
Humanoid Motion Planning for Dual-Arm Manipulation and
Re-Grasping Tasks

Nikolaus Vahrenkamp∗ Dmitry Berenson† Tamim Asfour∗ James Kuffner† Rüdiger Dillmann∗

∗Institute for Anthropomatics †The Robotics Institute
University of Karlsruhe Carnegie Mellon University

Haid-und-Neu Str. 7 5000 Forbes Ave.
76131 Karlsruhe, Germany Pittsburgh, PA 15213

{vahrenkamp,asfour,dillmann}@ira.uka.de {dberenso,kuffner}@cs.cmu.edu

Abstract— In this paper, we present efficient solutions for
planning motions of dual-arm manipulation and re-grasping
tasks. Motion planning for such tasks on humanoid robots
with a high number of degrees of freedom (DoF) requires
computationally efficient approaches to determine the robot’s
full joint configuration at a given grasping position, i.e. solving
the Inverse Kinematics (IK) problem for one or both hands
of the robot. In this context, we investigate solving the inverse
kinematics problem and motion planning for dual-arm manip-
ulation and re-grasping tasks by combining a gradient-descent
approach in the robot’s pre-computed reachability space with
random sampling of free parameters. This strategy provides
feasible IK solutions at a low computation cost without resorting
to iterative methods which could be trapped by joint-limits. We
apply this strategy to dual-arm motion planning tasks in which
the robot is holding an object with one hand in order to generate
whole-body robot configurations suitable for grasping the object
with both hands. In addition, we present two probabilistically
complete RRT-based motion planning algorithms (J+-RRT and
IK-RRT) that interleave the search for an IK solution with
the search for a collision-free trajectory and the extension of
these planners to solving re-grasping problems. The capabilities
of combining IK methods and planners are shown both in
simulation and on the humanoid robot ARMAR-III performing
dual-arm tasks in a kitchen environment.

I. INTRODUCTION

When performing everyday manipulation tasks, such as
putting plates in a cabinet or loading a dishwasher, humans
often re-grasp the objects they manipulate. Having two arms
allows people to reach for an object with one arm and place
it with the other, effectively increasing the reachable space
without moving in the workspace. If humanoid robots are to
exploit their two-armed capabilities, they must possess com-
putationally efficient algorithms for grasping, re-grasping and
dual-arm tasks.

Because such robots are meant to operate in cluttered
domestic environments, planning algorithms are needed to
generate collision-free trajectories. However, planning a
reaching or a re-grasping motion requires choosing a feasible
grasping pose with respect to an object to manipulate and
finding a configuration of the robot’s joints which places
the robot’s end-effectors at this pose. A given object can
have a predefined set of possible grasping poses which are
stored in a database (see Fig. 1). Thus, the planning algorithm
must decide which of the feasible grasping poses should be

(a) (b)

Fig. 1. (a) An object (wok) with predefined grasping positions for the right
hand of ARMAR-III. (b) The 3D projection of the 6D reachability spaces
for both arms of ARMAR-III.

selected and determine the robot’s joint configuration for that
pose. In the case of re-grasping, a suitable object position
which allows grasping by the second hand must also be
calculated.

Finding a robot configuration that places the end-effector
at a given pose is known as the Inverse Kinematics (IK)
problem. Though analytical solution of IK is possible for
some manipulators which have no more than six DoF [1],
the IK solver for the humanoid robot ARMAR-III [2] has to
consider two seven DoF arms and a three DoF hip.

In this paper, we present a novel IK solver for ARMAR-
III, which uses a combination of gradient descent in pre-
computed reachability spaces and random-sampling of free
parameters (Sec. II and III) and show how to apply our
approach to one or two arm queries with fixed or varying
object poses. In the case of a varying object pose, the search
for a collision-free and graspable object pose is part of the
inverse kinematics task and the result consists of a robot
configuration and a 6D object pose. This IK approach is
extremely efficient, requiring only a few milliseconds to
solve a query as opposed to more time-consuming iterative
IK algorithms (e.g. [3]) which could be trapped by joint
limits.

This paper also presents two probabilistically complete
algorithms for planning reaching and re-grasping motions
(Section IV): the J+-RRT, which is an extension of the
single-tree RRT-JT approach [4] and IK-RRT, which is a

bidirectional RRT that samples IK solutions while planning.
The advantage of the J+-RRT is that it does not require an
IK solver, so it can be used for robots where no efficient IK
solver is available, however it usually takes a long time to
find a path in cluttered environments. The advantage of the
IK-RRT is its low computation cost, however, it requires an
efficient IK solver such as the one presented in this paper.
In section V we describe how both planners are extended to
generate collision-free trajectories for dual-arm re-grasping
tasks. Simulation and experimental results on the humanoid
robot ARMAR-III are shown in section VI.

II. SINGLE ARM IK SOLVER

To reach and grasp a fixed object with one hand, the
IK problem has to be solved. In the case of ARMAR-
III, the operational space can be increased by additionally
considering the three hip joints of the robot, which leads
to a kinematic chain with 10 DoF. Our approach to solving
the IK problem uses a combination of gradient descent in
reachability space and random sampling of free parameters.

A. Randomized IK Solver

Typically, an arm of a humanoid robot consists of six
to eight DoF and is part of a more complex kinematic
structure. If an analytical method exists for solving the IK
problem for six DoF of an arm, a randomized algorithm
can be constructed which randomly samples the preceding
joints (such as the hip) and uses the analytical IK solver for
determining the final arm configuration. This probabilistic
approach increases the operational space of the robot arm
and is suitable for randomized planning algorithms.

For ARMAR-III we use a specialized analytic approach
for solving the seven DoF IK problem for one arm where
all possible elbow positions are computed and, depending
on the parameterization, the best one is chosen [5]. If there
are multiple solutions, the behavior can be adjusted. Either
the one with the lowest accumulated joint movement or a
random solution out of the set of possible results is selected.
In addition to this IK solving, it is desirable to consider the
joints of the robot’s hip since the reachable space increases
significantly when using additional degrees of freedom. In
this case the three hip joints of ARMAR-III are randomly
sampled until an IK query is successfully answered.

If a configuration was found which brings the end effector
to the desired pose, the IK solution has to be checked against
self-collisions and collisions with obstacles in order to avoid
invalid configurations. If the collision checker reports a
collision, the solution is rejected and the search is continued.

The approach is probabilistically complete, which means
if time goes to infinity, the probability of finding a solution
will go to unity if one exists. To avoid endless runtimes, the
search for an IK solution is stopped after a specific number
of tries and it is assumed that there is no valid result.

B. Reachability Space

The use of a reachability space can speed up the ran-
domized IK solver. The reachability space is represented

Fig. 2. (a) A 2D view of the reachability space of ARMAR-III. (b) The
2D projection of a gradient descent optimization. The color intensity is
proportional to the probability that a pose inside the voxel is reachable.

by a grid of voxels in 6D pose space. Each voxel holds
information about the probability that an IK query can be
answered successfully [6], [7], [8]. It can be used to quickly
decide if a target pose is too far away from the reachable
configurations and therefore if a (costly) IK solver call is
likely to return a solution.

The reachability spaces can be determined by solving a
large number of IK requests and counting the number of
successful queries for each voxel. Another way of generating
the reachability space is to randomly sample the joint values
while using the forward kinematics to determine the pose of
the end effector and thus the corresponding 6D voxel [6].
An analytic approach of generating a representation of the
reachability is presented by Kee and Karwowski [9].

Since the reachability space is linked to the shoulder, it
moves when setting the three hip joints randomly in the
search loop of the probabilistic IK solver. For this reason, the
target pose, which is given in the global coordinate system,
is transformed to the shoulder coordinate system and the
corresponding voxel of the resulting pose is determined. The
analytical IK solver is only called if the entry of this voxel
is greater than zero (or a given threshold).

C. Gradient Descent in Reachability Space

For further speedup we propose a gradient descent ap-
proach which can be used to optimize the search for a
graspable object pose. If an object pose was found, where the
corresponding reachability space entry lies above a threshold,
we apply a search for a local maximum. This is done by
checking the neighbor voxels of the reachability space. If
there is a voxel with a higher reachability space entry and
the new pose is collision free, the object 6D position is
moved toward this voxel by the extent of the corresponding
dimensions of a voxel. The new position then lies inside the
voxel with the higher reachability entry. This is repeated until
there are no neighbors with higher entries which means the
position is at a local maximum of the discretized reachability
distribution.

To avoid loosing the probabilistic completeness by apply-
ing the discretized reachability space and the gradient descent
approach, these extensions to the original algorithm are only
used with some probability during the search loop. Thus,
the theoretical behavior of the IK solvers remain untouched

while the performance can be considerably increased.

D. 10 DoF IK Solver for Armar-III.

The most convenient kinematic chain for reaching or
grasping an object with ARMAR-III consists of the three hip
joints followed by seven arm joints. This 10 DoF kinematic
chain leads to a large reachable space and thus enables
the robot to perform grasping and manipulation operations
without moving the robot’s mobile platform.

To measure the performance of the 10 DoF IK solver, the
wok with 15 associated grasping poses is set to a random
pose in front of the robot. Then the IK solvers with and
without reachability space are called in order to find a valid
configuration for bringing the end effector to one of the 15
grasping poses. An example result of the IK solver in a partly
blocked scene is shown in Fig. 3(a). The results of Table 1
are determined by computing the averages of 100 IK queries
with randomly generated object poses1. The average runtime
and the number of calls of the analytical 7 DoF IK solver
are given for setups with/without reachability space and in
scenes with/without obstacles. It turns out that the use of the
reachability space speeds up the IK solver enormously and it
allows the use of these approaches in real-world applications.

TABLE 1
PERFORMANCE OF THE 10 DOF IK SOLVERS.

Without Obstacle With Obstacle
Avg # IK Avg # IK

Runtime calls Runtime calls
Without Reach. Space 1 404 ms 101.9 2 880 ms 217.3

With Reach. Space 60 ms 6.1 144 ms 13.6

III. DUAL-ARM IK SOLVER

If the robot should re-grasp or hand-off an object, the
search for a valid re-grasping configuration includes a col-
lision free object pose and a valid and collision free IK-
solution for both arms. This leads to an IK problem, where
the combination of the 6D object pose, three hip joints and 7
DoF for each arm results in a 23 dimensional solution vector.

A. Random Sampling

To find a reachable object pose in the task space of the
robot, the 6D pose of the object and the configuration of the
three hip joints can be sampled randomly until a call of the
IK solver is successfull for one of the poses. Therefore the
Cartesian position of the object is limited to the extent of the
reachable space and the rotation component does not have
any restrictions.

B. Reachability Space

Since the computational costs of IK solver calls could
be high, the search for feasible object poses can be sped
up by the use of reachability spaces. During the IK search
loop, the analytical 7-DoF IK solvers are only called if
the IK-probability of at least one left and at least one

1These performance evaluations have been carried out on a DualCore
system with 2.0 GHz.

Fig. 3. Example results of the 10 DoF single arm with an obstacle (a) and
the 17 DoF dual-arm IK solvers (b). The Dual arm IK algorithm provides
a feasible joint configuration and a collision-free object pose.

right grasping pose in the corresponding reachability space
is above a threshold. If the IK-probability is below that
threshold, the random generated hip configuration and object
pose is discarded and a new sample is generated. If the IK-
probability is high enough it is likely that the costly IK Solver
calls will succeed and that the pose is valid.

The average run times of the the dual-arm IK solvers are
shown in table 2. Again, the IK solver is queried 100 times
in a scene without any obstacles (first two columns) and in
a scene with an obstacle (last two columns). The first row
shows the solution in case the search for a feasible object
pose for grasping is included (23 dimensional problem) and
the second row shows the results when the object is already
grasped with the left hand and only a configuration for both
arms and the hip (17 dimensional) is searched. Here the
object is linked to the left hand and less possible grasping
combinations for both hands are available for the IK solver
and thus the runtime increases. An example result of the
dual-arm IK solver is shown in Fig. 3(b).

TABLE 2
PERFORMANCE OF THE DUAL-ARM IK SOLVERS.

Without Obstacle With Obstacle
Avg # IK Avg # IK

Runtime calls Runtime calls
Flexible grasp selection 47 ms 3.3 161 ms 6.5

Object grasped with left hand 162 ms 3.2 220 ms 4.3

IV. MOTION PLANNING FOR SINGLE ARM REACHING
MOTIONS

The proposed planning algorithms combine the search for
collision free motions with the search for solutions of the IK
problem in one planning scheme. The planners are initialized
with a set of grasping poses and feasible target configurations
are calculated along with an object pose. The computation
of feasible target configurations is done during the planning
process and thus the planning is not limited to an incomplete
set of targets. Related IK-based approaches for single arm
motion planning have been presented by Drumwright and
Ng-Thow-Hing [10] and Berenson et al. [11].

A. Predefined Grasps

If an object should be grasped with an end-effector of the
robot, a collision-free trajectory has to be planned in order
to bring the hand to a grasping pose Pgrasp which allows
applying a feasible grasp. This grasping pose is defined
with respect to the pose of the target object and could be
derived by applying the grasp-specific transformation Tk.
For each object which should be grasped or manipulated
by the robot, a set of feasible grasps is stored in a database.
This set hold information about the transformations between
the end effector and the final grasping position, the type of
grasp, a pre-position of the end-effector and additional grasp
quality descriptions. These database entries can be generated
automatically (as in [12] or [13]) or manually, like in the
following examples. A wok with 15 feasible grasps for the
right hand of the humanoid robot ARMAR-III can be seen
in Fig. 1(a).

It is possible to calculate an IK solution for each pose of
each grasp candidate in the database and to use this set of
configurations as targets for the planning process. This will
lead to a planning scheme where the search for solutions is
limited to the pre-calculated IK solutions. Since, in general,
there are infinite numbers of solutions for the IK problem,
the planner could fail although there is a valid motion for
an IK solution which was not considered. Furthermore, it
can be time consuming to calculate the IK solutions for
every grasping pose in advance. If the feasible grasps are
densely sampled, the pre-calculation has to be done for a
large number of poses. These problems can be avoided, if
the search for valid IK solutions is included in the planning
process.

The following two sections present two algorithms that
determine an IK solution while planning. Both of these
algorithms take as input the grasp set for the object and
output a joint-space trajectory to reach the object.

B. Jacobian Pseudoinverse-Based RRT (J+-RRT)

The RRT-JT approach, presented in [4], avoids the explicit
search for IK solutions by directing the RRT extensions
towards a goal pose. Therefore the transposed Jacobian is
used to generate C-Space steps out of a task space goal
direction. The RRT-JT approach can be useful when no IK
solver for a robot system is present and only a grasping
pose is known. Since there is no explicit C-space target
configuration defined, the approach can not be implemented
as a bi-directional RRT and the advantages of the Bi-RRT
algorithms can not be applied.

The J+-RRT is an extension of the RRT-JT approach:
• Instead of the transposed Jacobian, the Pseudoinverse is

used to compute goal directed C-space extension steps.
• Multiple task space goals are defined through a set of

feasible grasps.
• Instead of a three dimensional positions, full 6D poses

are used as targets.
The pseudo code of the J+-RRT planner is given in

Algorithm 1. The planner is initialized with the starting

Algorithm 1: J+-RRT(qstart,pobj ,gc)

RRT.AddConfiguration(qstart);1

while (!TimeOut()) do2

ExtendRandomly(RRT);3

if (rand() < pExtendToGoal) then4

Solution← ExtendToGoal(RRT, pobj , gc);5

if (Solution 6= NULL) then6

return PrunePath(Solution);7

end8

end9

Algorithm 2: ExtendToGoal(RRT, pobj , gc)

grasp← GetRandomGrasp(gc);1

ptarget ← ComputeTargetPose(grasp);2

qnear ← GetNearestNeighbor(RRT, ptarget);3

repeat4

pnear ← ForwardKinematics(qnear);5

∆p ← ptarget − pnear;6

∆q ← J+(qnear) ∗LimitCartesianStepSize(∆p);7

qnear ← qnear + ∆q;8

if (Collision(qnear) || !InJointLimits(qnear)) then9

return NULL;10

RRT.AddConfiguration(qnear);11

until (Length(∆p) > ThresholdCartesean) ;12

return BuildSolutionPath(qnear);13

configuration qstart, the pose pobj of the object and a set
of feasible grasps (gc = {g0, .., gk}). The RRT algorithm
is used to build up a tree of reachable and collision-free
configurations. When a new configuration is added to the
tree, the corresponding pose of the hand is stored with the
configuration data. The ExtendToGoal method is called with
some probability at each iteration of the planner.

In Fig. 4(a) a resulting RRT of a J+-RRT planner in an
empty scene is depicted. The resulting grasping trajectory
and it’s optimized version are shown in blue and green. The
optimized version was generated by standard path pruning
techniques [14]. The red parts of the search tree have been
generated by the ExtendToGoal part of the approach, where
the Pseudoinverse Jacobian is used to bias the extension to a
grasping pose (see Alg. 2). The figure shows that the search
is focused around the grasping object but in most cases the
joint limits and collisions between the hand and the object
(wok) prevent the generation of a valid solution trajectory.

C. IK-RRT

To speed up the planning, an IK solver could be used in
order to generate goal positions during the planning process.
The planner uses as input a set of feasible grasping poses,
which, combined with the pose of the object, defines a set of
target poses. These poses are used as input for the IK solver.

The IK-RRT algorithm works as follows:
• Initialization: The forward part of the Bi-RRT algorithm

is initialized with a start configuration, the backward

Algorithm 3: IK-RRT(qstart,pobj ,gc)

RRT1.AddConfiguration(qstart);1

RRT2.Clear();2

while (!TimeOut()) do3

if (#IKSolutions == 0 || rand() < pIK) then4

grasp← GetRandomGrasp(gc);5

ptarget ← ComputeTargetPose(pobj , grasp);6

qIK ← ComputeIK(ptarget);7

if (!Collision(qIK)) then8

RRT2.AddConfiguration(qIK);9

else10

qr ← GetRandomConfiguration();11

if12

(RRT1.Connect(qr) & RRT2.Connect.(qr))
then

Solution← BuildSolutionPath(qr);13

return PrunePath(Solution);14

end15

end16

end17

tree is empty until an IK solution is found.
• The planning loop grows the two trees and tries to

connect them via an intermediate configuration.
• With some probability, a random grasp out of the set of

feasible grasps is chosen and a call to the randomized IK
solver is performed. When a feasible IK configuration
qIK is found, it is added to the backward tree and the
new node is marked as a solution node.

Since the IK search is probabilistically complete for the
set of grasps and the RRT-Connect algorithm is known to
be probabilistically complete [15], the IK-RRT approach is
probabilistically complete.

In Fig. 4(b) results of the IK-RRT approach are shown.
The original and the optimized solution path are depicted
in blue and green. Due to the bi-directional approach of the
IK-RRT algorithm the search tree is much smaller compared
to the results of the J+-RRT approach (Fig. 4(a)).

V. MOTION PLANNING FOR DUAL-ARM RE-GRASPING

To plan a re-grasping motion with two arms, two problems
have to be solved. First, the configuration for handing off the
object from one hand to the other hand must be determined.
This configuration must bring the object, which is grasped
with one hand, to a position where the other hand can
apply a feasible grasp. This search also includes choosing
which grasp should be applied with the second hand. The
configuration is only valid if there are no collisions between
the arms, the environment, the object and the robot. Second,
there must exist a collision-free trajectory which brings the
arm with the grasped object and the other arm to the re-
grasping position.

Fig. 4. The results of the J+ planner in an empty scene (left figure) and of
the IK-RRT planner in a scene with an obstacle (right figure). The solution
is marked blue, the optimized solution is shown in green.

A. Dual-Arm J+-RRT

The dual-arm J+-RRT is an extension of the J+-RRT
approach presented in section IV-B.

Instead of defining the target as a fixed object pose and
a set of grasps, the object is attached to a hand and thus
the target is implicitly defined by the set of grasps. These
grasping poses lead to a set of transformations between
the two hands, defining all dual-arm configurations for re-
grasping. The ExtendToGoal part of the J+-RRT approach
(see Alg. 1) has to be adapted for the dual-arm algorithm.
Instead of moving one arm towards a fixed goal pose, the
two end-effectors are moved towards each other in order
to produce a configuration where the object can be grasped
with both hands. The DualArmExtendToGoal function (see
Alg. 4) selects a random grasp and the configuration with
the smallest distance between the two end-effector poses
and tries to move both arms towards a re-grasping pose.
This is done by alternately moving the arms towards the
corresponding goal poses in task space. Thus the Jacobian
pseudoinverses are calculated for every step and sample
configurations are generated. These samples are tested for
collision and violations of joint limits and added to the
RRT. If a re-grasping pose can be reached then a solution to
the planning problem was found, otherwise the chosen RRT
nodes are excluded form further goal extension steps.

B. Dual-Arm IK-RRT

With the IK solver methods presented in Section II it is
possible to generate feasible configurations for dual-arm re-
grasping tasks. The search for these configurations can be
included in an RRT-based planner as described in Section IV-
C. The dual-arm IK solver is used to generate IK solutions
during the planning process. These IK solutions include
a valid pose of the object with the corresponding joint
configuration of the hip and both arms for grasping the
object with both hands. The Algorithm 3 has to be adapted
slightly to include the dual-arm IK solver. Instead of a
predefined object pose, the object is attached to the kinematic
structure of one arm and the IK solver operates on the set of
feasible grasps. The resulting dual-arm IK-RRT planner can
be used for computing collision-free re-grasping trajectories
in cluttered environments.

Algorithm 4: DualArmExtendToGoal(RRT, gc)

grasp← GetRandomGrasp(gc);1

n← GetNodeMinDistanceTCPs(RRT);2

while (!Timeout()) do3

n←MoveLeftArm(n, grasp);4

if (!n) then5

return NULL;6

n←MoveRightArm(n, grasp);7

if (!n) then8

return NULL;9

if (HandOffPoseReached(n, grasp)) then10

return BuildSolutionPath(n);11

end12

Algorithm 5: MoveLeftArm(n, grasp)

pleft ← TCPLeft(n);1

p′
left ← TargetPoseLeft(n, grasp);2

∆p ← p′
left − pleft;3

∆q ← J+(qleft) ∗ LimitCartesianStepSize(∆p);4

qleft ← qleft + ∆q;5

if (Collision(qleft) || !InJointLimits(qleft)) then6

return NULL;7

return BuildNewConfigurationLeft(n, qleft);8

VI. RESULTS

A. Single Arm Reaching

In Table 3 the performance of the J+-RRT and the IK-
RRT planners is compared in test scenarios without an
obstacle and in a scene with a fixed obstacle (see Fig. 5).
The average values of 100 test runs are shown and reveal that
the usability of the J+-RRT is limited in cluttered scenes
because of the long run times. The IK-RRT algorithm is
faster due to the fast IK solver the planning times are suitable
for the use in real-world scenarios.

TABLE 3
PERFORMANCE OF THE SINGLE ARM APPROACHES.

Without Obstacle With Obstacle
Avg Runtime Avg Runtime

J+-RRT 2 032 ms 18 390 ms
IK-RRT 140 ms 480 ms

B. Dual-Arm Re-Grasping

The result of the dual-arm re-grasping planners are shown
in table 4. The test setup is similar to the single arm tests (a
setup without and with a fixed obstacle is depicted in Fig.
5). Again, the IK-RRT planner is much faster than the J+

approach.

C. Dual-Arm Motion Planning in a Kitchen Scenario

To evaluate the performance and capabilities of the devel-
oped algorithms in real world scenarios, a manipulation task
in a kitchen environment is studied. A wok should be grasped

Fig. 5. (a) The re-grasping motion is planned with the dual-arm J+-RRT.
The red parts are generated by the ExtendToGoal part of the algorithm. (b)
Dual-arm IK-RRT: The wok is grasped with the left hand and the collision-
free solution trajectory results in a re-grasping configuration. The solution
is marked blue, the optimized solution is shown in green.

TABLE 4
PERFORMANCE OF THE DUAL-ARM RE-GRASPING PLANNERS.

Without Obstacle With Obstacle
Avg. Runtime Avg. Runtime

Dual Arm J+-RRT 1 662 ms 5 192 ms
Dual Arm IK-RRT 278 ms 469 ms

with the right hand of the robot, a re-grasping motion has to
be planned and finally the object has to be placed in a cabinet.
The planning framework should be able to generate collision-
free joint trajectories in reasonable time. For this example,
the task of solving the IK problem and the collision-free
motion planning are considered separately. This leads to a
planner which looses the ability of being probabilistically
complete, since the planning is limited to one set of IK
solutions and if this IK solution is not reachable the planning
will fail. The experiments showed that the situation where
an IK solution is not reachable by a collision free motion
was never observed and thus this theoretical disadvantage
does not affect the applicability of this manipulation planning
approach in this experiment. Theoretically it is possible to
build a planner which is probabilistically complete. This can
be done for this kind of manipulation planning problem, by
searching IK solutions in parallel and for every solution an
instance of the planning algorithm is started. If time goes to
infinity, all possible IK solutions will be discovered and if a
valid solution exists the planner will find it.

TABLE 5
PERFORMANCE OF THE KITCHEN EXPERIMENT.

IK Motion
Solving Planning

Grasp 19.6 ms 345 ms
Re-Grasping 760.7 ms 4 702 ms

Place 22.6 ms 1 263 ms
Complete 802.9 ms 6 310 ms

D. Hand-off with Two Robots

The proposed algorithms can be used to generate collision
free re-grasping motions for two robots. Instead of consider-
ing two arms of one robot, two arms of two different robot
systems can be used as input for the planning algorithms. A
result of such a re-grasping motion can be seen in fig. 7. The

Fig. 6. The results of the three planning tasks. In the left image the wok
is grasped with the right hand, then the re-grasping procedure is executed
and finally the object is placed in the cabinet.

Fig. 7. A hand-off configuration for two robots.

performance of the two arm hand-off planning algorithms
is similar to the one robot case of section VI-B. From the
algorithmic point of view the only difference between the
one robot and the two robot problem are the additional hip
joints of the second robot.

E. Experiment on ARMAR-III

In this experiment ARMAR-III is operating in a kitchen
environment where the partly opened cabinet and a box are
limiting the operational workspace of the robot. A planner for
dual-arm re-grasping (see section V) is used to find a hand-
off configuration and to plan a collision free hand-off motion
for both arms. The resulting trajectory moves both hands and
the plate, that is already grasped with the right hand, to the
hand-off position and after re-grasping the arms are moved
to a standard pose. This real world experiment shows how
the dual-arm re-grasping planners enable the humanoid robot
ARMAR-III to hand-off objects from one hand to the other
in the presence of obstacles.

VII. CONCLUSION

We presented and compared two strategies for motion
planning of reaching and re-grasp motions including single
and dual arm tasks: the J+ and IK-RRT planners. The search
for a suitable and collision free configuration for grasping or
re-grasping an object is included in the planning algorithms
and thus the planners cover the search for suitable target
configurations implicitly. The J+ approach, which doesn’t
need an IK solver implementation, is compared with the IK-
RRT approach, which benefits from the ability to plan bi-
directionally. We showed that the single as well as the dual-
arm IK-RRT approaches performed better than the Jacobian-
based planners. Several planning setups were investigated
and the performance of the different algorithms is evaluated
in simulations and real world experiments.

The presented planners can be used to efficiently plan
reaching and re-grasping tasks without defining explicit tar-
get configurations. This leads to planning algorithms which
can be applied to humanoid robots and which do not require
explicit goal configurations.

Fig. 8. The humanoid robot ARMAR-III is re-grasping a plate in the
kitchen.

VIII. ACKNOWLEDGEMENTS

The work described in this paper was partially conducted
within the German Humanoid Research project SFB588
funded by the German Research Foundation (DFG: Deutsche
Forschungsgemeinschaft) and the EU Cognitive Systems
projects GRASP (FP7-215821). We also thank the InterACT
program [16] for making this joint research project possible.

REFERENCES

[1] J. J. Craig, Introduction to Robotics. Reading, MA: Addison-Wesley,
1989.

[2] T. Asfour, K. Regenstein, P. Azad, J. Schröder, A. Bierbaum,
N. Vahrenkamp, and R. Dillmann, “Armar-III: An integrated humanoid
platform for sensory-motor control.” in IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids 2006), December 2006, pp.
169–175.

[3] L. Sciavicco and B. Siciliano, Modeling and Control of Robot Manip-
ulators, 2nd ed. Springer, 2000, pp. 96–100.

[4] M. V. Weghe, D. Ferguson, and S. Srinivasa, “Randomized path
planning for redundant manipulators without inverse kinematics,” in
IEEE-RAS International Conference on Humanoid Robots, November
2007.

[5] T. Asfour and R. Dillmann, “Human-like motion of a humanoid
robot arm based on a closed-form solution of the inverse kinematics
problem.” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2003.

[6] N. I. Badler, C. B. Phillips, and B. L. Webber, Simulating Humans:
Computer Graphics Animation and Control. New York, Oxford:
Oxford University Press, 1993.

[7] L. Guilamo, J. Kuffner, K. Nishiwaki, and S. Kagami, “Efficient
prioritized inverse kinematic solutions for redundant manipulators,”
Aug. 2005, pp. 3921–3926.

[8] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. Kuffner,
“Bispace planning: Concurrent multi-space exploration,” in Robotics:
Science and Systems, June 2008.

[9] D. Kee and W. Karwowski, “Analytically derived three-dimensional
reach volumes based on multijoint movements,” Human Factors: The
Journal of the Human Factors and Ergonomics Society, vol. 44, pp.
530–544(15), 2002.

[10] E. Drumwright and V. Ng-Thow-Hing, “Toward interactive reaching
in static environments for humanoid robots,” in Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on, Oct. 2006, pp.
846–851.

[11] D. Berenson, S. Srinivasa, D. Ferguson, A. Collet, and J. Kuffner,
“Manipulation planning with workspace goal regions,” in IEEE Int’l
Conf. on Robotics and Automation (ICRA’2009),Kobe,Japan, 2009.

[12] A. T. Miller, “GraspIt!: a versatile simulator for robotic grasping.”
Ph.D. dissertation, Department of Computer Science, Columbia Uni-
versity, 2001.

[13] D. Berenson and S. Srinivasa, “Grasp synthesis in cluttered environ-
ments for dexterous hands,” in IEEE-RAS International Conference on
Humanoid Robots (Humanoids08), 2008.

[14] R. Geraerts and M. H. Overmars, “On improving the clearance for
robots in high-dimensional configuration spaces,” in IEEE/RSJ Intl
Conf. on Intelligent Robots and Systems, 2005, pp. 4074–4079.

[15] J. Kuffner and S. LaValle, “RRT-Connect: An efficient approach to
single-query path planning,” in IEEE Int’l Conf. on Robotics and
Automation (ICRA’2000), San Francisco, CA, 2000, pp. 995–1001.

[16] InterAct, “http://isl.ira.uka.de/.”

