Efficient Motion and Grasp Planning for
Humanoid Robots

Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

Abstract The control system of a robot operating in a human-centered environ-
ments should address the problem of motion planning to generate collision-free
motions for grasping and manipulation tasks. To deal with the complexity of these
tasks in such environments, different motion planning algorithms can be used. We
present a motion planning framework for manipulation and grasping tasks consist-
ing of different components for sampling-based motion planning, collision check-
ing, integrated motion planning and inverse kinematics as well as for planning of
single arm grasping and dual-arm re-grasping tasks. We provide an evaluation of
the presented methods on the humanoid robot ARMAR-III.

1 Introduction

Motion planning for humanoid robots with a high number of degrees of freedom
(DoF) requires computationally efficient approaches to determine collision-free tra-
jectories. The planning algorithms have to fulfill several requirements, such as low
runtime, short path length or reasonable distance to obstacles. Since the motion
planning problem is known to be PSPACE-hard [24], complete algorithms ([9, 26])
are time consuming and therefore less suitable for real-time tasks of highly redun-
dant humanoid robots which operate in a human-centered environment. Over the last
years efficient probabilistic, sampling-based approaches have been developed [19].
These approaches are probabilistically complete which means that if the motion
planning problem does not have a solution the algorithm will run forever. To over-
come this problem, an implementation will usually stop the search after a specified
time and will report that a solution does not exist. This drawback is compensated by
the efficiency of probabilistic planners. Efficient and problem adapted implementa-

Nikolaus Vahrenkamp - Tamim Asfour - Riidiger Dillmann
Institute for Anthropomatics, University of Karlsruhe, Adenauerring 2, 76131 Karlsruhe, Germany,
e-mail: {vahrenkamp,asfour,dillmann} @ira.uka.de

2 Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

tions of probabilistic planning approaches can be applied to real world robot systems
and they are suitable for robots operating in a human-centered environment.

1.1 RRT-Based Planning

Rapidly-Exploring Random Trees (RRTs) belong to the category of sampling-based,
randomized planning algorithms [16, 20]. They are widely used for single-query
path planning because of their simplicity and efficiency as well as the possibility of
involving differential constraints and many degrees of freedom. Several variations
from the basic RRT algorithm to problem-adapted planners have been arisen in the
last few years due to the multifarious application range of Rapidly-Exploring Ran-
dom Trees [18]. The key advantages of the basic Rapidly-Exploring Random Tree
construction, described in [16], are that the expansion of a RRT is biased toward
unexplored state space and only few heuristics and parameters are needed. Since
RRT-based algorithms are probabilistically complete, the coverage of the C-space
gets arbitrarily close to any point in the free C-space with increasing iterations.

In principle, the basic RRT can already be used as a planner because of the fact
that its vertices will eventually cover the whole collision-free configuration space
Cyree coming arbitrarily close to any specified goal configuration cge,. But such
a basic planner would suffer from slow convergence and bad performance, so that
problem-adapted improvements are reasonable.

1.2 The Motion Planning Framework

A motion planning framework should provide different planning algorithms for se-
lected problems like navigation, approaching, grasping and manipulating. Planning
with specialized algorithms allows the use in real-world applications e.g. for service
or humanoid robots. These kind of robots must be able to plan motions in reasonable
time, so that the human-robot interaction is not affected by long planning time. In
the optimal case the user should never be aware of the internally running planning
system.

The motion planning framework shown in Fig. 1 is embedded in the robot con-
trol software and offers a pool of motion planning services which can be configured
depending of the requested planning operation. The planning system selects and
configures the specialized planning services, provided by the planning framework,
in order to generate a collision-free trajectory that fulfills the needs of a higher level
task planning. Therefore, the motion planning component communicates with in-
verse kinematics (IK) solvers, a collision checker and grasp planner that provides
feasible grasps for manipulation tasks. The generated trajectories are delivered to
lower level control system which is responsible for the execution on the robot hard-
ware.

Efficient Motion and Grasp Planning for Humanoid Robots 3

High Level Task Planning

Inverse Collision
Kinematics Checking
Motion Planning
Grasp Objects /
Planning Environment

Robot Hardware

Fig. 1 The Motion Planning Framework.

2 Collision Checks and Distance Calculations

Motion planning approaches need collision and/or distance computation methods
that operate on 3D models of the robot and the environment. Several libraries are
available and can be used for collision detection ([21, 14, 17]). In our framework
we are using the PQP library which uses swept sphere volumes to test the collision
status for 3D models [17], because of the fast and robust implementation and the
included distance computation routines.

Typically the collision checking of sampled configurations is the most time con-
suming task in RRT planners. A typical planning query requires thousands of col-
lision checks. Thus a RRT-planner greatly benefits from speeding up the collision
check routines [29]. To achieve a faster collision computation we are using simpli-
fied collision models of the robot and the environment in which it is operating. This
reduces the number of triangles from 32.500 to 650 in the case of the robot model
and from 24.000 to 4.200 in the case of the environment model. The reduction leads
to an average collision query time of 0.20ms and an average distance query time of
0.65ms. Compared to 0.32ms and 3.58ms for a setup with full models of the robot
and the environment we could achieve a speedup of 37.5% and 81.8%. These perfor-
mance evaluations have been carried out for motion planning tasks of the humanoid
robot ARMAR-III in a kitchen environment (see [3]) on a Linux-Pentium4 system
with 3.2 GHz .

3 Weighted Sampling

The dimensions of the configuration space C differ in the effect of the robot system
in workspace. Since each dimension of C describes a different effect in workspace,
the dimensions have to be weighted in order to generate a uniform sampling.

4 Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

(© (d)

Fig. 2 Full CAD models of the humanoid robot ARMAR-III (a) and the kitchen environment (b).
The simplified models (c),(d) are used for collision checks and distance calculations.

There are several ways of doing joint weighting. A simple technique is a manual
and fixed weighting with w; > wy, if the center of the axis of joint i is further away
from the tool center point of the robot manipulator than from the center of the axis
of joint j. These distances however are different in each single configuration and
depending on the actual robot state they have more or less effect on the movement of
the robot, so dynamically adapted joint weights would be a better choice than fixed
weighting. But dynamically weight adaption increases the computation time since
the distances between all joints have to be computed for every single configuration.
Therefore, an upper bound for the workspace movements of each limb is used for
an efficient and approximated uniform sampling.

A change &, in a translational component of the C-space moves the robot in
workspace by &q4ns. All other dimensions of the C-space have to be investigated
explicitly to derivate the upper bound of the robot’s workspace movement. Table
1 gives an overview of the maximum displacement of a point on the robot’s sur-
face when changing one unit in C. The effects of moving one unit in the different
dimensions can be seen in Fig. 3.

The different workspace effects are considered by using a weighting vector w
whose elements are given by the values of the workspace movements from ta-

Efficient Motion and Grasp Planning for Humanoid Robots 5

(a) The humanoid robot ARMAR-IIL (b) The effect in workspace when

moving in a translational dimension. changing the C-space value for the di-
mension associated with the torso pitch
joint.

Fig. 3 Workspace effects of joint movements.

ble 1. In Eq. 1 the maximum workspace movement dys(c) of a C-space path
¢=(co,...,cy—1) is calculated.

n—1
dys(e) =Y wic; (1
i=0

To sample a C-space path between two configurations ¢; and ¢, the vector vy
is calculated (Eq. 2). For a C-space displacement of vy, it is guaranteed that the
maximum workspace displacement is 1mm.

(c2—c¢i)
dws(c2 —c¢1)

The maximal workspace step size &, can be specified in millimeters, which al-
lows to control the granularity of the planning algorithms in an easy way. The step
size &,y is used to generate n = (dﬂ} — 1 intermediate sampling configurations ¢

&
on the path between two configurations ¢; and c¢;.

©))

Vstep (C] y CZ) =

¢ = €1 +kEpsVarep(€1,€2), k=(1,..,n) 3)

This sampling of the C-space path (¢; — ¢) guarantees that the workspace move-
ments of the robot for two successive intermediate configurations is smaller than the
upper limit of g,; mm.

Since the collision status of a path is gained by checking all discrete samples
for collisions, it is not guaranteed that intermediate configurations don’t result in a
collision. This guarantee can be given by Quinlan’s Free Bubble approach [23] or

6

Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

an extension presented in [29] where enlarged robot models and lazy path validation
approaches are used to efficiently validate complete path segments.

Table 1 Worst case workspace movement for ARMAR-III.

Degree of freedom mm |Degree of freedom|mm|Degree of freedom|mm|Degree of freedom|mm
Platform Translation x| 1 |Head Pitch 300| Arm Elbow 390|Hand Index 1 70
Platform Translation y| 1 |Head Roll 300| Wrist 1 150|Hand Index 2 70
Platform Rotation 1 176|Head Yaw 300| Wrist 2 150|Hand Middle 1 70
Torso Pitch 1 176|Arm Shoulder 1 |700|Wrist 3 150|Hand Middle 2 70
Torso Roll 1 176{Arm Shoulder 2 |700|Hand Thumb 1 70 |Hand Ring 70
Torso Yaw 1 176|Arm Shoulder 3 |390|Hand Thumb 2 70 |Hand Pinkie 70

4 Planning Grasping Motions

Grasping an object is a typical and often needed operation for a service robot that
operates in a human-centered environment. In some cases the task of grasping an ob-
ject includes a suitable grasping pose which implicit defines the target configuration
of the grasping motion, but in most cases there is no need of limiting the grasping to
one specific grasp pose. In this section we want to show how the search for collision-
free grasping configurations can be included in the planning process. In [7] a goal
distance heuristics is used to implicitly compute reachable goal configurations dur-
ing the planning process. Instead of using heuristic workspace goal functions, we
are using predefined grasping poses in order to be able to use non-symmetric ob-
jects. In [5] a subset of feasible grasps is pre-calculated via a scoring function and
the planning is done with the so determined target poses. The BiSpace approach,
presented in [11], builds up two search trees, one in the C-space and one in the goal
space and a global solution is searched by connecting the search spaces. The motion
planning algorithms described in [6] work on continuous workspace goal regions
instead of single target configurations. The JT-RRT approach, presented in [31],
avoids the explicit search for IK solutions by directing the RRT extensions toward
a 3D workspace goal position. Therefore the transposed Jacobian is used to gener-
ate C-space steps out of a workspace goal direction. The JT-RRT approach can be
useful when no IK-solver is present for a robot system and only a grasping pose in
workspace is known. Since there is no explicit C-space target configuration defined,
the approach could not be implemented as a bi-directional RRT and the advantages
of the Bi-RRT algorithms can not be applied.

Our proposed algorithms unite the search for collision-free motions with the
search for solutions of the Inverse Kinematics (IK) problem to one planning scheme.
The planners are initialized with a set of grasping poses which are used to calculate
feasible target configurations. The computation of feasible grasping poses is done

Efficient Motion and Grasp Planning for Humanoid Robots 7

during the planning process and thus the planning is not limited to an potentially
incomplete set of target configurations.

4.1 Predefined Grasps

If an object should be grasped with an end effector of the robot, a collision-free
trajectory has to be planned in order to bring the hand to a pose Pq;q5p Which allows
applying a feasible grasp. This grasping pose is defined with respect to the pose of
the target object and could be derived by applying the grasp-specific transformation
T.

For each object which should be grasped or manipulated by the robot, a collection
of feasible grasps is stored in a database. This collection of feasible grasps hold in-
formation about the transformations between the end effector and the final grasping
position, the type of grasp, a preposition of the end effector and some grasp qual-
ity descriptions. These database entries can be generated automatically (e.g. with
Grasplt! [22]) or, like in the following examples, by hand. A wok with 15 feasible
grasps for each hand of the humanoid robot ARMAR-III can be seen in Fig. 4(a).

To grasp an object o (located at position P,) with the end effector e by applying
the grasp gy of the feasible grasp collection gc¢, the Inverse Kinematics problem for
the pose P has to be solved.

Y =T, +P,)

4.2 Randomized IK-Solver

To grasp a fixed object with one hand, the IK-problem for one arm has to be solved.
In case of the humanoid robot ARMAR-III, the operational workspace can be in-
creased by additionally considering the three hip joints of the robot. This leads to a
10 DoF IK problem. Typically, an arm of a humanoid robot consists of six to eight
DoF and is part of a more complex kinematic structure. If an analytical method
exists for solving the IK problem for one arm, a randomized algorithm can be con-
structed which randomly samples the preceding joints and uses the analytical IK-
solver for determining the final arm configuration. This probabilistic approach in-
creases the operational workspace of the robot arm and is suitable for randomized
planning algorithms.

For ARMARC-III we use a specialized analytic approach for solving the 7 DoF
IK problem for one arm where all possible elbow positions are computed and, de-
pending on the parameterization, the best one is chosen [1]. If there are multiple
solutions, the behavior can be adjusted. Either the one with the lowest accumulated
joint movement or a random solution out of the set of possible results is chosen.
In most cases it is desirable to consider the joints of the hip since the reachable

8 Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

workspace increases significantly when using additional degrees of freedom. In this
case the three hip joints of ARMAR-III are randomly sampled until an IK query is
successfully answered. If a configuration was found which brings the end effector to
the desired pose, the IK solution has to be checked against self-collisions and colli-
sions with obstacles in order to avoid invalid configurations. If the collision checker
reports any collisions, the solution is rejected and the search is continued.

The approach is probabilistically complete, which means if time goes to infinity
the algorithm will find a solution if at least one exists. To avoid endless runtime,
the search for an IK solution is stopped after a specific number of tries and it is as-
sumed that there is no valid result. Since this IK-solver is used within a probabilistic
planning algorithm, this approach fits well in the planning concept.

4.2.1 Reachability Space

The use of a reachability space can speed up the randomized IK-solver. The reach-
ability space represents the voxelized 6D-Pose space where each voxel holds infor-
mation about the probability that an IK query can be answered successfully [4, 11].
It can be used to quickly decide if a target pose is too far away from the reachable
configurations and therefor if a (costly) IK-solver call makes sense.

The reachability space of the two arms of ARMAR-III is shown in Fig. 4(b).
Here the size of the three dimensional projections of the 6D voxels is proportional
to the probability that an IK query within the extend of the voxel can be answered
successfully. The reachability space is computed for each arm and the base system
is linked to the corresponding shoulder.

(a) (b)

Fig. 4 (a) An object (wok) with predefined grasping positions for two arms of ARMAR-III. (b)
The 3D projection of the reachability spaces for both arms of ARMAR-IIIL.

The reachability spaces can be computed by solving a large number of IK re-
quests and counting the number of successful queries for each voxel. Another way

Efficient Motion and Grasp Planning for Humanoid Robots 9

of generating the reachability space is to randomly sample the joint values while
using the forward kinematics to determine the pose of the end effector and thus the
corresponding 6D voxel [4]. An analytic approach of generating a representation of
the reachability is presented in [15].

Since the reachability space is linked to the shoulder, it moves when setting the
three hip joints randomly in the search loop of the probabilistic IK-solver. For this
reason, the target pose Py, which is given in the global coordinate system, is trans-
formed to the shoulder coordinate system and the corresponding voxel of the result-
ing pose P/ is determined. The analytical IK-solver is only called if the entry of this
voxel is greater than zero or a given threshold.

4.2.2 A 10 DoF IK-Solver for Armar-III

The most convenient kinematic chain for reaching or grasping an object with
ARMARC-III consists of the three hip joints followed by 7 arm joints. This 10 DoF
structure leads to a large reachable workspace and thus enables the robot to perform
grasping and manipulation operations without moving the base platform.

(a) An empty scene. (b) A scene with an obstacle.

Fig. 5 Solutions of the 10 DoF IK-solvers.

To measure the performance of the 10 DoF IK-solver, the wok with 15 associated
grasping poses is set to a random pose in front of the robot. Then the IK-solvers with
and without reachability space are called in order to find a valid configuration for
bringing the end effector to one of the 15 grasping poses. Two exemplary results
of the IK-solver in an empty and a partly blocked scene are shown in figure 5.
The results of table 2 are determined by building the averages of 100 IK queries

10 Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

with different object poses !. The average runtime and the number of calls of the
analytical 7 DoF IK-solver are given for setups with/without reachability space and
in scenes with/without obstacles. It turns out that the use of the reachability space
speeds up the IK-solver enormously and it allows the use of these approaches in real
world applications.

Table 2 Performance of the 10 DoF IK-Solvers.

Without Obstacle With Obstacle
Avg. Runtime|# IK calls|Avg. Runtime|# IK calls
Without Reach. Space| 1404 ms 101.9 2 880 ms 217.3

With Reach. Space 60 ms 6.1 144 ms 13.6

4.3 RRT-Based Planning of Grasping Motions with a Set of Grasps

In most cases the task of grasping an object should not be limited to one specific
grasp. Instead of configuring the motion planner with one explicit target configura-
tion, the framework can choose a set of grasp candidates and configure the motion
planning services accordingly. It is possible to calculate an IK solution for each
grasp and to use this set of configurations as targets for the planning process. This
will lead to a planning scheme where the search for a solution is limited to the
pre-calculated IK solutions. Since in general there are infinite numbers of solutions
for the IK problem, the planner could fail although there is a valid motion for a
not considered IK solution. Furthermore, it can be time consuming to calculate the
IK solutions for every grasping pose in advance. If the feasible grasps are densely
sampled, the precalculation has to be done for a lot of workspace poses. These prob-
lems can be avoided, if the search for valid IK solutions is included in the planning
process.

The following two sections present two algorithms that determine an IK solution
while planning. Both of these algorithms take as input the grasp set for the object
and output a joint-space trajectory to reach the object.

4.3.1 J*-RRT

The J'-RRT planner can be used to search a collision-free grasping trajectory
without the explicit implementation of an IK-solver. During RRT-buildup the plan-
ner tries to connect the existing tree to predefined 6D grasping poses defined in
workspace. In case a grasping pose was successfully connected to the RRT, a solu-

! These performance evaluations have been carried out on a DualCore system with 2.0 GHz.

Efficient Motion and Grasp Planning for Humanoid Robots 11

tion was found and the resulting trajectory is optimized with standard path pruning
techniques [12].

Algorithm 1 J+ 'RRT(QStart ’pobj’gc)

1 RRT.AddConfiguration(qsar);

2 while (!TimeOut()) do

3 ExtendRandomly(RRT);

4 if (rand() < PExtendToGoat) then

5 Solution — ExtendToGoal (RRT, py;, 8¢);
6 if (Solution # NULL) then
7

8

9

return PrunePath(Solution);
end
end

Algorithm 2: ExtendToGoal (RRT, py;, 8c)

1 grasp < GetRandomGrasp(gc);

2 Prarger — ComputeTargetPose(grasp);

3 Gnear — GetNearestNeighbor(RRT, prarger);

4 repeat

5 Dnear — ForwardKinematics(qnear);

6 Ap “— Ptarget — Pnear

7 Ay — J" (qnear) * LimitCartesianStepSize(A,);
8 Anear < Gnear + Aq;

9 if (Collision(qyear) || !InJointLimits(qneqr)) then
10 return NULL;

11 RRT.AddConfiguration(qnear);

12 until (Length(Ap,) > Thresholdcartesean) ;

13 return BuildSolutionPath(gcqr);

In Alg. 1 the main part of the J*-RRT planner is shown. The planner is initial-
ized with the starting configuration gy, the workspace pose p,; of the object
and a set of feasible grasps (gc = {go,..,gx}) defined relatively to the object. The
RRT algorithm is used to build up a tree of reachable and collision-free configura-
tions. When a new configuration is added to the tree, the corresponding workspace
pose of the hand is stored with the configuration data in order to use it later for
calculating the approach movements. Approach movements are generated by the
ExtendToGoal method which is called with some probability at each iteration of the
planner. In Alg. 2 a random grasp is chosen and, combined with the pose of the ma-
nipulation object, the workspace target pose p;arge; Of the end effector is determined.
The workspace metric described in Eq. 8 is used to determine the nearest neighbor
Gnear out of all RRT-entries. g,.q- is marked, so that in case of a a failed extension
loop, it will never be chosen twice as a nearest neighbor. Then the Jacobian J(gyeqr)
is calculated and it’s Pseudoinverse J* (gneqr) is built by single value decomposi-
tion. The workspace pose difference A, between the nearest node and py4yger is used
to calculate a delta in C-space which biases the extension toward the target. If the

12 Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

new configuration is collision-free and does not violate joint limits, the tree is ex-
tended by gp. The workspace directed C-space extension is performed until the
new configuration is not valid or p;qre is reached, which means that a solution was
found.

(a) An empty scene. (b) A scene with an obstacle.

Fig. 6 The results of the J*-RRT algorithm. The red parts are generated by the ExtendToGoal
method of the approach.

In Fig. 6 a resulting RRT of a J™-RRT planner in an empty scene and in an en-
vironment with an obstacle is depicted. The resulting grasping trajectory and it’s
optimized version are shown in blue and green. The optimized version was gener-
ated by standard path pruning techniques [12]. The red parts of the search tree have
been generated by the ExtendToGoal part of the approach, where the pseudoinverse
Jacobian is used to bias the extension to a grasping pose. The figure shows, that the
search is focused around the grasping object, but in most cases the joint limits and
collisions between hand and wok prevent the generation of a valid solution trajec-
tory. The performance of the J*-RRT planner can be seen in table 3. It turns out
that the usability of the approach is limited in cluttered scenes because of the long
runtime.

4.3.2 A workspace metric for the nearest neighbor search

The metric used for determining the nearest workspace neighbor combines the
Cartesian distance d posirion With the rotational distance dorientarion Of two poses.

dposition(p07pl) = \/(xl _x0)2 + (yl _y0)2 + (Zl - Z0)2)

To compute the orientational distance, the angle between the two orientations is
computed. Since the orientational component of the pose is represented with quater-
nions, the angle between two quaternions gg and g; has to be computed. This can

Efficient Motion and Grasp Planning for Humanoid Robots 13

be done by computing g4y, the quaternion representing the rotation between go and
qi-

94if(q0,q1) =qy " *qi (6)

The rotational distance is set to the angle of g4, which can be retrieved like in
equation 7.

dorientation (‘IO; QI) =2x aCOS(qd,'f((](), Q1)-W) @)

The final metric is the weighted sum of the Cartesian and the rotational distance.
In our experiments we set the factor o to a value so that a difference in the orienta-
tion of 1 degree has the same effect as a translation of 3mm.

d(pO;pl) = 0 * dpasilian + (1 - OC) * dorientation (8)

4.3.3 IK-RRT

To speedup the planning, an IK-solver can be used in order to generate goal configu-
rations during the planning process. The planner is configured with a set of feasible
grasping poses, which, combined with the pose of a manipulation object, defines a
set of workspace target poses. These poses are used as input for the IK-solver calls.
As shown in Alg. 3 the IK-RRT algorithm is initialized by adding the start config-
uration to the first RRT while the second RRT is empty until an IK solution was
found. During the planning loop, both trees are extended with standard RRT-based
methods and it is tried to connect them via an intermediate configuration. With some
probability, a random grasp out of the set of feasible grasps is chosen and a call to
the randomized IK-solver is performed. When a feasible IK configuration g is
found, it is added to the second tree and the new node is marked as a solution node.

Since the IK search is probabilistically complete for the set of grasps and the
RRT-Connect algorithm is known to be probabilistically complete [16], the IK-RRT
approach is probabilistically complete. This means, that as time goes to infinity the
algorithm will find a solution if at least one exists.

At figure 7 a result of the IK-RRT approach is shown. The original and the op-
timized solution path are depicted in blue and green. Due to the bi-directional ap-
proach of the IK-RRT algorithm the search tree is much smaller compared to the
results of the J*"-RRT approach (Fig. 6).

The comparison of the average performance of the two proposed planners J*-
RRT and IK-RRT can be seen in table 3. Both planners are queried 100 times with
a random object position in front of the robot. The task was to find a collision-free
trajectory to one of the 15 associated grasps in two scenes, one with and one without
an obstacle. Furthermore both planners take care of self-collisions and collisions
with the target object. The results of table 3 point out that the IK-RRT approach is
much faster than the J*-RRT algorithm.

14

Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

(a) An empty scene. (b) A scene with an obstacle.

Fig. 7 The results of the IK-RRT planner. The solution is marked blue, the optimized solution is
shown in green.

Algorithm 3: IK-RRT(gsar1.Pob j»&C)

1 RRT1.AddConfiguration(qsar);
2 RRT2.Clear();
3 while (/TimeOut()) do

15

17

ExtendRandomly(RRT1);

ExtendRandomly(RRT?2);

if (#IKSolutions == 0 || rand() < pix) then
grasp — GetRandomGrasp(gc);
Piarger — ComputeTargetPose(p,pj,8rasp);
qix < ComputelK (prarger):
if (qix! = NULL & Collision(qx)) then

RRT2.AddCon figuration(qk);

end

qr < GetRandomConfiguration();

if (RRT1.Connect(q,) & RRT2.Connect.(q,)) then
Solution «— BuildSolutionPath(q,);
return PrunePath(Solution);

end

18 end

Efficient Motion and Grasp Planning for Humanoid Robots 15

Table 3 The performance of the proposed planning approaches.
Without Obstacle| With Obstacle
Avg Runtime | Avg Runtime
JT-RRT 2032 ms 18 390 ms
IK-RRT 140 ms 480 ms

5 Dual Arm Motion Planning for Re-Grasping

To plan a re-grasping motion with two arms, two problems have to be solved. The
configuration for handing off the object from one hand to the other hand must be
determined. This configuration must bring the object, which is grasped with one
hand, to a position where the other hand can apply a feasible grasp. This search also
includes choosing which grasp should be applied with the second hand. The config-
uration is only valid if there are no collisions between the arms, the environment, the
object and the robot. Furthermore there must exist a collision-free trajectory which
brings the arm with the attached object and the other arm to the re-grasping position.

5.1 Dual Arm IK-Solver

If the robot should re-grasp or hand-off an object, the search for a valid re-grasping
configuration includes a collision-free object pose and a valid and collision-free
IK-solution for both arms. This leads to a 23 dimensional IK problem, where the
combination of the 6D object pose, three hip joints and 7 DoF for each arm results
in a 23 dimensional solution vector.

5.2 Random Sampling

To find a reachable object pose in the workspace of the robot, the 6D pose of the
object and the configuration of the three hip joints can be sampled randomly until a
call of the IK-solver is successful for one of the poses P. Therefore the Cartesian
position of the object is limited to the extend of the reachable workspace and the
orientation part does not have any restrictions.

5.3 Reachability Space

Since the computational costs of IK-solver calls could be high, the search for fea-
sible object poses can be sped up by the use of reachability spaces. During the IK

16 Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

search loop, the analytic 7-DoF IK-solvers are only called, if the IK-probability of
at least one left and at least one right grasping pose in the corresponding reachability
space is above a threshold. If the IK-probability is below that threshold, the random
generated hip configuration and object pose are discarded and a new sample is gen-
erated. If the the IK-probability is high enough it is likely that the costly IK-Solver
calls will succeed and that the pose is valid.

5.4 Gradient Descent in Reachability Space

For further speedup we propose a gradient descent approach which can be used
to optimize the search for a graspable object pose. If an object pose was found,
where the corresponding reachability space entry lies above a threshold, we apply
a search for a local maximum. This is done by checking the neighbor voxels of the
reachability space. If there is a voxel with a higher reachability space entry and the
new pose is collision-free, the object 6D position is moved toward this voxel by
the extend of the corresponding dimensions of a voxel. The new position then lies
inside the voxel with the higher reachability entry. This is repeated until there are
no neighbors with higher entries which means the position is at a local maximum of
the discretized reachability distribution.

If a feasible object pose for re-grasping is needed, the gradient descent approach
can be used with two reachability spaces by searching a local maximum for the left
and the right grasping pose. Therefore the sum of both reachability space entries is
optimized by moving the object pose until a local maximum is reached.

To avoid loosing the probabilistic completeness by applying the discretized
reachability space and the gradient descent approach, these extensions to the origi-
nal algorithm are only used with some probability during the search loop. Thus, the
theoretical behavior of the IK-solvers remain untouched while the performance can
be considerably increased.

The resulting run time of the the dual arm IK-solvers are shown in table 4. The
IK-solver returns a valid object position and the corresponding joint configuration
for the hip and both arms. In this configuration the object and the robot are in a
collision-free state and a grasp can be applied for the left and the right hand (row 1).
The second row shows the performance of the IK-solver when the object is already
grasped with one hand.

Table 4 Performance of the Dual Arm Grasp-IK-Solvers.

Without Obstacle|With Obstacle
Avg #1K Avg |#IK

Runtime| calls |Runtime|calls

Flexible grasp selection| 47 ms 33 |161ms| 6.5
Object grasped with left hand| 162 ms | 3.2 | 220ms | 4.3

Efficient Motion and Grasp Planning for Humanoid Robots 17

@)

Fig. 8 (a) A 2D view of the reachability space of ARMAR-IIL (b) The 2D projection of a gradient
descent optimization. The color intensity is proportional to the probability that a pose inside the
voxel is reachable.

5.5 Dual Arm J"-RRT

The Dual Arm J*-RRT is an extension of the J™-RRT approach presented in section
4.3.1.

Instead of defining the target by a fixed workspace pose and a set of grasps,
the object is attached to a hand and thus the target is implicitly defined by the set
of grasps. These grasping poses lead to a set of transformations between the both
hands, defining all dual arm configurations for a re-grasping procedure. The Extend-
ToGoal part of the J*-RRT approach (see Alg. 1) has to be adapted for the dual arm
algorithm. Instead of moving one arm toward a fixed goal pose, the two end effectors
are moved toward each other in order to produce a configuration where the object
can be grasped with both hands. The DualArmExtendToGoal part of the algorithm
selects a random grasp and the configuration with the smallest distance between
the two end effector poses and tries to move both arms toward a re-grasping pose.
This is done by alternately moving the arms toward the corresponding goal poses
in workspace. Thus the pseudoinverse Jacobians are calculated for every step and
sample configurations are generated. These samples are tested for collision and vi-
olations of joint limits and added to the RRT. If a re-grasping pose can be reached
a solution to the planning problem was found, otherwise the chosen RRT nodes are
marked in order to exclude them for further goal extension steps.

18 Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

Algorithm 4: DualArmExtendToGoal (RRT, gc)

1 grasp « GetRandomGrasp(gc);

2 n« GetNodeMinDistanceT CPs(RRT);
3 while (!Timeout()) do

4 n < MoveLe ftArm(n, grasp);

5 if (!n) then
6
7
8
9

return NULL;
n < MoveRightArm(n, grasp);
if (!n) then
return NULL;
10 if (HandOf f PoseReached(n, grasp)) then
11 return BuildSolutionPath(n);
12 end

Algorithm 5: MoveLeftArm(n, grasp)

Piesi — TCPLeft(n);

p?ef, «— TargetPoseLe ft(grasp);

Ap — p;gf[— Plefts

Ag — I (qress) * LimitCartesianStepSize(Ap);

Gleft < qlefr +Ag

if (Collision(qies) || \InJoint Limits(qi.s)) then
return NULL;

return BuildNewCon figurationLe f1(n, qjof;);

AN AR W N -

5.6 Dual Arm IK-RRT

With the IK-solver methods of section 5.1 it is possible to generate feasible con-
figurations for a re-grasping procedure. The search for this configurations can be
included in a RRT-based planner like described in section 4.3.3. The dual arm IK-
solver is used to generate IK solutions during the planning process. These IK solu-
tions include a valid pose of the object with the corresponding joint configuration
of hip and both arms for grasping the object with both hands. The algorithm 3 has
to be adapted slightly to include the Dual Arm IK-solver. Instead of a predefined
object pose, the object is attached to the kinematic structure of one arm and thus
the IK-solver just operates on the set of feasible grasps. The resulting Dual Arm
IK-RRT planner can be used for building collision-free re-grasping trajectories in
cluttered environments.

The result of the dual arm re-grasp planners are shown in table 5. The planners
where queried 100 times and the average planning time was measured in scenes with
and without an obstacle. In this evaluation the wok is grasped with the left hand and
a re-grasping trajectory is searched. Again, the Dual Arm IK-RRT planner is much
faster than the Dual Arm J™ approach because of the possibility to take advantage
of the bi-planning approach.

Efficient Motion and Grasp Planning for Humanoid Robots 19

(a) The re-grasping motion is planned with the (b) Dual Arm IK-RRT: The wok is grasped
Dual Arm J-RRT. The red parts are generated with the left hand and the collision-free solution
by the ExtendToGoal part of the algorithm. trajectory results in a re-grasping configuration.

Fig. 9 The results of the Dual Arm J* and the Dual Arm IK-RRT planner. The solution is marked
blue, the optimized solution is shown in green.

Table 5 Performance of the dual arm re-grasping planners.

Without Obstacle| With Obstacle
Avg Runtime | Avg Runtime

JT-RRT 1 662 ms 5192 ms

IK-RRT 278 ms 469 ms

5.7 Planning Hand-off Motions for two Robots

The proposed algorithms can be used to generate collision-free re-grasping motions
for two robots. Instead of considering two arms of one robot, two arms of two dif-
ferent robot systems can be used as input for the planning algorithms.

A result of such a re-grasping motion can be seen in figure 10. The performance
of the two arm hand-off planning algorithms is similar to the one robot case. From
the algorithmic point of view the only difference between the one robot and the two
robot problem are the additional hip joints of the second robot.

5.8 Experiment on ARMAR-III

In this experiment ARMAR-III is operating in a kitchen environment where the
partly opened cabinet and a box are limiting the operational workspace of the robot.
A planner for dual-arm re-grasping is used to find a hand-off configuration and to
plan a collision-free hand-off motion for both arms. The resulting trajectory moves

20 Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

Fig. 10 A hand-off configuration for two robots.

both hands and the plate that is already grasped with the right hand, to the hand-off
position and after re-grasping the arms are moved to a standard pose. This real world
experiment shows how the dual-arm re-grasping planners enable the humanoid robot
ARMARC-III to hand-off objects from one hand to the other.

Fig. 11 The humanoid robot ARMAR-III is re-grasping a plate in the kitchen.

6 Adaptive Planning

Since a complex robot system has many degrees of freedom, a planner considering
all the joints of the robot, could suffer from the high dimensionality of the configu-
ration space. A RRT-based planner using standard techniques to generate a motion
trajectory for a humanoid robot with 43 DoF, like ARMAR-III [2], is not able to

Efficient Motion and Grasp Planning for Humanoid Robots 21

find solutions in reasonable time. The 43-dimensional C-space is not suitable for
searching collision-free paths, even when using large step sizes for approximation.

A humanoid robot has several subsystems, like arms, hands and a head, which
should be involved into the planning process. In [28], an approach is presented
where the number of active joints changes dynamically in order to adapt the volume
of the reachable workspace. In [27], a multi-level planning scheme is presented
where the planning complexity is iteratively increased by adding non-holonomic
constraints at each planning level. The planner in [32] is able to automatically ad-
just 4 DoF of a humanoid robot depending on the detected environmental situation.
This planning scheme strongly depends on the situation detecting which can be dif-
ficult if many joints are used for planning. In [10], a multi-level planner is presented,
which starts with a low C-space resolution and increases the sampling resolution to
finer levels when a coarse solution was found.

The idea of changing the number of DoF during the planning process is picked
up for the adaptive planning approach [30]. The proposed planner benefits from the
partly reduced dimensionality of the configuration space since free space that has
to be covered by the RRT is limited. The general planning approach can be used to
build a planner which unites coarse and fine planning tasks. E.g. navigation planning
usually considers a low dimensional C-space for searching a collision-free trajectory
for positioning the robot, but reaching or grasping tasks need a more complex se-
lection of joints for planning. The adaptive planner for ARMAR-III combines the
coarse search for positioning the platform with the finer levels of planning reaching
motions for an arm and the dexterous motions for planning the movements of the
five finger hand. As shown in the experiments, the planning times could be notice-
able decreased and the resulting planner is fast enough for the use on a real robot
platform.

6.1 Adaptively Changing the Complexity for Planning

To accelerate the planning process, we want to introduce an adaptive RRT-based
planning scheme which is able to change the dimensionality of the C-space adap-
tively. This concept is implemented for unidirectional and bi-directional plan-
ners. To explain the algorithm, first the unidirectional method is described, the bi-
directional planner is introduced in section 6.4.

To configure the planner, the workspace is divided into Planning Areas, which
represent an implicit knowledge of the planning problem. The definition in workspace
allows it to easily define and adjust the structure of the these areas. For each area
the corresponding set of joints, the Planning Levels, are defined.

22 Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

6.2 A Three Dimensional Example

In figure 12 (a)-(e), a simple three dimensional example of the adaptive planning
algorithm is shown. In this example the workspace is equal to the C-space, which
means that a configuration {x,y,z} leads to a similar workspace position. The effect
of increasing and decreasing the Planning Areas and Planning Levels is visualized.
The complete workspace except the red box represents the planning area 1 with the
corresponding planning level 1, which includes the two C-space dimensions x and
y. The red box represents planning area 2 with the planning level 2, covering the
complete C-space.

In figure 12 (a) the search tree grows in planning level 1 until a new configuration
falls in planning area 2 (Fig. 12 (b)). When a new configuration lies in planning area
2, the planning level is changed to planning level 2, which means that from now on
the search tree is extended in all three C-space dimensions (Fig. 12 (¢)). In figure 12
(d) the new configuration lies outside the current planning area and thus the planning
level should be decreased. For this reason, a path to a configuration in the next lower
planning level is searched and the planning goes on in planning level 1 (Fig. 12 (e)).

(a) (b) (©) (d) (e)

Fig. 12 Adaptive Planning: A three dimensional example.

6.3 Adaptive Planning for ARMAR-III

To use the adaptive planning scheme for the humanoid robot ARMAR-III, the gen-
eral approach is adjusted. The use of kinematic subsystems of ARMAR-III allows
an easy and straight-forward definition of planning areas with corresponding sets of
joints.

6.3.1 Kinematic Subsystems

To divide the planning problem into smaller subsets, where the use of a RRT-based
planning algorithm is more promising, we define different subsystems of the robot.
These subsystems are robot specific and like the kinematic structure they have to be
defined once for a system.

Efficient Motion and Grasp Planning for Humanoid Robots 23

Table 6 Subsystems of ARMAR-IIIL.

Subsystem |Involved Joints # Joints
Platform |Translation x,y, Rotation 3
Torso Pitch, Roll, Yaw

Right Arm |Shoulder 1,2,3, Elbow

Right Wrist|Wrist 1,2,3

Right Hand | Thumb 1,2, Index 1,2, Middle 1,2, Ring, Pinkie
Left Arm |Shoulder 1,2,3, Elbow

Left Wrist |Wrist 1,2,3

Left Hand |Thumb 1,2, Index 1,2, Middle 1,2, Ring, Pinkie
Head Neck |Tilt, Pitch, Roll, Yaw

Head Eyes |Eyes Tilt, Eye Pan Right, Eye Pan Left

W| | ool W ~|oo| W | W

With these subsystems for the robot, we are able to reduce the complexity of
the planning process by considering only the systems that are needed for a given
planning task. The planning framework decides which systems are included in the
planning process and configures the planning algorithms automatically. For exam-
ple, the task of grasping an object out of the cupboard, may need the subsystems
Platform, Torso, Right Arm, Right Wrist and Right Hand to get involved for plan-
ning. The chosen subsystems result in a 21 dimensional configuration space which
is used for searching a path in Cy/.. The joints which are not considered, remain in
their standard pose and can be adopted in a post-processing step, e.g. the head can
be adjusted to see the target.

6.3.2 The Approach

The planner starts with a low dimensional C-space in order to move the robot in the
environment to a position that is near to the target object. For this positioning in the
environment the detailed kinematic structures of the robot (e.g. the finger joints) are
not considered, since they do not support the planning process in this rough planning
step. If the planner has found a path in C-space which brings the robot near to the
target object, or if the reduced planning failed, more joints are used to allow a more
detailed planning. Which joints or subsystems are chosen to increase the complexity
depends on the planning task. This planning scheme is performed until a solution is
found or the full complexity of the robot is reached.

A parameter, which directly affects the planning time, is dpjanningarea> the min-
imum workspace distance of the Tool Center Point (TCP) to the target configura-
tion. When the TCP distance falls below this value the planner changes to the next
level and increases the number of involved subsystems. For this reason the TCP
workspace distance to the goal configuration is calculated for each new configura-
tion that is added to the RRT.

To avoid a manual definition of dpjanningareq fOr €ach planning level, the minimum
TCP distance for the first level is set to the doubled maximum reaching distance (in

24 Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

case of AMRAR III, this is 1176 mm) and the following values are calculated by
iteratively bisecting dpjanningarea- The extent of the planning levels are shown in
Fig. 13 for the subsystems Platform, Torso, Right Arm, Right Wrist and Right Hand.

Fig. 13 The extent of the planning levels around a target object for five subsystems of ARMAR-III.

Table 7 shows the extent of the planning levels for five subsystems of ARMAR-
III. The value for the Right Hand-subsystem is set to zero, since the number of joints
could not increased any more and the planner should go on until a global solution is
found.

Table 7 Extent of the planning levels for ARMAR-III

Subsystem |dpjanningarea (M)
Platform 2352
Torso 1176
Right Arm 588

Right Wrist 294

Right Hand 0

Efficient Motion and Grasp Planning for Humanoid Robots 25

Algorithm 6: AdaptivePlanning(c;tarr, Cgoat)

1 PlanningArea «— 1,

2 RRT.addConfig(cgarn);

3 while (!TimeOut()) do

4 ¢y < RandomConfig(PlanningArea);

5 ¢nn < GetNearestNeighbor(RRT, c,);

6 if (RRT.Connect(cun,cr) && IsInPlanningArea(c,, PlanningArea)) then
7 PlanningArea — ChangePlanningArea(c,);

8 if (IsMaximalPlanningArea(PlanningArea) && rand() < pgoq) then

9 Cnn < GetNearestNeighbor(RRT, ¢4oq1);

10 if (RRT.Connect(cun,Cgoar) then
11 return BuildSolution();

12 end

13 end

Algorithm 7: RandomConfig(PlanningArea)
1 for (i — 0;i < RRT.dimension;i +— i+ 1) do
if (IsDimensionInPlanningArea(i,PlanningArea)) then
cli] < RandomValue(DimBoundaryLoli|, DimBoundaryHili]);
else
c[i] < StandardValue(i);

wm A W N

¢ end
7 return c;

6.4 Extensions to Improve the Planning Performance

6.4.1 Randomly Extending Good Ranked Configurations

As described in [7] each node in the RRT can hold a ranking of it’s configura-
tion, which can be used to support the planning. The ranking is calculated as the
workspace distance of the TCP from the current to the goal configuration. To im-
prove the planning performance, the planner sometimes chooses one of the last k
best ranked nodes and does an extension step to an arbitrary direction. To avoid
trapped situations, failures are counted and configurations with many failed extend
steps are removed from the ranking.

6.4.2 Bi-Planning

The planning algorithm should find a trajectory for a given start and goal configu-
ration of the robot. In most cases the target configuration is more critical than the

26 Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

start configuration, since typical planning tasks will generate grasping or reaching
trajectories. Hence the target configurations often result in low obstacle distances
and thus in limited free space to operate. These situations are difficult for sampling-
based planners, since only short paths in Cy,,, can be found [13, 8]. To support the
RRT-based planner, a bi-directional planning approach can be used, which builds
up trees from the start and goal configuration and iteratively tries to connect them
[16, 25].

The adaptive planner has to be adapted slightly to support the bi-directional
search. The forward tree which starts the search from the start configuration is build
like in the unidirectional case. The second tree which starts at the goal configuration
needs some changes in the algorithm:

The planner starts with full resolution from the goal configuration. Each new
configuration ¢, that is added to the RRT, is checked whether d;cp—Targer, the TCP
workspace distance of the TCP between the new and the goal configuration, is
greater than the current extent of the planning level. In this case the planning level
is decreased and the further planning is done in a C-space with less dimensions.

With this extension of the adaptive planning algorithm, the bi-planner builds up
two trees, one starting at the start configuration and one inverted tree starting at
the goal configuration. The bi-planning loop generates random configurations and
tries to connect them to both trees. If this connection succeeds for both trees, a
global solution was found. If the connection fails, the trees are extended as long
as possible until a collision occurs. This behavior supports the covering of the free
configuration space and leads to a fast and robust planning algorithm.

6.4.3 Focusing the Search to the Area of Interest

By defining the planning levels, areas of interests with different extent are defined
around the target object. The planning process can be accelerated by focusing the
search to these areas. Since the global goal trajectory is unknown, the search should
not be limited to one area, otherwise a solution can be overseen. To achieve a fo-
cus on a target area, an adaption of the classical RRT-Connect and RRT-Extend
algorithms is proposed. The standard extension of the C-space tree will connect a
random configuration ¢, to ¢,,, the nearest neighbor of the existing tree. This behav-
ior guarantees a uniform coverage of the C-space, which is a helpful property for a
global planning problem, but in a locally bounded planning task the planning time
will increase, since many areas of the C-space which are not important for planning
are unnecessarily investigated. To emphasize a specific area in workspace an adap-
tion of the GoalZoom [19] algorithm is used. Sometimes, instead of an arbitrary
configuration c,, a more promising configuration c;,., next to the goal configura-
tion ¢, is used to extend the tree. The maximum distance d;pom between cgo and
the randomly chosen ¢, depends on the current planning level. To avoid the in-
troduction of another parameter, d,, is defined in workspace and set to the current
planning extent value dpjanningareq- This means that a random position czpem, used
to bias the search toward the goal, has to hold the constraint, that the maximum

Efficient Motion and Grasp Planning for Humanoid Robots 27

workspace distance dy is smaller than dpjanningarea (Eq. 9).

dws (cgoalaczoom) < dPlanningArea)

In the bi-directional case the enhancement works as follows: The randomly cho-
sen configuration, for which a connection to both trees is tested, sometimes is chosen
in the surrounding of the start or goal configuration, whereby the distance depends
on the planning level.

6.5 Experiments

For evaluation the simulation environment of the humanoid robot ARMAR-III is
used. The robot model has 43 DoF and for each limb there are two 3D models,
one for visualization and one simplified model for collision checking purposes. The
robot is operating in a kitchen environment, which is also modeled with full and
reduced resolution for visualization and collision checking as described in section
2.

The starting position of the robot is located outside the kitchen and a trajectory
for grasping an object is searched. In this experiment the target object is placed in-
side the fridge (Fig. 14(a)). For this task, the planner uses the subsystems Platform,
Torso, Right arm, Right Wrist and Right Hand. In our test setup the subsystem for
the right hand consists of 6 instead of 8 joints because the two middle and the two
index finger joints are coupled and thus are counted like one DoF. The overall num-
ber of joints used for planning and therefore the dimensionality of the C-space is
19.

We make the assumption that a higher level task planning module has already
calculated a goal position for grasping the object, thus ¢, the target in C-space,
is known.

(a) distance view (b) narrow view

Fig. 14 Target position of the planning task.

28 Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

The maximum workspace stepsize &, was set to 30mm for collision checking
on path segments. Since &, is a worst-case approximation, the real step sizes are
significant lower. When adding a path segment to the RRT, intermediate nodes are
generated in order to support the nearest neighbor search. These nodes are generated
with a maximal workspace distance of 90mm in all tested planners. >

6.5.1 Unidirectional Planning

A first evaluation of the planning problem described above, has been done by using
a RRT-Connect one-way planner (A). The planner builds up a tree, covering the free
C-space, and randomly tries to connect this tree to cgo4. The results point out, that
the planner often has difficulties to escape from local minima and find a correct so-
lution path to the goal configuration. These local minima may occur from situations
when the right hand gets under the cupboard or when the position of the finger joints
is disadvantageous. In more than 60% of the test cases, the planning was stopped,
because a time limit of 10 minutes or a limit in RRT nodes (100.000) was exceeded.
If the planner did not find a solution within these limitations, it is not sufficient for
the use in a real-world scenario.

Fig. 15 RRT Bi-Planning: The search tree with original (blue) and optimized (green) TCP paths.

2 These tests have been carried out on an Intel Core 2 Duo Linux System with 2.16 GHz.

Efficient Motion and Grasp Planning for Humanoid Robots 29

The adaptive planning (B) performs better than the RRT-Connect method. More
test runs succeeded and the planning time can be reduced by over 60 %. Nevertheless
a lot of planning cycles failed.

For further improvement of the adaptive planning, the GoalZoom-enhancement
and the random extend steps of section 6.4 have been implemented and tested. The
planner (C) benefits from these improvements and therefore the planning time and
the number of failed planning runs can be decreased.

Table 8 Unidirectional planning

Planning | Avg. Planning |Avg. Number of| Avg. Number of
Succeeded|Time (success)| RRT Nodes |Collision Checks

RRT-Connect (A)| 37.5 % 98.6's 30907 252 605
Adaptive Planning (B)| 43.5 % 31.3s 10 089 83017
Extended Adapt. Pl. (C)| 57.5 % 142s 5123 40522

6.5.2 Bi-Directional Planning

The RRT-Connect planner (A) often fails due to local minima in which the search
frequently gets stuck. To support the planning, the bi-planning approach was imple-
mented for the RRT-Connect algorithm (D). The planning succeeded in every test
run and the average runtime was measured with three seconds (table 9 row D).

A planned RRT with original (blue) and optimized (green) solution paths are
depicted in Fig. 15.

Although the adaptive planner (B) achieves better results than the RRT-Connect
planner (A), there are also settings in which the planning fails. The results of the
bi-directional RRT-Connect planner (D) point out, that the planning can benefit a
lot from building up two search trees. The adaptive bi-planner (E) was implemented
and tested as described in section 6.4. The adaptive reduction of the subsystems
combined with a bi-planner results in an average planning time of 477 milliseconds
(table 9 row E).

The GoalZoom-enhancement, described in section 6.4, which noticeable in-
creased the planning performance for unidirectional planners, just decreases the
planning time slightly for the adaptive bi-directional planner (F). As shown in table
9 the average planning time decreases from 477ms to 423ms. Fig. 16 shows a typical
RRT with original and reduced solution paths for this configuration of the planning
algorithm.

30 Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

Fig. 16 Adaptive Bi-Planning: The search tree with original (blue) and optimized (green) TCP
paths.

Table 9 Bi-directional planning

Planning |Avg. Planning| Avg. Number | Avg. Number of
Succeeded Time of RRT Nodes|Collision Checks

RRT-Connect (D)| 100.0 % 3037 ms 784 4802
Adaptive Planning (E)| 100.0 % 477 ms 477 1443
Extended Adapt. pl. (F)| 100.0 % 423 ms 388 1181

7 Conclusion

A service or humanoid robot can benefit from a planning framework which offers
specialized approaches for motion planning. The concept presented here, includes
multiple planning algorithms which can be selected and parametrized by the frame-
work. The diversity of applications and the use in a human-centered environment
necessitates fast and robust algorithms for a wide range of planning problems. A
generalized approach, covering all requested needs, is desirable, but with current
techniques it is not realistic to achieve an implementation that is fast enough for real
world applications. For this reason we presented and evaluated several specialized
algorithms which can be used within the planning framework and thus a fast system
for a wide range of planning problems can be constructed.

Efficient Motion and Grasp Planning for Humanoid Robots 31

The presented approaches can be used to include the search for Inverse Kine-
matics solutions in the planning process. For this reason a set of feasible grasps are
stored with each manipulation object. The proposed J " -RRT and IK-RRT planners
are not limited to one specific goal configuration and thus trajectories for the of-
ten needed task of grasping an object can be generated in an fast and robust manner.
The dual arm extensions of the JT-RRT and the IK-RRT algorithms offer a possibil-
ity for efficiently planning dual arm motions for grasping, re-grasping and hand-off
procedures. As shown in the experiments, the algorithms can be applied for two
arms of one or two humanoid robots. The performance evaluations pointed out the
possibility of using these planners on real robot platforms.

The adaptive planning approach can be used to efficiently unite different plan-
ning problems like navigation, reach and grasp planning. The algorithms have been
evaluated with a common planning problem for a humanoid robot. As test case a
grasping task in a kitchen environment was chosen where the planners had to find
trajectories for 19 DoF of the robot ARMAR III. As a reference a standard RRT
planner was used for which the poor performance and the high number of unsuc-
cessful planning cycles have been overcome by using a bi-planning approach. The
results of the adaptive planner point out that the planning time can be noticeable
decreased if the planning task and the used subsystems of the robot are known. The
use of several extensions combined with the adaptive approach leads to a planner
which is able to find solutions for a 19 DoF grasping task in about half a second on
average. The planning performance is sufficient for real world applications and the
use on a hardware platform.

8 Acknowledgments

The work described in this paper was partially conducted within the the German
Humanoid Research project SFB588 funded by the German Research Foundation
(DFG: Deutsche Forschungsgemeinschaft) and the EU Cognitive Systems projects
GRASP (FP7-215821).

References

1. Asfour T, Dillmann R (2003) Human-like motion of a humanoid robot arm based on a closed-
form solution of the inverse kinematics problem. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)

2. Asfour T, Regenstein K, Azad P, Schroder J, Bierbaum A, Vahrenkamp N, Dillmann R (2006)
Armar-III: An integrated humanoid platform for sensory-motor control. In: IEEE-RAS Inter-
national Conference on Humanoid Robots (Humanoids 2006), pp 169-175

3. Asfour T, Azad P, Vahrenkamp N, Regenstein K, Bierbaum A, Welke K, Schroder J, Dillmann
R (2008) Toward humanoid manipulation in human-centred environments. Robot Auton Syst
56(1):54-65

32

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Nikolaus Vahrenkamp and Tamim Asfour and Riidiger Dillmann

Badler NI, Phillips CB, Webber BL (1993) Simulating Humans: Computer Graphics Anima-
tion and Control. Oxford University Press, New York, Oxford

Berenson D, Diankov R, Nishiwaki K, Kagami S, Kuffner J (2007) Grasp planning in complex
scenes. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids07)
Berenson D, Srinivasa S, Ferguson D, Collet A, Kuffner J (2009) Manipulation planning with
workspace goal regions. In: IEEE Intl Conf. on Robotics and Automation (ICRA)

. Bertram D, Kuffner J, Dillmann R, Asfour T (2006) An integrated approach to inverse kine-

matics and path planning for redundant manipulators. In: IEEE International Conference on
Robotics and Automation, pp 1874—1879

Boor V, Overmars M, Stappen A (1999) The Gaussian sampling strategy for probabilistic
roadmap planners. In: IEEE International Conference on Robotics and Automation, pp 1018—
1023

Canny JF (1988) The complexity of robot motion planning. MIT Press, Cambridge, MA, USA

. Chen PC, Hwang YK (1998) SANDROS: A dynamic search graph algorithm for motion plan-

ning. IEEE Transactions on Robotics & Automation 14(3):390—-403

Diankov R, Ratliff N, Ferguson D, Srinivasa S, Kuffner J (2008) Bispace planning: Concurrent
multi-space exploration. In: Robotics: Science and Systems

Geraerts R, Overmars MH (2005) On improving the clearance for robots in high-dimensional
configuration spaces. In: IEEE/RSJ Intl Conf. on Intelligent Robots and Systems, pp 4074—
4079

Hsu D, Latombe JC, Motwani R (1999) Path planning in expansive configuration spaces.
International Journal of Computational Geometry and Applications 9(4/5)

Jimnez P, Thomas F, Torras C (2001) 3D collision detection: A survey. In: Computers and
Graphics, pp 269-285

Kee D, Karwowski W (2002) Analytically derived three-dimensional reach volumes based on
multijoint movements. Human Factors: The Journal of the Human Factors and Ergonomics
Society 44:530-544(15)

Kuffner J, LaValle S (2000) Rrt-connect: An efficient approach to single-query path planning.
In: IEEE Int’l Conf. on Robotics and Automation (ICRA’2000), San Francisco, CA, pp 995—
1001

Larsen E, Gottschalk S, Lin MC, Manocha D (2000) Fast proximity queries with swept sphere
volumes. Tech. rep., Department of Computer Science, University of North Carolina

LaValle S, Kuftner J (2000) Rapidly-exploring random trees: Progress and prospects. In Work-
shop on the Algorithmic Foundations of Robotics.

LaValle SM (2006) Planning Algorithms. Cambridge University Press, Cambridge, U.K.,
available at http://planning.cs.uiuc.edu/

LaValle SM, Kuffner JJ (2001) Randomized kinodynamic planning. International Journal of
Robotics Research 20(5):378-400

Lin M, Gottschalk S (1998) Collision detection between geometric models: A survey. In: IMA
Conference on Mathematics of Surfaces

Miller AT (2001) Graspit!: a versatile simulator for robotic grasping. PhD thesis, Department
of Computer Science, Columbia University

Quinlan S (1994) Real-time modification of collision-free paths. PhD thesis, Stanford Univer-
sity

Reif JH (1979) Complexity of the mover’s problem and generalizations. In: SFCS °79: Pro-
ceedings of the 20th Annual Symposium on Foundations of Computer Science (sfcs 1979),
IEEE Computer Society, Washington, DC, USA, pp 421427

Sanchez G, Latombe J (2001) A single-query bi-directional probabilistic roadmap planner
with lazy collision checking. In: International Symposium on Robotics Research, Lorne, Vic-
toria, Australia

Schwartz JT, Sharir M (1983) On the piano movers problem: Coordinating the motion of
several independent bodies. In: Int. J. Robot. Res., pp 97-140

Sekhavat S, Laumond J, Overmars MH (1998) Multilevel path planning for nonholonomic
robots using semiholonomic subsystems. Int J Robot Res 17:840-857

Efficient Motion and Grasp Planning for Humanoid Robots 33

28.

29.

30.

31.

32.

Sian NE, Yokoi K, Kajita S, Tanie K (2004) A framework for remote execution of whole
body motions for humanoid robots. In: Humanoid Robots, 2004 4th IEEE/RAS International
Conference on, vol 2, pp 608-626

Vahrenkamp N, Asfour T, Dillmann R (2007) Efficient motion planning for humanoid robots
using lazy collision checking and enlarged robot models. In: Intelligent Robots and Systems,
IROS

Vahrenkamp N, Scheurer C, Asfour T, Kuffner JJ, Dillmann R (2008) Adaptive motion plan-
ning for humanoid robots. In: IROS, pp 2127-2132

Weghe MV, Ferguson D, Srinivasa S (2007) Randomized path planning for redundant ma-
nipulators without inverse kinematics. In: IEEE-RAS International Conference on Humanoid
Robots

Yoshida E (2005) Humanoid motion planning using multi-level DoF exploitation based on
randomized method. In: IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. IEEE Computer Society, Edmonton, Canada, pp 3378-3383

