are too time consuming and
therefore less suitable for real-time tasks of highly redundant
robots which operate in a cluttered environment. Over the
last years probabilistic, sampling-based approaches have
been developed which are able to find solutions efficiently
[7]. These approaches are probabilistically complete which
means that if the motion planning problem does not have
a solution the algorithm will run forever. To overcome this
problem, an implementation will usually stop the search after
a specified time and will report that no solution exists. The
major drawback of these implementations is the fact that
valid solutions could not be recognized when stopping the
calculations.

If we search a trajectory for a robot with n DoFs we could
decompose the n-dimensional configuration space (C-space)
into two sub-spaces: Cobst representing all configurations

that result in a collision in the workspace and Cfree the
complement of Cobst.

C = Cobst ∪ Cfree (1)

Motion planning algorithms search a path from a given
start configuration cinit to a goal configuration cgoal that
lies completely in Cfree and thus is collision-free in the
workspace. The start and goal configurations are maintained
by the inverse kinematics component of the robot system.

When planning with complex obstacle structures, explicit
modeling of obstacles as C-space regions can be difficult and
time consuming. One possibility to accomplish the modeling
is the approximation of the Cobst regions by generalized
quadtrees [4] or an adaptive volumetric grid [5]. Since
usually only small regions of the C-space are utilized for
planning, no explicit models for the complete C-space are
required. In this paper we will concentrate on techniques
that avoid the explicit modeling of C-space obstacles, which
increases the processing time, especially for systems with
many degrees of freedom. For that reason our work is based
on the Rapidly Exploring Random Trees (RRT) that are
described in more detail at section IV.

A more detailed overview about planning algorithms can
be found in the motion planning book from LaValle et al.
that is also available online [7].

II. PLANNING FRAMEWORK

A motion planner which has to be used in a real-time
applications must fulfill several requirements. The planner
should be fast and the planned trajectories should be adopted
to a changing environment. Examples of motion planning
methods that address dynamic environments are given in [19]
and [20]. With these approaches it is possible to build a
planner that is able to react on dynamic obstacles, but for
a system with 43 DoFs, like our humanoid robot ARMAR-
III [6], the described planning algorithms are not practical.
A complex robot system needs a multi-resolutional planning
system that is able to combine different planning algorithms
with varying levels of robot details. A path planning algo-
rithm that should find a way for the mobile platform, can
use a lower resolution for the hand models, e.g. by turning
off the kinematic chain and regarding the complete hand
as one joint with a bounding box. On the other hand a



dexterous manipulation task should be planned with a higher
resolution hand model. The planning system for ARMAR-

Grasping

Approaching

Moving Two-Hand Manipulation

Manipulation

Human Interaction

Planning Library

Hands

Arms

Torso Eyes

Head

Platform

Kinematic Chains

Planning Framework

Planning
System

Fig. 1. The Planning Framework.

III can choose between different planning algorithms that
are adopted to the needs of the planning problem. E.g.
path planning for a mobile platform does only need an
approximated, but very fast planner that is able to find a
way for the robot to a desired position. In this case not all
joints of the robot are needed for planning, thus the efficient
planning allows us to react on dynamic objects like humans
passing the way. For manipulation tasks it is important to
create collision-free trajectories for the arms of the robot. In
comparison to the mobile platform we have less clearance
to operate, and thus we need a planner that operates with
respect to a higher degree of detail. We present an approach
for planning the motion for a humanoid arm with seven DoFs
that is used within the motion planning framework. We show
how it is possible to decrease the average planning time
without loosing the collision-free guarantee that is needed
for a robot interacting in a real world environment.

III. COLLISION CHECKS AND DISTANCE
CALCULATIONS

Motion planning approaches need collision and/or distance
computation methods that operate on 3D models of the
robot and the environment. There are a lot of libraries that
can be used for collision detection ([15], [16], [17]). We
are using the PQP library [17], because of the fast and
robust implementation and the included distance computation
routines.

Typically the collision checking of sampled configurations
is the most time consuming task in RRT planners. A typical
planning query requires thousands of collision checks. Thus
a RRT-planner greatly benefits from speeding up the collision
check routines. To achieve a faster collision computation
we are using simplified collision models of the robot and
the environment in which it is operating. This reduces the
number of triangles from 20.000 to 450 in the case of
the robot model and from 24.000 to 4.200 in the case of
the environment model. The reduction leads to an average
collision query time of 0.20ms and an average distance
query time of 0.65ms. Compared to 0.32ms and 3.58ms
for a setup with full models of robot and environment we
could achieve a speedup of 37.5% and 81.8%. Like all
tests presented here, these performance evaluations have been
carried out on a Linux-Pentium4 system with 3.2 GHz.

(a) (b) (c) (d)

Fig. 2. Full CAD Models of the robot (a) and the kitchen environment
(b). The simplified models (c),(d) are used for collision checks and distance
calculations.

IV. SAMPLING-BASED MOTION PLANNING

Sampled C-Space

The idea of sampling-based motion planning is to search
a collision-free C-space path without explicitly modeling the
Cobst regions. A point in the C-space represents a workspace
configuration of the robot. Fig. 3(a) shows a sample robot
manipulator with three DoFs in front of an obstacle. The
corresponding C-space is shown in Fig. 3(b), where the
red dots represent configurations that result in a workspace
collision.

(a) (b)

Fig. 3. (a) A three joint robot system in front of an obstacle. (b) The
sampled C-space and a RRT with original and optimized solution paths.

For a given start and goal configuration, the planner has to
find a path through the C-space while avoiding sample points
which belong to Cobst. Because the modeling of Cobst takes
a long time we just sample the needed path points on the fly
while searching a way through the C-space (see [7]).

RRT

There are several planning algorithms implementing this
basic sampling-based concept ([7], [8]). Good results can
be achieved with rapidly exploring random trees (RRT),
introduced by Steve LaValle and James Kuffner in [9]
and [10]. RRT-based algorithms reduce the global planning
problem to local C-space path search problems which can
be solved easier.

The RRT-approach builds up a C-space tree that uniformly
covers the free space. The RRT-CONNECT algorithm pro-
posed in [10] samples the C-space randomly and tries to
extend the existing tree by connecting to the new samples
with straight lines. It has been showed that RRTs generate
a uniform covering of the C-space and that it is possible to
construct RRT-based, resolution complete planners [13]. An
example of a three dimensional RRT is given in Fig. 3(b).



Guaranteeing Collision-Free Paths

In all sampling-based approaches, the sampling resolution
of the C-space can be specified with a resolution parameter.
The choice of the resolution parameter affects the quality
of the result as well as the runtime of the algorithm. If
the resolution is too high, the runtime will be unnecessary
long. On the other hand, with a low resolution, the planner
will run fast but might not consider some obstacles. This
leads to another problem of sampling-based approaches: The
collision status of the connection between two neighboring
sampled configurations on the path is unknown. Regardless
which sampling resolution is chosen, there is no guarantee
that the path between two neighboring samples is collision-
free.

obstacle

c c′

(a)

obstacle

c

c′

(b)

Fig. 4. (a) Cfree samples and a collision path. (b) A valid C-space path
covered by free bubbles.

Figure 4(a) shows such a situation. The C-space path
between two sampled configurations c and c′ is blocked by an
obstacle. A sampling-based planner will not detect a collision
since c and c′ are in Cfree.

To overcome this problem Quinlan has introduced in [19]
an approach, which can be used to guarantee a collision-
free path between two C-space samples. Quinlan calculates
bubbles of free space around a configuration and therefore
can guarantee the collision-free status of a path segment by
overlapping these bubbles along the segment. For a given
C-space path cc′, Quinlan derives an upper bound for the
distance any point on the geometry of the manipulator can
travel for a given change in the configuration. This upper
bound can be regarded as a metric δ(c, c′) 7→ < in the C-
space [24]. Let c = (c1, ..., cn), c′ = (c′

1, ..., c
′
n) and ri the

maximum distance of a point on the surface of segment i
to any point on the entire geometry, then the metric can be
defined as follows:

δ(c, c′) =
n∑

i=1

ri|(c′
i − ci)| (2)

In [24], the free bubble of a given configuration c is
defined using the metric δ and the obstacle distance dobst,
where dobst defines the minimum distance between the robot
in configuration c and the obstacles.

B(c) = {c′ ∈ C : δ(c, c′) ≤ dobst} (3)

With this approach a lower bound for the guaranteed
collision-free path in the C-space is given. In order to
validate if a complete path is collision-free, we have to

obstacle
r0

joint0 joint1

dobst

(a) (b)

Fig. 5. (a) 2D robot arm showing the maximum distance r0 and the
minimum obstacle distance dobst. (b) Collision and Enlarged Model of
the right arm. The free space distance was set to 20mm for visualization
purposes.

choose samples along the path so that their free bubbles
overlap. If all of the chosen samples are collision-free one
can conclude that the complete path is also collision-free. An
effective realization can be achieved by a divide and conquer
algorithm (see [21]) that recursively splits the path in two
sub-paths until the free bubbles of the two endpoints overlap
(Fig. 4(b)). We break the recursion and report a collision if
the obstacle distance falls below a minimum to avoid long
(or even endless) running times if a path is not collision-free.
In all of our tests this distance was set to 2mm.

Because we are calculating an upper bound of the joint
movement and thus a lower bound for the free bubble radius,
the radius tends to get very small if a configuration results in
a low obstacle distance. This behavior results in numerous
distance and collision calculations and slows down the whole
planning algorithm. Furthermore, the distance calculations
are very expensive compared to the simple collision status
determination. A comparison between a purely sampling-
based and a free bubble validated RRT planner shows that the
validation of each path is very expensive even when taking
simplified collision models (see table I).

As an evaluation setup we chose a model of the right arm
of our robot operating in a kitchen environment (Fig. 7(b)).
The robot arm has seven DoFs. The sampling size was
set to 0.04 radians. In 6% of the test runs the sampling-
based approach generates a path that is not valid because
the robot runs into collisions between two path points.
An approach to improve sampling-based planning is given
in section VI. Furthermore, the results point out that the
distance calculations of the free bubble approach are time
consuming compared to the high number of collision checks
of the purely sampling-based algorithm.

V. ENLARGED ROBOT MODELS

The long run time of the free bubble approach arises from
the high number of workspace distance calculations. With the
enlarged model approach we propose a method to guarantee
a collision-free status of a path without any distance com-
putations. This results in a faster path validation and thus in
a speedup of the planning algorithm. There are approaches
like [11] and [12] using enlarged obstacle models to ensure
safety distances. The approach presented here differs from
these works in two ways. We apply the enlargement on the
robot, since the robot joint models are known to be convex



which make the enlargement easier. The second and main
difference is that our approach uses the enlarged models to
avoid time-expensive distance calculations for guaranteeing
collision-free path segments.

Construction of the Enlarged Robot Models

For convex collision models, the enlarged models can
be constructed by slightly scaling up the original robot 3D
models so that the minimum distance between the surfaces
of the original and the enlarged model reaches a lower
bounding. We call this lower bounding the free space dis-
tance. Figure 5(b) shows the original collision model of the
right arm and the transparent enlarged models (20mm free
space distance). If non-convex objects are used we have to
decompose them to convex models in a preprocessing step.
The enlarged robot model is created by re-uniting the scaled
convex objects to one joint model. There are several de-
composition algorithms available ([14]), an implementation
is provided with the SWIFT++ library [18]. But in most cases
(like with the robot models of ARMAR-III) the simplified
collision models of the joints will be convex and there is no
need of any decomposition steps.

Using the Enlarged Robot Models

In collision free situations a lower bound of the obstacle
distance for the original model can be set directly, i.e. without
any distance calculations. To guarantee the collision-free
status of a path segment, Quinlan’s path validating algorithm
can be used. Equation (3) can now be expressed with the free
space distance as fixed parameter:

B(c) = {c′ ∈ C : δ(c, c′) ≤ dfreespace} (4)

Using the lower bound for the distance results in smaller
free bubble radii and thus in more sampling calculations
along a path segment. This overhead is compensated by
avoiding the slow distance calculations.

TABLE I
COMPARISON OF DIFFERENT PLANNING ALGORITHMS

Planning Avg Result not Collision Dist.
Algorithm Time Valid Checks Calc.

Sampled 3,00s 6% 17.940 0
Free Bubbles 8,28s 0% 6.565 4.753

Enlarged 1mm 31,36 s 0% 54.584 0
Enlarged 5mm 7,14 s 0% 13.562 0

Enlarged 10mm 4,59 s 0% 9.636 0
Enlarged 20mm 7.21 s 0% 18.822 0

Lazy Collision Check 2.54 s 0% 6.090 0

The test setup was identical to the sampling-based and
free bubble test runs and thus the results of table I can be
compared directly. Large changes in the free space distance
affects the runtime of the planner. Equation (4) shows that
the size of a free bubble directly depends on the free
space distance dfreespace. Thus the number of samples and
therefore the number of collision checks needed for path
validation also depends on dfreespace.

Choosing a low value (dfreespace = 1mm) results in a
large amount of collision checks for path validation. A large
free space distance (20mm) slows down the planning process
because the enlarged collision models reduce the free space
which renders the path finding problem in a more difficult
way for the planner. All test runs generated a valid solution
and the best performance could be achieved by setting the
free space distance to 10mm.

The enlarged model planner is not as fast as the pure
sampling-based approach (see table I), but it can guarantee
that the solution is collision-free and it is up to 45% faster
than the free bubble algorithm.

Limitations
The enlarged robot model is constructed by scaling up the

collision models, hence the algorithm could get into trouble
in narrow workspace situations. If the free space in which
the robot could operate is strongly limited and the free space
distance is set to a high value, the collision checker will not
find a solution, even if there is a possible way in such difficult
environment.

The effect of using different free space distances is shown
in table I and II. A low free space distance results in a
high number of collision checks for path validation. If the
free space distance is too high, the planner will not find a
solution because of the enlarged collision models. In our test
scenarios a free space distance of 10mm (approximately 1%
of the arm length) was a good tradeoff between increasing
the performance and restricting the workspace.

TABLE II
EFFECT OF CHANGING THE FREE SPACE DISTANCE

Free Space Cobst Cobst

Distance ratio overhead
0mm 19.71 % 0.00 %
1mm 19.81 % 0.50 %
5mm 20.84 % 5.73%

10mm 22.71 % 15.22 %
20mm 25.34 % 28.56 %

The results in table II were generated by uniformly sam-
pling the seven dimensional C-space of the arm. The setup is
the same as used for the planning tests. The seven degrees of
freedom of the robot arm build up the C-space, every sample
is checked for collisions in the workspace. The Cobst ratio
describes how many percent of the sampled configurations
(∼227K) do result in a collision. The different free space
distances affect the amount of free C-space. By setting the
free space distance to 1mm, the resulting Cobst is enlarged
by 0.5%. The effect of using a high value can be seen in
the case of 20mm free space distance, where the obstacle
regions are enlarged by 28.56% and the planner has less
space to operate.

VI. LAZY COLLISION CHECKING
Approach

In [22] a lazy collision checking approach was presented,
in which the collision checks for C-space samples (mile-
stones) and path-segments are decoupled. We want to pick



up the idea of lazy collision checking to speed up the
planning process and introduce a two-step planning scheme.
In the first step the standard sampling-based RRT algorithm
searches a solution path in the C-space. This path is known
to be collision-free at the path points, but the path segments
between these points could result in a collision. In the second
validation step we use the enlarged model approach to check
the collision status of the path segments of the solution path.
If a path segment between two consecutive configurations c
and c′ fails during the collision test, we try to create a local
detour by starting a subplanner which searches a way around
the C-space obstacle (see Fig. 6). Thus, we do not guarantee
the complete RRT to be collision-free on creation, instead we
try to give a collision-free guarantee of the sampling-based
solution afterward and reduce the costly checks to the path
segments.

obstacle
c c′

Fig. 6. validated collision path

Searching the detour
To ensure that the path segments of the newly created

detour are collision-free, we are using a subplanner based
on the RRT-EXTEND algorithm (see [10]) with enlarged
models. The use of the RRT-EXTEND planner allows us to
build up a locally growing RRT, which can efficiently find
a regional solution path. To support the subplanning process
we are not using c and c′ as start and goal configurations,
since they are probably near to an obstacle and thus it will be
difficult for the planner to find a collision-free way. Instead
we are using randomly chosen positions on the solution path
in front of c and behind of c′.

Since our goal is to efficiently find a detour, we are
starting the subplanning process with strict parameters, thus
the planning cycles are set to a maximum of 100 tries. If
the planner does not find a detour within these number of
extension steps, the search is stopped and another subplanner
is started with different start and goal configurations. As
described later, the replanning module does find a solution
fast, since the planning problem is regional bounded and the
termination of not promising planning calculations combined
with the randomly chosen start and goal positions increases
the chance of efficiently finding a detour.

Evaluation
Again we are using the same robot and environment setup.

The solutions generated with the purely sampling-based RRT

planner are validated with the enlarged model approach.
Because of the validation step we can set the sampling
resolution to a higher value in order to find the solutions
faster; the distance between two sampled configurations was
set to 0.2 radians. The validating module has to check every
solution if all path segments are guranteed collision-free,
this check needed 0.47 seconds in average. In 37.5% of the
cases this guarantee can not be given for one or more path
segments and the subplanning process is started. Not all of
these solutions do really result in a collision in workspace,
we just can not guarantee the collision-free status of each
path segment. All solutions have been successfully validated
by the subplanner module.

Because of the strict parameters of the subplanner men-
tioned above, 3.1 subplanning calls are needed in average
to find a detour for an invalid path segment. The average
planning time to find a detour was evaluated with 1.85
seconds. Since sometimes there is more than one detour to
find per solution the overall validation time is 2.0 seconds.

In 62.5% of the test cases a guaranteed collision-free
solution could be generated in an average time of 1.79
seconds. For 37.5% of the results one or more subplanning
steps were needed to validate single path segments. All
validation calls succeeded and the overall planning time
increased to 3.79 seconds. Combining the validated and
replanned cases leads to an average planning time of 2.54
seconds which is faster than searching a solution with the
sampling-based planner (see table I).

VII. EXPERIMENT
For evaluation we use a real-world kitchen scenario for

the right arm of the humanoid robot ARMAR-III (see
Figure 7(a)).

(a) (b)

Fig. 7. (a) The humanoid robot ARMAR-III in a kitchen environment. (b)
The planning setup.

Figure 7(b) shows ARMAR-III standing in front of a
cabinet. The robot has to operate in a narrow environment,
the corresponding Cfree space is limited because of the
short obstacle distances. Nevertheless the free bubble and the
enlarged model based planning algorithms can deal with this
situation. Figure 8 shows a narrow view of the workspace.
The arm has to move from the left cabinet around the
open door to the right cabinet. The red trajectory shows the
movement of the hand before the solution was smoothed.
The blue trajectory describes the movement of the hand after
applying the smoothed solution path (To retrieve smooth
trajectories, the results are optimized by searching shortcuts,
see [23] for details).



A purely sampling-based RRT planner needs 3 seconds
on average to find a solution for the given problem, but
6% of the solution paths result in a collision with the en-
vironment. The use of Quinlan’s free bubble path validation
algorithm guarantees that the solutions are collision-free, but
the running time increases to over 8 seconds on average. The
enlarged robot model approach generates also guaranteed
collision-free solution paths, but the running time could be
reduced to an average value of 4.6 seconds. By using the lazy
collision check approach it is possible to find a guaranteed
collision-free solution in 2.5 seconds.

Fig. 8. Start and goal configuration of the robot arm with solution paths.
The original and the optimized TCP trajectories are plotted in red and blue.

VIII. CONCLUSION

In this work we presented several approaches to the well-
known RRT-based motion planning. We investigated the run-
time and the quality of solutions of the different approaches.
Furthermore we showed, how different parameters influence
the systems behavior.

By using simplified 3D models the planning time was
reduced by 30%. These simplified models have no effect on
the quality of the results for our robot system because the
link models are of convex shape and with the simplification
we just loose some visual information that are not needed
for the planning process.

Quinlan’s path validation approach was modified to avoid
the expensive distance calculations without loosing the
collision-free guarantee. To achieve this, the enlarged robot
models have been introduced as slightly scaled up collision
models and it has been shown how to guarantee the collision-
free status of a path segment. The evaluations demonstrated
that it is possible to generate collision-free motion paths
even in narrow environments. Compared to the free bubble
approach the guaranteed collision-free motion planning could
be accelerated up to 45 %.

If using the fast sampling-based RRT approach it is
possible to check and validate the solution with the enlarged
model path validation algorithm. This lazy collision checking
approach leads to an algorithm that could find solutions
faster than the sampling-based approach because of the
possibility to decrease the sampling resolution. Since the fast
subplanning step generates detours for critical path segments,
all resulting solutions are guaranteed collision-free.

IX. ACKNOWLEDGMENTS

This work has been supported by the Deutsche
Forschungsgemeinschaft (DFG) within the Collaborative Re-
search Center 588 ”Humanoid Robots - Learning and Coop-
erating Multimodal Robots”.

REFERENCES

[1] J. H. Reif, Complexity of the mover’s problem and generalizations.,
IEEE Symposium on Foundations of Computer Science, pages 421-
427, 1979.

[2] John F. Canny, The complexity of robot motion planning, Cambridge,
MA, USA: MIT Press, 1988.

[3] J. T. Schwartz and M. Sharir, On the piano movers problem: Coordi-
nating the motion of several independent bodies., Int. J. Robot. Res.,
2(3):97–140, 1983.

[4] B. Paden,A. Mess and M. Fisher, Path planning using a Jacobian-
based freespace generation algorithm, IEEE International Conference
on Robotics and Automation, no.pp.1732-1737 vol.3, 1989.

[5] G. Varadhan,Y.J. Kim,S. Krishnan and D. Manocha, Topology pre-
serving approximation of free configuration space, Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on, Pages: 3041- 3048, Orlando, May 15-19, 2006

[6] T. Asfour, K. Regenstein, P. Azad, J. Schröder, A. Bierbaum,
N. Vahrenkamp and R. Dillmann, ARMAR-III: An integrated humanoid
platform for sensory-motor control, IEEE-RAS International Confer-
ence on Humanoid Robots (Humanoids 2006), Dec. 2006, pp. 169-
175.

[7] S. M. LaValle, Planning Algorithms, Cambridge University Press (also
available at http://msl.cs.uiuc.edu/planning/), 2006.

[8] Yong K. Hwang and N. Ahuja, Gross Motion Planning - A Survey,
ACM Computing Surveys 24(3): 219-291, September 1992.

[9] S.M. LaValle, Rapidly-exploring random trees: A new tool for path
planning, TR 98-11, Computer Science Dept., Iowa State University,
Oct. 1998.

[10] J. Kuffner and S.M. LaValle, RRT-Connect: An efficient approach
to single-query path planning, IEEE Int’l Conf. on Robotics and
Automation (ICRA’2000), pages 995-1001, San Francisco, CA, April
2000.

[11] P. Irvall, Obstacle Avoidance System (OAS), Masters Degree Project
Stockholm, Sweden, Jan 2007.

[12] E. Ferre and J.-P. Laumond, An iterative diffusion algorithm for
part disassembly, Proc. International Conference on Robotics and
Automation (ICRA04), 3149-3154, 2004.

[13] P. Cheng and S. M. LaValle. Resolution complete rapidly-exploring
random trees, IEEE International Conference on Robotics and Au-
tomation, pages 267–272, 2002.

[14] B. Chazelle and L. Palios, Decomposing the boundary of a nonconvex
polyhedron, Algorithmica, 17:245–265, 1997.

[15] M. Lin and S. Gottschalk, Collision Detection between Geometric
Models: A Survey, IMA Conference on Mathematics of Surfaces, 1998.

[16] P. Jimnez, F. Thomas and C. Torras, 3D Collision Detection: A Survey,
Computers and Graphics, pages 269–285, 2001.

[17] PQP Library, http://www.cs.unc.edu/∼geom/SSV/.
[18] SWIFT++, http://www.cs.unc.edu/∼geom/SWIFT++/.
[19] S. Quinlan, Real-time modification of collision-free paths,

Ph.D.dissertation, Stanford University, 1994.
[20] O. Brock and L. Kavraki, Decomposition-based motion planning: A

framework for real-time motion planning in high-dimensional config-
uration spaces, In Proc. ICRA, volume 2, pages 1469-1474, 2001.

[21] F. Schwarzer, M. Saha and J.C. Latombe, Exact Collision Checking
of Robot Paths, Workshop on Algorithmic Foundations of Robotics,
France, 2002.

[22] G. Sanchez and J.C. Latombe, A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking, International
Symposium on Robotics Research, Lorne, Victoria, Australia, 2001.

[23] R. Geraerts and M. H. Overmars, On improving the clearance for
robots in high-dimensional configuration spaces, IEEE/RSJ Intl Conf.
on Intelligent Robots and Systems, pp. 4074-4079, 2005.

[24] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, An Integrated
Approach to Inverse Kinematics and Path Planning for Redundant
Manipulators, IEEE International Conference on Robotics and Au-
tomation, pp. 1874-1879, May 2006.


	INTRODUCTION
	PLANNING FRAMEWORK
	COLLISION CHECKS AND DISTANCE CALCULATIONS
	SAMPLING-BASED MOTION PLANNING
	ENLARGED ROBOT MODELS
	LAZY COLLISION CHECKING
	EXPERIMENT
	CONCLUSION
	ACKNOWLEDGMENTS
	References

