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Abstract—Using visual feedback to control the movement of
the end-effector is a common approach for robust execution of
robot movements in real-world scenarios. Over the years several
visual servoing algorithms have been developed and implemented
for various types of robot hardware. In this paper, we present
a hybrid approach which combines visual estimations with
kinematically determined orientations to control the movement
of a humanoid arm. The approach has been evaluated with the
humanoid robot ARMAR III using the stereo system of the active
head for perception as well as the torso and arms equipped
with five finger hands for actuation. We show how a robust
visual perception is used to control complex robots without any
hand-eye calibration. Furthermore, the robustness of the system
is improved by estimating the hand position in case of failed
visual hand tracking due to lightning artifacts or occlusions. The
proposed control scheme is based on the fusion of the sensor
channels for visual perception, force measurement and motor
encoder data. The combination of these different data sources
results in a reactive, visually guided control that allows the robot
ARMAR-III to execute grasping tasks in a real-world scenario.

I. INTRODUCTION

Object manipulation with humanoid robotic systems is an
essentially different problem compared to solving the same
task with an industrial robotic manipulator. The main differ-
ence lies in the accuracy of the hand-eye calibration. With
industrial robotic systems, this problem can be solved easily,
since the inverse kinematics of an industrial robotic arm is
very precise, and often a static stereo camera system is used.

With a humanoid robotic system with light-weight arms
and often using wire-driven mechanics, the repeatability is
significantly lower. Furthermore, and even more critical, is
the problem of the usually imprecise inverse kinematics and
therefore the hand-eye calibration. The reason for this is that
the kinematics of the robot is formulated on the basis of CAD
models of the robot. However, in practice, small translative and
rotative deviations in each joint occur during manufacturing.
These lead to a large accumulated error of the calibration
between the camera system and the end effectors, i.e. the
robot’s hands. One has to keep in mind that for a 7 DoF
robot arm and 3 DoF neck with even fixed eyes, already the
kinematic chain between the hand and the eye consists of
10 DoF. In practice, the final absolute error of the inverse
kinematics with respect to the camera system might be in the
order of > ± 5 cm.

One approach to tackle this problem is to learn the hand-
eye calibration on the basis of 3D object tracking where the
tracking object is attached to the hand, which is observed by
the robot’s camera system. This special calibration process

can be avoided when using visual servoing for positioning the
end effector. Within this context visual servoing means that
both the robot’s hand and the target object are tracked by
the camera system, and a specific control law defined on the
measured 3D pose difference incrementally moves the hand
towards the object.

For such an approach, it is usually not sufficient to compute
the object pose once and then execute the grasp. The reason
is that the robot’s hip and head often must be involved
in the servoing procedure, in order to extend the working
space of the robot. Both head and hip movements change
the relative pose of the object with respect to the camera
coordinate system. Since, as explained, the kinematics of
humanoid robotic systems are often not accurate enough to
update the pose, the pose update must be computed within the
closed-loop visual servoing controller.

In this paper we present a hybrid visual servoing approach
which is applied for grasping and manipulation tasks on a
humanoid robot. We show how the execution of grasping
operations can be visually controlled without any hand-eye
calibration. Furthermore we present several realizations of
grasping and manipulation tasks to show the applicability and
the robustness of the proposed algorithms.

II. VISUAL SERVOING

Visual servoing approaches can be used to control the
movements of a manipulator over a visual sensor system,
which usually consists of one or more cameras. The tool center
point (TCP) and/or features of a target object are tracked by
the vision system and the algorithms in the control loop try
to bring the TCP to a desired position and orientation [1].

Hill and Park [2] introduced the term visual servoing in
1979 to describe a visual-closed control loop. Since their work,
a lot of setups for the visual perception like fixed camera,
multiple cameras or camera in hand-approaches have been
developed. Furthermore, three main control strategies have
been developed over the last years which we want to introduce
briefly (a more detailed introduction to visual servoing can be
found in the survey from Chaumette and Hutchinson given in
[3] and [4]).

A. Image-Based Visual Servoing (IBVS)

The position of the TCP in the camera image(s) is acquired
by image features, and through the movements of these
features a local Image-Jacobian (Feature-Sensitivity Matrix,
Interaction Matrix, B Matrix) can be derived ([5], [6], [7],



[8]). The Jacobian depends on the camera parameters and
the feature positions. By computing the pseudo-inverse of
this Jacobian, the desired 2D movements of the features in
the image plane can be used to calculate the movements of
the joints that bring the TCP to the desired position. These
approaches work without any stereo computations and thus
with a single camera. Problems can arise, if the features leave
the field of view and some situations like the Chaumette
Conundrum described in [9] cannot be solved.

B. Position-Based Visual Servoing (PBVS)

Position-Based Visual Servoing approaches determine the
Cartesian position and/or orientation of the TCP with respect
to the target pose ([10], [11], [12], [13]). Different config-
urations (camera-in-hand, fixed camera, active head, mono
or multi camera system) lead to varying formulations of the
control scheme. The main aspect of PBVS is that a Cartesian
error, determined using visual perception, is controlled to zero.
Unlike the IBVS, position-based visual servo control scheme
needs a module that is able to control the TCP in workspace.
Furthermore, the computer vision algorithms have to be more
sophisticated, in order to compute the Cartesian position and
orientation of the TCP and the target object. A control scheme
based on PBVS has the advantage, that the TCP position is
controlled in Cartesian workspace and thus constraints coming
from collision checking or path planning components can be
easily included.

C. 2.5D Visual Servoing

Hybrid visual servoing approaches (2.5D Visual Servoing),
first presented in [14], can be used to decouple the trans-
lational and the rotational control loop. Since the position
and orientation of the TCP is controlled by two independent
control loops, there are some advantages compared to IBVS
and PBVS. By selecting adequate visual features defined in
part in 2D (IBVS), and in part in 3D (PBVS), it is possible to
generate a control scheme that always converges and avoids
singularities.

III. PERCEPTION

The vision component of our system is able to recognize,
localize and track a set of daily objects encountered in a
kitchen environment. In our experiments we are using single-
colored plastic dishes, textured everyday kitchen boxes, door
handles and dish washer basket, for which we are able to track
the poses with a processing rate of 15–30 Hz. Thus we are able
to track moving objects and adapt our control loop to differing
target positions.

A. Manipulation Objects

In [15], we have presented our approach to recognition and
6D pose estimation of textured and single-colored objects,
which will be summarized briefly in the following. Textured
objects are recognized and localized in 2D on the basis of local
point features. As features we use a combination of the Harris
corner detector [16] and the SIFT descriptor [17], with an

extension allowing for scale-invariance without performing an
explicit scale space analysis, as described in [18]. Recognition
and 2D localization is performed on the basis of 2D-2D
feature point correspondences, using a Hough transform and
an iterative estimation of an affine transformation, which is
refined to a full homography in the last iteration. In contrast
to conventional approaches, the 6D pose is not computed on
the basis of 2D-3D point correspondences, but on the basis of
triangulated subpixel-accurate stereo correspondences within
the estimated 2D area of the object, yielding 3D-3D point
correspondences with a training view. For boxes with a planar
surface, a refined pose is computed on the basis of the optimal
3D plane fit through the 3D data.

Single-colored objects cannot be recognized and localized
on the basis of local features, since their only characteristic
feature is their shape. Our approach for such objects com-
bines model-based view generation for an appearance-based
approach with stereo-based position estimation. Orientation
information is retrieved from the matched views; an accurate
6D pose is calculated by a pose correction procedure, as
presented in [18]. Exemplary results of the two integrated
systems are given in Fig. 1.

Fig. 1. Exemplary results with the integrated object recognition and pose
estimation systems. The computed object pose has been applied to the 3D
object model and the wireframe model has been overlaid.

B. Environment Objects

In this approach, environmental elements, i.e. doors and
handles were robustly recognized by means of gaussian clas-
sification using tailored characteristics feature spaces for each
element type.

The components of feature vectors representing doors were
obtained from the eigenvectors of the covariance matrix from
extracted color-segmented regions (blobs) from stereo images,
as well as ratios involving eigenvalues E = σ0/σ1 and
the angles A = θ1/θ2 between the blob’s diagonal axes.
(see Fig. 2). Subsequently, the left-right cross match using



Fig. 2. Recognized environmental elements and pose estimation for grasping
skills. The upper left image shows the recognized kitchen doors and handles.
The zoomed detail on upper right image shows the approach robustness against
difficult illuminations conditions. The center left and right images show the
cross matching of recognized blobs using the epipolar lines and incidence
criteria. The bottom left image shows the results of the dishwasher basket
handle recognition phase while visual servoing is being executed, whereas
the bottom right image shows the results obtained at the first target search.

size, position, orientation, distance to the epipolar line and
standard disparity constraints allows powerful rejection of blob
outliers.

The handle’s feature vec-

Fig. 3. The Harris response function.

tors use previously com-
puted blobs descriptors to
extract additional charac-
terizing components. Only
those blobs which simulta-
neously present an elonga-
tion ratio E above a thresh-
old τ and corner features
on both ends of the main
axis proceed to the follow-
ing stage. Next, both the
image and its Harris re-
sponse function [16] are sampled along the main axis.

This unidimensional signal contains information about the
chromatic and sharpness (edges-corners) nature of the blob
which is taken into account as four components, the mean and
standard deviation of both color and harris domain (see Fig. 3).
Once the handle has been recognized, a linear regression of
edge pixels on both sides is computed in order to improve the
subpixel precision of the perceived position (see Fig. 2).

Furthermore, a dish washer handle recognition and position
estimation has been developed in order to illustrate and expand

the aptness and suitability of our approach. The recognition
begins by segmenting the image base on color as follows. For
every pixel Pi = I(x, y) ∈ R3 within a normalized RGB
space a distance Dα(Pi, Pt) = 1 − Pi·cPt

‖Pi‖ to our target color
Pt is computed, this implies an angular relation to the desired
color, i.e. a cone in color space whose aperture angle α =
arccos(1 − Dα(Pi, Pt)) parameterizing color similarity with
less sensibility to intensity. In addition, based on their pixel-
connectivity, all pixels inside this chromatic cone having a
minimal color-euclidean distance to ‖Pi − Pt‖ are used to
form the required blobs for the next stage. In the subsequent
phase blobs characteristics are use to arrange feature vectors
F as follows:

F := [W,S, δ, x, y, σ0/σ1]t, (1)

where the amount of pixels W in the blob and the area S
of the eigen-axes bounding box are used to define the third
component as a density descriptor δ = W

S of the blob which
turns to be a very powerful clue to reject false blobs because
the grid where the handle is attached depicts a blob with big
area but lower density. The remaining components describe
the center of the blob in image coordinates and the elongation
criterion base on the ratio of the eigen values. Finally, those
blobs whose feature vector were not rejected by a gaussian
classifier pass to the next phase where the blobs external
contour is used to compute a hough transformation, here the
resulting voting cell are normalized according the size of the
contour. In case the blob has at least few cells above the
threshold Ct then the lines will be found on the lower side
of the blob which later are use to compute the end points of
the handle, see Fig. 2. The three dimensional position of the
handle is calculated using similar restrictions (left-right cross
check, distance to epipolar side, etc) as before.

C. Hand Tracking

To estimate the position of the TCP, we use an artificial
marker, since the robust tracking of human-like 5-finger hand
is a challenging problem which is not scope of this paper. To
mark the hand, a red sphere is used, which is mounted on the
wrist of the humanoid arm. This position avoids self-covering
and allows a good visibility in most configurations of the arm.
With this artificial marker we are able to use different versions
of the hand, just by changing some parameters, e.g. the offsets
from the marker to the center of the hand or to the fingertips.

This marker can only be used to retrieve a position rela-
tive to the wrist since there is no possibility of getting an
orientation of a uniform sphere. To retrieve an approximated
orientation of the hand, the direct kinematic of the robot arm
is used. The orientational component of the hand pose will not
be exact, since the arm is just roughly calibrated, but as our
experiments show, these errors are admissible for grasping and
manipulation tasks. The positioning errors, in contrast, have
much more influence on successful execution of manipulation
tasks which is shown in section VII. The tracking of the marker
is done in real-time (30 Hz). Therefore, the positioning of the
hand always operates on the correct data.



D. Force Measurement
To improve the robustness and to generalize the approach,

the perception is extended by force and torque values that
are measured at the wrist with a six-dimensional force/torque
sensor. This additional sensor channel improves the robustness,
since the force feedback provides the servoing loop with
information about contact events and allows the system to react
on critical situations like collisions.

IV. EXECUTION ON ARMAR-III
A. Software Framework

All experiments are implemented on the humanoid robot
Armar-III ([19], [20]). The software architecture of the robot
provides mechanisms, which allow integrating different per-
ception, control and planning modules as well as an ac-
cess to the robot sensors and actors. In this architecture
skills are implemented capabilities of the robot, which can
be regarded as atomic (e.g. MovePlatform, SearchForObject,
HandOver, CloseDoor, LookTo). Tasks are combinations of
several skills for a specific purpose (e.g. the task BringObject
parametrizes and executes the skills SearchForObject, Move-
Platform, GraspObject and HandOver). A brief overview of
the processing framework can be seen in Fig. 4.

Controlling and Sensor Processing
(100 Hz)

Dynamic Skills and Tasks

Vision Processing

Hardware

Speech Recognition

High Level Robot Control
(30 Hz)

Fig. 4. The Control Framework of ARMAR-III.

The high-level robot control, which runs with 30 Hz,
provides an interface where skills and tasks can be loaded and
parametrized on runtime. For the experiments, the two skills
GraspObject and GraspHandle where included in the skill
library. The vision and speech components run asynchronous
with 10-30 Hz depending on the requested operations.

B. Arms and Hip
To execute grasping tasks on the humanoid robot ARMAR

III, the seven degrees of freedom (DoF) of one arm are used
(all grasping tasks are implemented for the left and the right
arm). In order to increase the area of operation, the hip yaw
joint is included for all arm movements. These eight joints
of the robot can be addressed via a velocity controller which
allows smooth movements of the robot.

C. Hands

The modular mechatronics concept of ARMAR-III allows
mounting of different versions of grippers or hands. We
performed our experiments with two different types of the
humanoid 5-finger hand. Initially, we used the hand described
in [21] (see Fig. 8). During our experiments an improved ver-
sion of the hand was build, which we used for the experiments
described in section VII B and C (see Fig. 10 and 11). The
hand is controlled by predefined shapes, which is sufficient for
the grasping tasks described in this paper. We use five different
preshapes: open, close all, close fingertips, close fingers and
close thumb.

D. Head

To track the marker located on the wrist and to receive the
position of the target object, the active head of the robot with
seven DoF is used. To enable stereo localization the three DoF
of the eyes are fixed and the inverse kinematics for the neck
is used to focus 3D coordinates in workspace. The Cartesian
coordinates of the marker and the target are computed in
the camera coordinate system and then transformed to world
coordinates.

V. CONTROL

A. Reference Frames

The reference frames used for

Target

 
Pose

Hand Pose

Wrist

 
Pose

Object

 
Pose

Fig. 5. The different poses.

visual servoing can be seen in
Fig. 5. The position and orien-
tation (pose) of the manipulation
object leads to a target pose which
is used in the control loop. The
wrist pose is a combination of the
visually received wrist position
and the kinematically computed
orientation of the hand. By adding
a hand-specific offset value, the
current hand pose is calculated.

B. Control Scheme

The control scheme for a grasping task is depicted in
Fig. 6. The input values for the control algorithm consists of
the current robot configuration q, obtained from joint sensor
reading, and a difference vector ∆x = xtarget − xhand,
describing the difference between hand and target position.
The current joint configuration q is used to build up the Jacobi
matrix J(q) and its pseudoinverse J+(q). The desired joint
velocities Θ̇ are computed as described in Eq. 2, where α is
a gain factor controlling the speed of the servoing.

Θ̇ = αJ+(q)∆x (2)

To ensure that the marker of the hand is always visible, the
head is adjusted using inverse kinematics methods to hold the
hand in the field of view of the stereo camera system. The
perception system always searches for the target object, and
updates the absolute position if the object is found. Once the



hand is in the vicinity of the target, both objects (target object
and marker) can be recognized and the servoing will become
more robust, since the positioning values used for servoing
are determined with the same sensor channel and the same
algorithms.

Visual Estimation

Target Pose

Joint Sensor Values
q

Joint 
Controller

Differential 
Kinematics

x(q)Jθ && +=

Hand Position 
(Visual Estimation)

Target  Object
Position & Orientation

(Visual Estimation)

Hand Pose

θ&

Hand Orientation
(Kinematic Approximation)

+
-Δx

Fig. 6. The Control Loop.

VI. IMPROVING ROBUSTNESS

A. Visual Limitations

The visual servoing strongly relies on the information that
is computed by the visual perception component. This compo-
nent may fail due to different reasons (e.g. reflections, blurred
images or sub-optimal parameters, features are outside one or
both camera images). To ensure a robust execution, the visual
servoing control loop stores the last acquired poses of the hand
and the target. The target position will remain constant until
the perception component informs the servoing loop about a
newly perceived object position. The hand tracking is more
fragile since the hand is moving and the pose does change
continuously. To handle situations in which the hand tracking
failed, the difference δHandPose between the kinematically
calculated and the visual determined hand positions are stored
in each control loop (see Eq. 3).

δt
HandPose = xt

vision − xt
kinematic (3)

In the case of failed visual perception these values are used
to compute an approximated pose xt+1

hand of the hand, which
is used in the control loop (see Eq. 4).

xt+1
hand = xt+1

kinematic + δt
HandPose (4)

Since the offset between the kinematically and the visually
determined hand position is only valid in the vicinity of the
current hand pose and the approximation gets worse when
moving too far, the speed is reduced and if the hand is not
recognized for a specific amount of time, the servoing loop is
aborted to avoid unpredictable or even dangerous situations.
An example for the calculated offsets between kinematically
and visually determined hand positions are shown in Fig. 7.
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Fig. 7. Difference between the kinematically and the visually determined
hand positions. The absolute offsets are shown in blue (x), red (y) and green
(z), the total offset is plotted in black.

B. Reacting on Forces

As mentioned before, the 6D force/torque sensor values are
used to adapt the control strategy to unknown or undiscovered
obstacles. If the measured force exceeds a contact threshold,
we have an indication for a contact/collision with an obstacle.
A collision should never occur in an ideal environment, but in
a real-world scenario with inaccuracies, the system should be
able to react on these situations. An effective way of reacting
on undiscovered obstacles or inaccurate measurements, can be
achieved by combining the visual servoing control and a zero
force control loop, which has a higher priority. The zero force
control loop tries to bring all acting forces to zero, which
means that obstacles (e.g. top of a table) will suspend the
visual controlled servoing loop, when they are hit with the
hand.

VII. EXPERIMENTS

In this section we show how the proposed control scheme
is working on the robot ARMAR-III. Different grasping tasks
have been implemented to enable the robot to operate in an
every day kitchen scenario. No external sensors are needed
and the robot operates completely autonomous.

A. Grasping a cup

In this experiment, ARMAR-III is standing in front of a
uniform colored cup which is known and recognizable by
the system. In the first step, the robot searches a cup and
if one is found, the Cartesian position is transformed to world
coordinates and the target pose is calculated. The servoing
loop starts to grasp the cup with the right arm. If the Cartesian
distance between hand and target pose falls below a threshold
(5 mm), the hand is closed and the grasped cup is raised.
When all operations are finished, the skill reports a successful
state to the framework and further operations can be triggered.
Fig. 8 shows the execution of the VisualGrasp-skill.

The Cartesian servoing distances between the hand and
the target are shown in Fig. 9. The distances are determined
every servoing step (33 ms) and transformed to the coordinate



Fig. 8. Armar-III grasping a cup.

system of the hand. The figure shows the distances in x
(blue), y (red), z (green) coordinates and the total distance
in black. As expected, the values decrease over the time and
the servoing is stopped when the total distance falls below
a threshold (5 mm). The target position is determined in
advance, since at the start of the servoing only the marker is
in the field of view. At step 180, the target comes into the
field of view again and the position is recognized and updated
by the vision thread. Because of the kinematic chain between
camera and hand (consisting of ten DoF), the calculated target
position slightly differs from the initial position, although
the real position did not change. Here, the advantages of
visual servoing approaches are shown clearly. The pose of
the hand is controlled relatively to a target object and since
the target and the hand are tracked with the same algorithms,
their Cartesian relation is determined with high accuracy. The
differential kinematic algorithms are fault-tolerant as long
as the errors are locally bounded and the Jacobian remains
regular.
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Fig. 9. The Cartesian distances (hand to target), shown in blue (x), red (y),
green (z). The total distance is shown in black.

B. Grasping a box

With the proposed control scheme, ARMAR-III is also able
to grasp rectangular boxes of varying sizes. The dimensions
of the boxes are known in advance, so that the target poses
can be derived from these values (see Fig. 5). The control
scheme has to be modified slightly by adding a constraint for

an aligned reaching of the hand. The alignment is achieved by
adjusting the orientation of the hand to the orientation of the
object. Furthermore, the flexibility was increased by adding
an intermediate reaching point next to the object. The hand is
moved to this preposition before it is moved towards the final
target position. The pictures in Fig. 10 are captured with the
stereo cameras of ARMAR-III while the robot is executing
the grasping task.

Fig. 10. ARMAR-III is grasping a mashed potatoes box, captured by the
robot’s camera system.

C. Grasping a handle

The proposed visual servoing scheme can be used to enable
ARMAR-III grasping handles of kitchen doors as well. In this
case the Cartesian position of the handle is used to determine
a target position and a pre-position which is below and in front
of the handle. Instead of using a Hand Pose in the center of the
TCP (see Fig. 5), the GraspHandle-skill uses a different offset
which defines the distance from the marker to the fingertips.
Hence the position of the fingertips is controlled via the visual
servoing control loop. The grasping of the handle is performed
in four steps:

• The TCP is moved to a pre-position, in front of the
handle.

• The TCP is moved to the final grasp position.
• If the grasp position is reached, or if the force sensor

values indicate a contact, the hand configuration is set to
the preshape close fingertips and an impedance controller
is started which aligns the hand to the handle.

• Finally the thumb is closed to finish the grasp.
In Fig. 11 some intermediate stages of the execution of the

GraspHandle-skill are shown.

VIII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We showed how it is possible to enable the humanoid
robot ARMAR-III to execute grasping actions in a robust
manner. The presented hybrid visual servoing tasks can be
used to avoid hand-eye calibration routines and to improve



Fig. 11. Grasping a fridge handle.

the manipulation skills of the robot. The robustness of the
approach was improved by two enhancements:

• Observing the offset between kinematically determined
and visually approximated marker positions, to improve
the hand tracking.

• The visual guided movements have been enhanced by
a reactive component by including the data coming from
the 6D force/torque sensor into the visual servoing control
structure. Therefore, safety of the robot, environment and
humans is increased.

Furthermore, the presented framework allows to support dif-
ferent manipulation targets and hand types by parameterizing
the skill structure. The approach was successfully implemented
for different grasping tasks which enable the robot to execute
more complex activities.

B. Future Work

The ability of grasping varying objects in a robust manner
is the basis for more extensive scenarios. The grasping skills
can be used for higher level tasks which set the parameters
on-the-fly and thus allow the implementation of more complex
tasks. Future work will address the post-grasping behavior
like the check if a grasping action was successful. These
checks can be used to adopt parameters on-the-fly or to report
that the parametrization should be optimized (e.g. the light
conditions changed). Furthermore, we want to investigate more
complex grasping actions like two arm manipulations or more
sophisticated grasping types.
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