
Planning and Execution of Grasping Motions on a Humanoid Robot

Nikolaus Vahrenkamp, Anatoli Barski, Tamim Asfour and Rüdiger Dillmann
Institute for Anthropomatics

University of Karlsruhe
Haid-und-Neu-Strasse 7, 76131 Karlsruhe, Germany

Email: {vahrenkamp,barski,asfour,dillmann}@ira.uka.de

Abstract— In this paper we present an approach for gener-
ating collision-free grasping motions and robustly execute them
on a humanoid robot. The proposed MultiEEF-RRT algorithm
for planning collision-free grasping trajectories exploits the
enlarged goal space of a humanoid robot that results from the
parallelized search of grasping trajectories for each arm. Here,
multiple paths are searched simultaneously and the planner
automatically chooses the first found solution. The reactive exe-
cution component operates on the planned C-Space trajectories
and observes the movements in workspace with visual servoing
approaches. The proposed algorithms do not rely on hand-eye
calibrations, however it is possible to reliably execute given
trajectories. The approach is fault-tolerant against changing
execution speed, inaccurate sensor data and inexact executions
of velocities. Since the hand and the target poses are visually
tracked, the Cartesian error between the estimated position
on a trajectory and the visually retrieved hand pose can
be determined in workspace. This value is projected in the
configuration space and used as a correction factor when
calculating the joint velocities. We realized a grasping scenario
with the humanoid robot ARMAR-III, where an object in front
of the robot should be grasped. This demonstration shows how
the proposed components play together to build a reactive and
robust system integrating planning and execution of collision-
free motions.

I. INTRODUCTION

Humanoid robots are developed to work in human-
centered environments and to assist people in doing the
housework. To enable the robot operating in a safe and robust
manner, a lot of components have to collude and to operate
cooperatively. In this work we want to show how manip-
ulation tasks can be planned by RRT-based planners and
executed based on position-based visual servoing (PBVS).
Here, the focus lies on the execution of planned trajectories
and how visual information can be used to increase the
accuracy. The proposed algorithms are implemented on the
humanoid robot ARMAR-III [1] and evaluated with different
test setups.

A typical manipulation task, like grasping an object re-
quires several components as depicted in Fig. 1. In section
III the perceptional component is briefly discussed. Since
the computer vision approaches are not scope of this work,
we just give a short overview of the used algorithms and
how the internal representation of the scene is built. In
section IV the planning framework is presented and the a
parallelized RRT-based planner which considers multiple end
effectors of a robot is introduced. The proposed MultiEEF-
RRT planner can handle multiple end effectors (EEF) for

Fig. 1. (a) The Humanoid Robot ARMAR-III grasping an object. (b) The
Components Perception, Motion Planning and Execution.

single-handed grasping of an object and implicitly selects
a feasible EEF and a suitable grasp for which a collision-
free grasping trajectory exists. The planned trajectories are
executed using visual servoing approaches as described in
section V.

II. RELATED WORK

In [2] a real-time system for collision avoidance on a hu-
manoid robot is presented which implicitly avoids obstacles
during reaching a specific goal in workspace. The work of
Berenson et. al. [3] deals with selecting feasible grasps out
of a predefined set in cluttered environments for planning
collision-free grasping motions for a humanoid robot. The
vision-based approaches in [4] or [5] can be used to generate
collision-free trajectories for a humanoid robot in unknown
environments. Gienger et. al. present an approach for solving
the coupled problem of reaching and grasping an object in a
cluttered environment with a humanoid robot by using task
maps which represent the manifold of feasible grasps for
an object [6]. The capability maps, introduced in [7], can
be used to analyze the reachability of objects with dual-
arm robot systems. In [8] Paulin presented an approach
where image-based visual servoing (IBVS) techniques are
used for controlling the trajectory execution of a camera-in-
hand robot arm system. Here the feature trajectory in the
image plane is used for generating control commands. The
visual servoing approach presented in [9] avoids pre-planned
trajectories by implicitly avoiding obstacles during mobile
navigation.

III. PERCEPTION

Usually the robot’s framework provides an internal repre-
sentation of the robot and the world, e.g. a virtual environ-
ment with 3D models of the surrounding, the manipulation

Fig. 2. Building a virtual representation from perceptual data.

objects and the robot. These models can be used for collision
detection or distance calculation and thus as an input for
the motion planning algorithms. To build up the internal
representation, the software framework of ARMAR-III offers
a predefined scenegraph of the rooms in which the robot
operates. This basic information is updated according to the
environmental status that is determined by sensor informa-
tion, e.g. the angles of open doors can be visually detected.
Additionally to the mostly fixed environment, the robot must
be able to recognize and localize manipulation objects and
humans in order to build up a valid representation of the
surrounding. For planning motions the exact localization
of obstacles and manipulation targets is crucial and the
utilized algorithms for computer vision are able to supply
highly accurate 6D object poses with high frame rates [10].
Furthermore the position of the robot has to be registered
in the virtual environment. In case of ARMAR-III three
onboard laser scanners are used to continuously localize the
robot (see [1]).

IV. RRT-BASED MOTION PLANNING

Motion planning algorithms are used to search collision-
free trajectories that move the robot to a desired goal which
can be defined in work space or in the configuration space
(C-Space) of the robot. Since the general motion planning
problem is P-SPACE hard [11], complete algorithms are time
consuming or even not available for high dimensional prob-
lems. Probabilistic approaches have been developed which
are used to find a solution quickly but never terminate if
no solution exists [12]. Sampling-based planning algorithms,
like the Rapidly Exploring Random Trees (RRT), use random
samples to explore the collision-free configuration space
(Cfree) and through their probabilistic completeness it is
guaranteed that a solution is found if at least one exists [13],
[14].

A. The Planning Framework

Depending on the requested task and based on the in-
ternal representation of the surrounding, the component for
planning motions computes a collision-free trajectory for
the involved joints. Which joints of the robot are used for
planning depends on the task and the current state of the
robot. E.g. if the robot should grasp an object which is far
away, the joints responsible for moving the robot around
have to be included, otherwise, if the object is reachable by
an arm, the position of the robot can remain unchanged and
thus the dimension of the C-Space is lower.

To plan the motion different motion planning algorithms
can be selected and parametrized. In this paper we want
to focus on an extension of the IK-RRT approach which
can be used for single and dual arm planning problems
[15]. The IK-RRT algorithm does not require a C-Space
target configuration like most RRT-based planners, but it
operates on a set of feasible grasping positions, defined
as transformations in workspace relative to an object, and
via a probabilistic IK-solver potential C-Space targets are
calculated during the planning process. By avoiding pre-
calculated IK solutions, the advantage of redundant robot
systems are utilized by the planner, resulting in a efficient
RRT-based planning algorithm which combines the search
for IK solutions with the search for collision-free grasping
motions.

B. Considering Multiple End Effectors

In this work we investigate how trajectories for grasping
can be planned by RRT-based motion planning algorithms.
Depending on higher-level task planning components, the
goal of grasping an object can result in different constraints
for planning:

Exact goal configuration:
The requested planning task definition specifies the exact
target configuration which can be derived by IK-solvers
or through predefined setups of the robot. These target
configurations can be used as input for a standard Bi-RRT
algorithm [13].

Hand and grasp selection:
The planning is constrained by specifying the hand, the exact
grasp type and all parameters, needed for grasping the object.
This behavior can be useful if the manipulation actions that
may follow the grasping action need the object grasped in
a defined way. Here the target configuration can be defined
in work space and the planner solves the IK-problem by its
own.

Hand selection:
The specification of the planning task includes which hand
and which object should be used for planning the grasping
motion, but which grasp out of a set of possible grasps should
be used is left open. This behavior may be useful when
the second arm of the humanoid is already holding another
object, and thus the selection which arm should be used for
grasping must be specified in advance.

No selection of hand or grasp:
The only request is that the object should be grasped and
the selection which hand and what type of grasp should be
used is disposed to the motion planning framework. Here
the goal is to grasp the object and e.g. to hand it over
to a human operator. In this case the generation of target
configurations is transfered from the task planning level to
the motion planning algorithms.

Specifying less parameters in advance results in a larger
goal space and thus the chance of finding a path to one
configuration in Cgoal increases. If the planning framework
leaves it open if the left or the right hand should be used for
grasping, the proposed approach can consider both kinematic

Fig. 3. (a) A 3D model of a mashed potatoes box with four associated
grasps of the right hand. (b) A virtual planning scene where the position of
the robot is retrieved by the internal laser scanners and the object positions
are determined by the vision system.

chains with a predefined set of grasps for each hand and thus
an extended goal space can be used.

C. MultiEEF-RRT

The proposed MultiEEF-RRT planner can be used in
case the goal is to grasp an object and the planner has to
decide which end effector (EEF) should be used to grasp
that object. The planner is initialized with the state of the
robot and the environment, the pose of the object which
should be grasped and a set of feasible grasps for each EEF
of the robot (in case of a humanoid robot the two hands
are considered). The set of feasible grasps combined with
the object position is used to calculate a set of possible
target poses in workspace for each end effector. These sets
of target poses are used during the planning process to
calculate C-Space target configurations for both end effectors
via a probabilistic IK-Solver. Since multiple EEFs, each with
multiple possible grasping poses, should be considered and
there is no knowledge about the reachibility of the grasps, the
MultiEEF-RRT planner parallelizes the search for a collision-
free grasping trajectory. A thread is started for each EEF and
the planning with the kinematic chain responsible for moving
this EEF (e.g. the arm) is done independently from the other
EEFs. If the planning problem for one EEF could be solved
by a sub-planning thread, the other threads are stopped and a
global solution, containing the EEF and grasp selection, the
corresponding kinematic chain and the trajectory, is reported.
As shown in Fig. 4 the virtual representations of the scene
and the robot have to be cloned n times (where n is the
number of EEFs) in order to allow the planning threads to
operate exclusively on the data. An advantage of running

Fig. 4. The MultiEEF-RRT planner.

multiple planning threads in parallel is caused by modern
CPU architectures that are multi-cored and thus each thread

has almost the same performance than running alone on the
system as long as the number of threads does not exceed
the number of cores [16], [17], [18]. In case of a humanoid
robot with two arms this advantage can already be exploited
on dual-core machines.

Since the planning threads are executing probabilistically
complete planners and by running multiple instances of these
planners the probabilistic completeness is not affected, the
MultiEEF-RRT planner is probabilistically complete.

D. Performance Analysis

The performance of the proposed MultiEEF-planner is
analyzed by running the algorithms 30 times on a typical
planning scene as depicted at Fig. 3b, consisting of a robot
model, the kitchen environment, three obstacles and one
target object with 10 associated grasping positions for each
hand. The obstacles are located near the target object, result-
ing in limited free space to operate. The average planning
time was measured with less than half a second and the time
needed for smoothing the solution path was 0.7 seconds on
average. The long runtime for path smoothing is caused by
the high quality demands which can be reduced if a faster
calculation is needed. In our performance evaluation 300 path
smoothing cycles were performed, meaning that 300 C-Space
shortcuts of the solution trajectory were searched. Since the
MultiEEF-RRT planner generates collision-free IK solutions
during the planning process, sometimes more than one IK
solution has been calculated before a solution was found. As
shown in table I, 1.3 IK solutions are computed during a
planning run on average.

TABLE I
AVERAGE PERFORMANCE OF THE MULTIEEF-RRT PLANNER.

IK Solutions Planning Time Path Smoothing Time Total Time
1.3 449 ms 659 ms 1108 ms

V. VISUALLY CONTROLLED EXECUTION OF PLANNED
TRAJECTORIES

The planned trajectories are executed by a component
which keeps track of the current position and the speed
of the joints. This module should be robust against error-
prone sensor data as well as the inaccurate execution of
velocities in order to offer a more robust execution. The
quality of trajectory execution can be improved by visual
observation and correction of the Cartesian poses. Using
visual information to control the motion of the end effector
is also referred to as visual servoing [19], [20] which is
used for moving the EEF to a target position in general.
In case of following a trajectory, the demands are slightly
different, since the visual information is used for moving
along a trajectory toward a specified target, which means
that standard visual servoing techniques cannot be applied
since these algorithms don’t care about how the goal is
reached, but try to reach the goal somehow. Our work on
visually guided trajectory execution uses algorithms similar
to PBVS approaches for controlling the trajectory execution
with respect to tracked hand and object poses.

Fig. 5. The Control Loop of the trajectory execution.

Trajectories produced by RRT-based planning algorithms
commonly consist of n dimensional support points connected
by straight lines building a path through configuration space,
where n is the number of degrees of freedom used for
planning. Motion planning algorithms guarantee that all
robot configurations located on the path lie in Cfree, the
collision-free part of the configuration space (sampling-
based planning algorithms give this guarantee for a specified
sampling resolution). Furthermore user-defined constraints,
like end-effector orientations or maximal torques, can reduce
the free C-Space. This makes planned paths rather fragile
meaning that generally there is an unknown tolerance of
leaving the path. To ensure the constraints are still satisfied
when leaving the previously calculated path, the new path
must be checked, which is mostly a too costly operation.
Thus the module for executing planned C-Space trajectories
has to take care of being as close to the path as possible.

In section V-A to V-D the general algorithm for following
C-Space trajectories is described. This approach projects the
current robot configuration to the nearest path segment and,
depending on maximal allowed velocities in C-Space and
workspace, the velocity values for the low-level controllers
are calculated. We show that this module can handle noisy
sensor data as well as changing loop times and inaccurate
execution of demanded velocities. To improve robustness an
approach for visually supporting the execution of planned
C-Space trajectories is presented in section V-E. Here visual
servoing approaches are used for controlling the position in
workspace with respect to a planned path.

A. Follow a C-Space Trajectory

In this section the general control loop is explained without
considering visual or force sensor data in order to explain
the functionality of the algorithm. Further improvements of
the approach are presented in the sections V-E and V-F
where the information coming from the vision system and
the force/torque sensors is used.

The algorithm is initialized with a C-Space trajectory
and temporary goals are produced during execution. For
that reason crobot, the current configuration of the robot, is
projected on the C-Space path, that consists of n dimensional
straight line segments. Then, this projection c′

robot is used
to determine if the actual temporary goal could be reached
within the next looptime. If so, and the temporary goal was
not the end of the path, the next C-Space goal is computed.

B. Projecting the Current Pose onto a Trajectory

1) Projection on a line segment: In order to determine
current progress crobot is projected on the collision-free C-
Space path. Fig. 6a illustrates a two dimensional example
where a configuration c is projected on a path segment p1p2

and the nearest configuration c′ is depicted.

c’robot

gnext
crobot

gprev

Fig. 6. A two dimensional example of projecting a configuration c onto a
path segment (a) and on a complete path (b).

In general, the nearest configuration c′ of a n dimensional
configuration c to a path segment p1p2 can be calculated by
computing the position r on the path segment (see equation
1 and 2).

r =
p1c · p1p2

p1p2 · p1p2
(1)

c′ =

 p1, r ≤ 0
p2, r ≥ 1

p1 + r ∗ p1p2, 0 < r < 1
(2)

All computations for determining the nearest path segment
are based on the Euclidean metric. The algorithms could be
easily extended by considering a more sophisticated metric
which takes into account that an error of the shoulder joint
has more impact than a displacement of a wrist joint.

2) Projection onto a trajectory: Fig. 6b illustrates how
a configuration crobot is projected onto a path that consists
of multiple segments. In this figure the trajectory is marked
by the white dots and the black line, the red dots show the
temporary goals, which have been calculated in former steps,
and the robot configurations according to sensor data are
shown in gray. In the last loop the robot was supposed to
move toward the temporary goal gprev but the joint sensors
say, the current configuration is at crobot. Beginning with the
segment of gprev the segment with the shortest distance to
crobot is searched and the projection c′

robot is calculated like
described before. In case of crossing paths this procedure
guarantees that no path segment which lies behind gprev

is wrongly selected. For avoiding a misleading selection of
future path segments a time horizon is used that limits the
search of c′

robot to the next k segments.

C. Computing Temporary Goals

Temporary goals are used to determine the current di-
rection of execution in C-Space and combined with the
target velocity, the joint velocity values can be calculated.
These goals are calculated as close as possible to c′

robot, the
projected position on the path, to avoid cutting corners of
C-Space path segments. They also have to be located further
on the trajectory than the last temporary goal and also further
than c′

robot to ensure that robot does not stumble.

c’robot

gnext
crobot

gc
gw

Fig. 7. Computing temporary goals.

A temporary goal is determined by starting at c′
robot

and going along the path, predicting a future position on
the trajectory. In case the previous goal gprev lies further
on trajectory than c′

robot, the prediction of future position
starts at gprev to prevent robot from stumbling. Depending
on the maximal allowed velocity and the looptime two
goal configurations gc and gw are calculated. These two
goals describe the maximal reachable configurations on the
path when considering the two parameters vc, the maximal
allowed motor velocity and vw, the maximal workspace
velocity for a joint. It is possible to define different vc and
vw values for each joint, but in general the same value is
used for all joints. When computing the goals, the maximal
allowed position in the future is computed, so that the speed
of no joint exceeds the maximal allowed velocities in C-
Space and in workspace. In Fig. 7 the search for a new goal
starts at c′

robot and both goal limits gc and gw are calculated.
Although vc would allow robot to move until gc, this would
violate the workspace velocity limit vw which means that
there would be a joint moving too fast. So gw will become
the next temporary goal gnext.

D. Generating Velocities

The direction of further movement in C-Space is given by
v = gnext − crobot, and in case v does not violate C-Space
or workspace speed limits, it can be passed to the low level
controllers.

In Fig. 8 the results of two simulation experiments are
shown. The left figure shows the workspace TCP positions
during the execution of the C-Space path. The white dots
and the black line depict the path of the TCP in workspace
and the red dots are placed at the workspace positions of
the temporary goals which were computed during execution.
The right figure shows the result of an experiment where
an artificial lag of 1000 ms forces the high-level control
loop to stop its execution. Since the low-level controller is
still executing the last calculated velocity values, the TCP
moves away from the trajectory. After the lag, the proposed
algorithms are working as expected and the TCP is quickly
moving back toward the path.

E. Visual Supervised Execution of C-Space Trajectories

The discussed components for executing C-Space trajec-
tories are able to deal with changing loop frequencies and
inaccurate execution of joint velocities. But in case the robot
is not exactly registered in the world or camera and hand-
eye calibration is not available or inaccurate, the execution

Fig. 8. (a) The workspace projection of a simulated execution of a C-Space
path. The TCP follows the path (white dots) by moving the hand toward
the temporary goals (red dots) which are computed during execution. (b)
A narrow view of an executed trajectory where workspace equivalents of
C-Space path points (white), goals (red) and the executed trajectory (gray)
are depicted. The displacement of the TCP, caused by an artificial lag, is
quickly compensated.

of C-Space trajectories will suffer from low accuracy. This
is caused by the fact that even when the path is exactly
executed, the corresponding positions in workspace will not
match the ones in the virtual planning world. An exact
planned trajectory will lead to a collision-free path in the vir-
tual representation of the world, but in reality the difference
between virtual world and reality can result in collisions.
Thus a visual correction of the executed paths can help
to retrieve more accurate TCP positions with respect to
the surrounding. By visually controlling the execution of
e.g. grasping trajectories a biological motivated principle is
copied, since humans also use their eyes to support dexterous
positioning of their hands.

To exploit as much information from the visual sensor
channel as possible, the TCP and the target object are tracked
continuously and their relative position to each other is
utilized to correct the trajectory execution. Through this
correction the TCP workspace pose is adjusted relatively to
the target object, so that the visually determined relation
matches the current relation in the virtual representation
during path execution.

We use a hybrid estimation of the hand pose pvision
hand

by combining the tracked Cartesian hand position with
the kinematically determined hand orientation. The hand
tracking is realized by stereo localization of a red marker
that is mounted on the hand [21]. Since the target and the
hand poses are determined with the same sensor channel, the
Cartesian relation

tvision
TcpToTarget = pvision

target − pvision
hand (3)

of these poses can be retrieved with high accuracy.
This relation can be calculated as well in the virtual world,

by a determining

tvirtual
TcpToTarget = pvirtual

target − pvirtual
hand (4)

In an exact calibrated system, the two relations
tvision
TcpToTarget and tvirtual

TcpToTarget should be identical. The
displacement vector e is expressed by the difference between
the virtual and the visually determined relations between
target and TCP pose.

e = tvirtual
TcpToTarget − tvision

TcpToTarget (5)

Since the pose in workspace is much more important
than the C-Space configuration, we use e to build a C-
Space correction vector ∆q via the Jacobian’s Pseudoinverse
J+(q) (see algorithm 1). In case of violating joint limits or
the Pseudinverse Jacobain calculations are trapped in local
minima, the algorithm will fail to reach the desired position
and the last valid value of ∆q is used in further calculations.

∆q = ComputeCSpaceDelta(e, q) (6)

Algorithm 1: ComputeCSpaceDelta(∆x, q)

xstart ← ForwardKinematics(q);1

q′ ← q;∆x′ ← ∆x;2

while (!TimeOut()) do3

∆q ← kJ+(q′)∆x′;4

q′ ← q′ + ∆q;5

xnew ← ForwardKinematics(q′);6

∆x′ = xnew − xstart;7

if (||∆x′ −∆x|| ≤ threshold) then8

return (q′ − q);9

end10

By moving the C-Space path by ∆q during trajectory
execution, the real TCP pose is adjusted so that the error in
the relation between target and hand is reduced. The resulting
trajectory will not be valid in the virtual planning surround-
ing any more (see Fig. 9), but in reality the displacements
of the TCP can be reduced and a more precise execution is
possible. Since ∆q is calculated in each loop, the influence
of static and dynamic errors is decreased.

Fig. 9. A visually supported execution. The red lines represent the
displacement of the original position on the path and the visually determined
poses in workspace.

F. Including Reactive Components

Additionally to the proposed algorithms, the robot must
be able to register unplanned contacts with the environment
or humans and the system must react accordingly. Also
interactions by a human operator, i.e. a correction of an
executed trajectory, must be recognized and processed. Thus
the component for execution of motions must comprise a

reactive module that keeps track of contact or collision events
with the environment.
Observing the sensor data coming from 6D force/torque
sensors allows compliant reactions to contacts with the
environment. If a force or torque is registered, the execution
module reacts to this input and changes the movement of the
joints to counteract these external forces. To guarantee a fast
and secure behavior, this corrective behavior is proportional
to the strength of the measured forces.

VI. EXAMPLE WITH ARMAR-III

In this section we describe a realistic setup used for plan-
ning motions for grasping. The humanoid robot ARMAR-
III is positioned in front of a sideboard and the goal is to
grasp a known object for which a set of feasible grasps is
stored in a database. The task includes the recognition and
localization of the target object and obstacles to build up
the internal representation of the scene (see sec. III), which
then is used for planning a collision-free motion to reach the
object with either the left or the right hand. Searching two
paths in parallel is done by the MultiEEF-RRT planner as
described in section IV. If a solution is found by the planner,
the proposed reactive execution framework is parametrized
and the planned trajectory is reliably executed. In Fig. 9 a
planned trajectory is shown in workspace with white dots
and the black line. During execution the visually determined
hand position is used to calculate the displacement e, which
is visualized by red lines. As shown the error between
virtual world and reality changes during the execution of
the trajectory. The workspace positions of the temporary
goals are depicted as red dots and due to the Jacobian-
based projection of the error from workspace to C-Space
the displacement is not exactly represented, but a good
approximation is served by the algorithms. The recognized
TCP position with respect to the target object is marked by
the green path which is close to the ideal planned trajectory.

The large deviations between the virtually planned and
the executed trajectory, depicted as red lines in Fig. 9, are
mainly caused by an inaccurate calibration of the joint sensor
data. The joint position is derived from incremental sensors
at the driving end, resulting in approximated joint values
used as input for the control loop. The accumulated error of
seven arm joints, one hip joint and three joints of the robot’s
neck causes large workspace displacements. Furthermore the
active head is moving due to the actuated hip and neck joints.
This means that a moving camera system produces a varying
error in the transformation between the visually determined
object poses and the global coordinate system.

Nevertheless, the humanoid robot ARMAR-III is able
to execute the planned grasping trajectory with sufficient
accuracy. Some pictures of the execution on ARMAR-III are
shown in Fig. 10.

VII. CONCLUSION

In this work, we showed how a parallelized planning
approach can be used to create grasping trajectories for multi

Fig. 10. ARMAR-III is executing a planned trajectory by the proposed
visual servoing techniques.

arm robot systems like a humanoid robot. The MultiEEF-
RRT planner calculates possible grasping configurations
during the planning process and thus the planner is not
limited to an incomplete set of IK solutions. Furthermore
multiple grasps per object and end effector are used and
thus the selection which grasp is reachable by a collision-
free trajectory does not have to be done in advance since
the planner implicitly selects a reachable grasp. It was
showed by the experiments, that if one side of an object is
blocked and grasping with one hand is impossible, the other
hand is implicitly selected because the planner automatically
generates a collision-free solution for one of the predefined
grasps. Hence there is no need of a scene analysis and
reasoning which hand should be used for grasping.

The presented execution component of ARMAR-III is
able to deal with noisy sensor data, inaccurate executions of
joint velocities, changing loop times and without any hand-
eye calibrations. Through the visually observed execution
the Cartesian position of the TCP is adjusted with respect
to the (also visually localized) obstacles by continuously
calculating a correction vector. By using the same sensor
channel (the vision system) for building the virtual planning
scene and for adjusting the execution, the errors between
modeling and reality are reduced and the robot is enabled to
execute planned grasping and manipulation trajectories.

Future work should address an improved hand tracking
system to avoid the artificial marker and to allow the visual
determination of hand orientations. Furthermore execution
errors, like singularities in the Jacobian-based TCP move-
ments, have to be managed by the system in order to offer
a fail-safe execution even in unexpected situations.

VIII. ACKNOWLEDGMENTS

The work described in this paper was partially conducted
within the German Humanoid Research project SFB588
funded by the German Research Foundation (DFG: Deutsche
Forschungsgemeinschaft) and the EU Cognitive Systems
project GRASP (IST-FP7-IP-215821) funded by the Euro-
pean Commission.

REFERENCES

[1] T. Asfour, K. Regenstein, P. Azad, J. Schröder, A. Bierbaum,
N. Vahrenkamp, and R. Dillmann, “Armar-III: An integrated humanoid
platform for sensory-motor control.” in IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids 2006), December 2006, pp.
169–175.

[2] H. Sugiura, M. Gienger, H. Janssen, and C. Goerick, “Real-time
collision avoidance with whole body motion control for humanoid
robots,” in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ
International Conference on, 29 2007-Nov. 2 2007, pp. 2053–2058.

[3] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and J. Kuffner,
“Grasp planning in complex scenes,” in IEEE-RAS International
Conference on Humanoid Robots (Humanoids07), December 2007.

[4] C. Eitner, Y. Mori, K. Okada, and M. Inaba, “Task and vision based
online manipulator trajectory generation for a humanoid robot,” in Hu-
manoid Robots, 2008. Humanoids 2008. 8th IEEE-RAS International
Conference on, Dec. 2008, pp. 293–298.

[5] A. Nakhaei and F. Lamiraux, “Motion planning for humanoid robots
in environments modeled by vision,” in Humanoid Robots, 2008.
Humanoids 2008. 8th IEEE-RAS International Conference on, Dec.
2008, pp. 197–204.

[6] M. Gienger, M. Toussaint, and C. Goerick, “Task maps in humanoid
robot manipulation,” in Humanoid Robots, 2008. Humanoids 2008. 8th
IEEE-RAS International Conference on, Dec. 2008, pp. 2758–2764.

[7] F. Zacharias, C. Borst, and G. Hirzinger, “Capturing robot workspace
structure: representing robot capabilities,” in Intelligent Robots and
Systems, 2007. IROS 2007. IEEE/RSJ International Conference on,
29 2007-Nov. 2 2007, pp. 3229–3236.

[8] M. Paulin, “Feature planning for robust execution of general robot
tasks using visual servoing,” in CRV ’05: Proceedings of the 2nd
Canadian conference on Computer and Robot Vision. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 200–209.

[9] R. Swain Oropeza, M. Devy, and V. Cadenat, “Controlling the execu-
tion of a visual servoing task,” J. Intell. Robotics Syst., vol. 25, no. 4,
pp. 357–369, 1999.

[10] P. Azad, T. Asfour, and R. Dillmann, “Stereo-based 6D Object Local-
ization for Grasping with Humanoid Robot Systems,” in International
Conference on Intelligent Robots and Systems (IROS), San Diego,
USA, 2007.

[11] J. H. Reif, “Complexity of the mover’s problem and generalizations,”
in SFCS ’79: Proceedings of the 20th Annual Symposium on Founda-
tions of Computer Science (sfcs 1979). Washington, DC, USA: IEEE
Computer Society, 1979, pp. 421–427.

[12] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[13] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning.”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

[14] S. LaValle and J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects.” 2000, in Workshop on the Algorithmic Foundations of
Robotics.

[15] N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, and R. Dill-
mann, “Humanoid motion planning for dual-arm manipulation and
re-grasping tasks,” in Intelligent Robots and Systems, IROS, October
2009.

[16] E. Plaku, K. Bekris, B. Chen, A. Ladd, and L. Kavraki, “Sampling-
based roadmap of trees for parallel motion planning,” Robotics, IEEE
Transactions on, vol. 21, no. 4, pp. 597–608, Aug. 2005.

[17] S. Carpin and E. Pagello, “On parallel rrts for multi-robot systems,”
in Proc. 8th Conf. Italian Association for Artificial Intelligence, 2002,
pp. 834–841.

[18] J. Cortes and T. Simeon, “Probabilistic motion planning for parallel
mechanisms,” vol. 3, Sept. 2003, pp. 4354–4359 vol.3.

[19] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo
control,” IEEE Trans. on Robotics and Automation, vol. 12, no. 5, pp.
651–670, Oct. 1996.

[20] F. Chaumette and S. Hutchinson, “Visual servo control, part I: Basic
approaches,” IEEE Robotics and Automation Magazine, vol. 13, no. 4,
pp. 82–90, dec 2006.

[21] N. Vahrenkamp, S. Wieland, P. Azad, D. Gonzalez, T. Asfour, and
R. Dillmann, “Visual servoing for humanoid grasping and manipula-
tion tasks,” in Humanoid Robots, 2008. Humanoids 2008. 8th IEEE-
RAS International Conference on, Dec. 2008, pp. 406–412.

