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Abstract— In this paper parameter-free concepts for exact
motion planning are investigated. With the proposed RDT+

approach the collision detection parameters of a Rapidly-
exploring Dense Tree (RDT) are automatically adjusted until an
exact solution can be found. For efficient planning discrete colli-
sion detection routines are used within the RDT planner and by
verifying the results with exact collision detection methods, the
RDT+ concept allows to compute motions that are guaranteed
collision-free. We show the probabilistic completeness of the
proposed planner and present an extension for handling narrow
passages.

The algorithms are evaluated in different experiments, in-
cluding narrow passages and high-dimensional planning prob-
lems, that are solved in simulation and on the humanoid robot
ARMAR-III.

I. INTRODUCTION

Sampling-based techniques are used in a wide range
of motion planning algorithms. These approaches take ad-
vantage of approximating the free space Cfree, instead of
constructing a complete representation of the valid configu-
ration space. The two most popular approaches, the Rapidly-
exploring Random Trees (RRTs) [1] and the Probabilistic
Roadmaps (PRMs) [2], use sampling techniques to build up
a tree or graph in Cfree, that is refined until a solution,
i.e. a collision-free path, can be found. The efficiency of
the algorithms strongly depends on the selection of the
parameters and usually heuristics are utilized for choosing
them. Furthermore most implementations rely on discrete
collision detection (DCD) for path validation due to the easy
and efficient realization. Thus a parameter has to be specified:
the distance dcol for validating the collision-free status of a
continuous path in C-Space. This value is used to generate
discrete samples on the path that are checked for collisions
and if none of these samples is in collision, it is assumed
that the complete path lies in Cfree. The parameter dcol has
to be chosen carefully, since a large value will increase the
probability that a collision is missed and by choosing dcol
too small the efficiency of the planner decreases. Even a
conservative selection of dcol could lead to situations where
thin obstacles are missed and thus a computed solution is
not collision-free.

To overcome this limitation exact collision detection rou-
tines can be used that give guarantees on the collision
status of path segments. In this paper we present the RDT+

approach, a planning concept, where the results of a DCD-
based RDT planner [3] are supervised and the collision

Fig. 1. The RDT+-DE planner is used to compute an exact motion for
the humanoid robot ARMAR-III.

detection parameter is automatically adjusted until an exact
solution is found. We prove that the proposed planner is
probabilistically complete by showing that there exists a
probability greater zero, that a sequence is sampled for
which the RDT+ planner generates a valid solution. Further-
more, the RDT+-Dynamic Extend (RDT+-DE) planner, an
extension for handling narrow passages in high dimensional
configuration spaces, is developed and evaluated on the
humanoid robot ARMAR-III [4] (see Fig. 1).

II. RELATED WORK

In [5] the Resolution Adaptive RRT (RA-RRT) is pre-
sented. In this work resolution adaptive strategies are used
to increase the efficiency of probabilistic path planning.
Therefore an adaptive rule for selecting the step size of
the expansion process is proposed. The aim of this work
is to increase the performance of RRT-based planners for
difficult planning problems characterized by the presence of
narrow passages in Cfree. The performance of sampling-
based planning approaches can be increased by using the
RA-RRT concept, but several parameters, as the initial and
the final step size, have to be specified manually.

The Lazy PRM planner [6] initially assumes a configura-
tion space that is completely collision-free so that a roadmap
can be quickly constructed in the preprocessing phase. The
verification of edges is shiftet to the query phase resulting
in a lazy refinement of the representation of Cfree. The
performance of the approach relies on the parameter Ninit

that specifies the the initial number of nodes.
Unsupervised adaptive strategies for construction of proba-

bilistic roadmaps (PRM) are presented in [7]. The approach



avoids manual parameter tuning, which is usually needed
for approaches based on learning as the Hybrid PRM [8] or
the Feature Sensitive Motion Planning Framework [9]. It is
demonstrated how to combine both the topology adaptation
and sampler adaptation over the planning process in order
to learn the best sampling strategy for roadmap construction.
Nevertheless, a training set for learning the sampling strategy
is needed and due to the complexity of the approach several
parameters of the underlying roadmap have to be chosen by
hand. In [10] several heuristics for efficient motion planning
are presented. An overview of heuristics and parameter
tuning techniques for motion planning algorithms can be
found in [11] and [12].

A. Discrete vs. Continuous Collision Detection

Methods for discrete collision detection tend to be fast
compared with algorithms for continuous collision detection.
Nevertheless, checking a complete path in C-Space must be
realized by creating samples on the path and when all these
samples are collision-free, it is assumed the complete path is
collision-free. Depending on the sampling parameter, there is
a probability of missing obstacles which can be avoided by
utilizing exact collision detection. In this paper, we compare
two approaches for exact collision detection with discrete
sampling-based collision determination. The first approach is
based on the free-bubble concept of Quinlan [13], whereas
the second one uses conservative advancement methods for
continuous collision detection [14].

1) Free Bubbles: Quinlan introduced the free-bubble con-
cept in [13], to give a guarantee that a path in C-Space is
collision-free. There, a method is presented to compute an
upper bound for the distance any point on the geometry
of the manipulator can travel for a given change in the
configuration. By setting this value in relation to the obstacle
distance in workspace, the length of a guaranteed collision-
free path segment can be determined. To compute the exact
collision status of a path in C-Space, intermediate samples
have to be generated, so that their free bubbles overlap.
An efficient implementation can be realized by a recursive
bisecting algorithm [15], [16].

2) Continuous Collision Detection: Several approaches
are known for continuous collision detection (CCD) when
operating on two convex models, both moving from a start
pose to a goal pose (see e.g. [17],[18]). In the context of
robot motion planning approaches are needed that can handle
non-convex objects as well as articulated motions for linked
systems, e.g. robot arms.

The approach presented in [19] can handle polygon soups
for CCD, but the performance decreased for large rotations.
In [20] a CCD-algorithm for articulated motions is presented,
that approximates a linear motion of the involved links,
where each link of the model should be a polyhedron. Redon
et al. extend the approach of [19] to be able to handle
articulated models by using arbitrary in-between motions to
approximate the motion structure of the system [21].

Applying continuous collision detection algorithms to mo-
tion planning problems is addressed in [22], where the C2A

algorithm [14] is used for performing CCD. The approach is
based on conservative advancement, originally developed for
convex polytopes as described in [23]. The C2A algorithm
can handle polygon soups efficiently, gives a guarantee for
the collision status of motions and is available as open source
[24]. Since the current implementation just supports rigid
motions, no complex kinematic chains of a robot system
can be handled. Nevertheless, we show how this approach
can be used for planning collision-free 6D trajectories of a
free flying robot. This enables us to compare this state-of-
the-art approach with algorithms based on discrete collision
detection, showing how future CCD algorithms covering
articulated motions of complex kinematic chains could per-
form.

III. PARAMETER-FREE MOTION PLANNING

Avoiding parameters for motion planning means that
all heuristics that are usually chosen by hand have to be
eliminated. In the following we identify several stages
where heuristic parameters are used for planning:

C-Space: Each dimension of the C-Space represents the
position of a related joint of the robot. Since the effect in
workspace may differ when moving different joints, the C-
Space dimensions have to be unified (e.g. one can think of
two joints: a translational and a revolute joint for which
the C-Space units are given in mm and radians respec-
tively). This unification can be achieved by weighting, as we
proposed in [25]. Since the weights represent the maximal
spatial movement, a point on the robot’s surface could per-
form when moving one unit in the corresponding dimension
in C, upper bounds can be determined automatically. In
Eq. (1), the weight wi is derived as the maximum over
all kinematic chains K starting with the i-th joint. For a
kinematic chain K, the maximum extent in workspace of all
joints k ∈ K is summed by finding the two points p and
q on the corresponding surface Ak which have maximum
distance.

wi = max
K

(∑
k∈K

max
p,q∈Ak

|p− q|

)
(1)

With these upper bounds (w0, . . . , wn−1), the granularity of
sampling in C-Space can be adjusted by a resolution param-
eter dsample representing the maximum allowed workspace
displacement of two consecutive samples (see [25]).

Another approach is presented in [26], where the DISP-
metric is used to determine the spatial displacement caused
by a path in C-Space. The approach in [3] is based on
upper bound calculations for workspace displacements and
does not rely on any weightings. Thus it can be used for
parameter-free unifying of the C-Space dimensions and
adequate sampling.

RDT: RRT-based approaches require the specification of
a sampling parameter dsample. This parameter is used to
create intermediate configurations on path segments, having
the advantage, that the search for nearest neighbors can be



implemented easily. Usually another parameter dcol is used
to specify the step size of discrete collision detection.

The Rapidly-exploring Dense Tree (RDT) planner builds
up a tree in Cfree by connecting random samples with
straight line path segments [3]. In contrast to RRT-based
concepts, no intermediate samples along the path are added
to the tree structure and thus the tree structure of RDTs
is sparse compared to RRTs. Furthermore, the nearest
neighbors (NN) search is different to RRT-based planners,
since long edges can exists in an RDT. Usually, the NN-
algorithm operates on vertices, which is sufficient for RRTs
where only short edges exist. When large edges are present,
the NN-search has to be able to handle path segments for
finding the nearest neighbor of a configuration to a tree
in C-Space. Similar to the BiRRT approach bidirectional
planning is realized by the BiRDT algorithm that extends
two trees until a connecting configuration is found. In case
an exact algorithm for determining the collision status of
path segments is used, the bidirectional RDT approach does
not rely on any parameters. Unfortunately, the performance
decreases when using CCD algorithms for path verification
(see Sec. V), hence we propose the RDT+ approach
where discrete collision detection is used and the parameter
dcol is automatically adjusted until an exact solution is found.

Narrow Passages: The convergence of sampling-based
motion planning algorithms degrades when narrow passages
exist in the free C-Space. This is caused by the greedy
behavior of PRM- and RRT-based approaches, that need
to run a long time until the granularity of the randomized
extension steps is fine enough to find a way through narrow
sections. Several approaches have been proposed to improve
the performance in such cases, most of them propose a
customized sampling strategy to be used instead of uniformly
distributed sampling:
The Gaussian sampling strategy [27] searches for a pair
of two randomly chosen configurations c1 and c2. The
first configuration is uniformly distributed, the second one
Gaussian distributed around c1. Such a Gaussian pair is
considered valid if either c1 ∈ Cfree and c2 ∈ Cobs or the
other way around. If a valid Gaussian pair is found, the non-
colliding configuration in {c1, c2} is taken as a new sampling
point.
The idea of bridge sampling [28] is to improve Gaussian
sampling in matters of not wasting too many sampling points
near uninteresting parts of the boundaries of Cfree. The
bridge test searches for a Gaussian pair {c1, c2} ⊂ Cobs.
If such a pair is found, the center of the connecting segment
between c1 and c2 is taken as a new sampling point.
The dynamic domain RRT [29] (DD-RRT) is a variation of
the RRT-algorithm in which every node n of the search tree
holds a specific radius r(n), initially set to ∞. A sampling
configuration c is only connected to the nearest node cnear
of the search tree, if |c − cnear| < r(cnear). The radius
r(n) is adjusted whenever an attempt to connect the node
n to some sampling configuration is made. In the original
DD-RRT algorithm the radius is set to a constant R if this

attempt fails and otherwise left to ∞. The adaptive dynamic
domain RRT (ADD-RRT) in [30] increases or decreases the
radius by a factor α whenever it was previously less than ∞
and the attempt succeeded respectively failed.

The use of these approaches introduces new parameters:
the variance for the Gaussian distribution when applying
the Gauss- or Bridge sampling strategy, the values R and
α in case the (A)DD-RRT algorithm is used. Also further
approaches as the EET-RRT [31], Retraction-based RRT
[32], the disassembly-based motion planner [33] are based
on parameters, that have to be chosen carefully.

Since we are interested in a parameter-free algorithm
that is able to handle narrow passages, we propose a local
adaption of the maximal length of an RDT-based extension
step in order to adjust the tree expansion according to the
surrounding in C-Space (see Sec. IV-B).

IV. RDT+

In order to construct a parameter-free motion planning
algorithm that is efficient and robust we propose the RDT+

approach. This approach combines the advantages of both
concepts: avoiding parameters by the BiRDT-based planner
and using discrete collision detection for efficient planning.
When DCD methods are used, the BiRDT planner relies on
the parameter dcol, the distance for sampling a continuous
path segment for collision detection. This value is supervised
and adapted by the RDT+ planner until an exact solution
is found. Therefore, dcol is initialized with |cgoal − cstart|,
a value that will be too large in almost every case, but
dcol is automatically reduced by the RDT+ planner until an
adequate value is reached.

To determine whether the current RDT-instance reported
a valid solution, exact path checking routines are used for
verifying the results. This has the advantage, that the slow
exact path verification methods do not have to be applied
for the complete search tree, but only on the solution path,
whose length is usually small compared to the whole tree.
Depending on this lazy exact path verification the parameter
dcol of the BiRDT-planner is bisected until a guarantee for
an exact solution is achieved (see Alg. 1). Note, that the
BiRDT-planner is completely restarted and all performed
collision computations are discarded, in case the result was
not valid. This behavior is not optimal, but as showed by
experiments, the RDT+-planner is significantly faster than
a BiRDT-planner performing exact path verification for the
whole planning process.

A. Probabilistic Completeness

In this section, the sketch of a proof is presented, showing
that the RDT+ algorithm is probabilistically complete. This
means, that in case a solution exists the probability of
finding it goes to 1 as the running time goes to infinity.
Unfortunately it cannot be argued, that the RDT+ planner is
probabilistically complete since it successively starts multiple
instances of the probabilistically complete RDT planner.
This argumentation would hold, when exact path verification
routines are used, but since DCD methods are employed by



Algorithm 1: RDT+(cstart, cgoal)

1 d← |cgoal − cstart|;
2 repeat
3 BiRDT ←CreateInstance(cstart, cgoal);
4 BiRDT.SetCollisionParameter(d);
5 Solution← BiRDT.run();
6 d← d/2;
7 until (ExactPathVerification(Solution));
8 return Solution;

the RDT planner, there is no guarantee that a solution path
is completely collision-free.

The argumentation used in the following sketch is based
on the fact, that there is a probability greater zero that a
sequence of points is sampled for which the RDT planner
will create a collision-free solution path. If the RDT planner
reports a solution that was created by such a sequence, it will
pass the verification step of the RDT+ planner and the al-
gorithm terminates. For a sequence of samplings that results
in an invalid path, the verification step of the RDT+ planner
rejects the solution and another instance of the RDT planner
is started. The use of DCD methods for path verification
within the RDT planner does not affect the argumentation:
Either, the solution path is completely collision-free and the
DCD methods also report this, or the path is in collision
which was not detected by the RDT algorithm but by the
RDT+ planner with its exact collision detection methods.

Sketch of a proof: For clarity we use an uni-directional
RDT-Algorithm throughout this sketch. An extension to a
bidirectional planner can be realized by considering two uni-
directional trees.

We assume that a continuous intersection-free solution
path S ⊂ Cfree exists, that starts with cstart and ends with
cgoal. It is known, that Cobst is a closed subset of C and thus
Cfree is open. Hence, for every point p ∈ S, there is a radius
rp such that the open ball Bp := B(p, rp) ⊂ Cfree. Because
of S being compact, we can apply the Heine-Borel theorem
[34] and get a finite subset

C ⊂ {Bp|p ∈ S}

which still covers S.
Because of the finiteness of C, we can now choose a radius

r, such that:

∀s ∈ S : B(s, 4r) ⊂
⋃
C (2)

where
⋃
C is the union of all sets in C. Analogous to the

previous argumentation, we can find a finite cover D of
S consisting of balls with radius r. Such coverings for an
exemplary solution path S in a two dimensional C-Space are
visualized in the left sketch of Fig. 2.

Now we present an iterative way to create a cover E =
{E1, . . . En} ⊂ D of S, that fulfills the following condition:
With Γi := Ei∩Ei+1, the path that is inducted by randomly
sampled points

s1 ∈ Γ1, s2 ∈ Γ2, . . . , sn−1 ∈ Γn−1 (3)
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Fig. 2. Left: An exemplary solution path S with both coverings of extend
4r and r together with a sequence of overlapping balls. Right: The point
si is connected to p, the nearest neighbor on the current search tree.

all successively connected by straight segments, lies com-
pletely in Cfree and hence is a valid solution.

For making things easier, we define Dp ∈ D as one ball
of D that contains p ∈ S, knowing, that this choice is not
necessarily unique.

1) We start with E1 = Dcstart
and E = {E1}.

2) If cgoal is contained in one of the balls in E, we finish
the iteration.

3) If not, the set E = {E1, . . . , Ei} of all balls that we
added so far together with their union

⋃
E is extended

as follows:
Consider the point p, at which the solution path S quits⋃
E for the last time. (When S re-enters

⋃
E and

thus leaves
⋃
E more than once, the resulting detours

can be ignored since we are only interested in a valid
solution and not in a path homotopic to S.) The point
p has to be in ∂Ei, where Ei is the ball that was most
recently added to E. If not, we had already considered
p in a previous step of the procedure.

4) All considered sets in D are open, hence p /∈
⋃
E,

hence there has to be a ball Ei+1 := Dp ∈ D \ E
which contains p and Ei ∩ Ei+1 6= ∅

5) E := E ∪ {Ei+1} and go on with step 2.

As far as Γ1,Γ2, . . . ,Γn−1 are all non-nullsets in C,
there is a strictly positive probability, that a sampling-
based motion-planning algorithm will sample s1, s2, . . . , sn
as defined in Eq. (3).

Since the RDT-algorithm doesn’t grow a solution path
by connecting the sampling points successively to one long
polygonal chain, we have to make sure, that the RDT will
construct a suitable solution path out of the sampled points
s1, . . . , sn.



To see this, consider the sampling point si. We know
that there is a previously sampled point si−1, such that
|si − si−1| < 2r as depicted on the right of Fig. 2. Hence,
whichever point p the RDT wants to connect si to, its
distance to si is smaller than 2r. Thus, the distance from p
to the center of the ball containing si is at most 3r. Because
of Eq. (2), we know that the connecting segment between
p and si lies completely in Cfree. From this it follows
that every RDT extension step produces a path segment
that is completely collision-free when a sequence of points
s1, . . . , sn is sampled.

Finally, to be sure, cgoal is connected properly, we take
a closer look at random sampling method of the RDT algo-
rithm. As described in [3] there is a given probability that this
method returns the goal configuration instead of a uniformly
sampled configuration. Hence, there is a probability greater
zero that the (n+1)th point returned by the sampling method
is the first one that is equal to cgoal and by arguing in
the same way as before we know that the last segment is
collision-free.

Note, that this proof does not rely on any collision detec-
tion routines and it holds even when no collision detection
is performed within the RDT planners. Hence, the use of
collision detection methods by the RDT planner does only
speed up the planning process and can be seen as an heuristic.

B. Handling Narrow Passages

Several approaches for handling narrow passages can
easily be combined with the previously discussed RDT+

algorithm, but introduce new parameters as showed earlier.
We will now discuss a parameter-free variation for handling
narrow passages that is related to the idea of locally approx-
imating Cfree as proposed by the adaptive dynamic domain
RRT-algorithm. Instead of changing the sampling strategy as
done by the ADD-RRT, where all randomly sampled con-
figurations are discarded when they are not lying within the
dynamic domain radius, the BiRDT-DynamicExtend (BiRDT-
DE) approach introduces a new extension algorithm that
considers the local approximation of Cfree.

Algorithm 2: BiRDT-DynamicExtend(cstart, cgoal)

1 dext ← |cgoal − cstart|;
2 AddConfig (Tree1, cstart, dext);
3 AddConfig (Tree2, cgoal, dext);
4 while (!TimeOut()) do
5 crandom ← SampleRandom();
6 (c′, SuccessE)← ExtendRDT(Tree1, crandom);
7 SuccessC ← ConnectRDT(Tree1, c′);
8 if (SuccessE &SuccessC) then
9 return BuildSolution(Tree1, T ree2);

10 Swap(Tree1, T ree2);
11 end
12 return NULL;

The BiRDT-DE approach is able to handle narrow pas-
sages by locally adapting the extend parameter dext that is

Algorithm 3: ExtendRDT(Tree, c)

1 e← NearestNeighborEdge(Tree, c);
2 cNN ← NearestNeighborOnEdge(Tree, e, c);
3 dext ← (e.c1.dext + e.c2.dext)/2;

4 c′ ←

{
c , |c− cNN | ≤ dext

cNN + dext(c−cNN )
|c−cNN | , otherwise

5 if (CollisionFree(cNN , c
′)) then

6 return (c′,ConnectRDT(Tree, c′));
7 return (c′, false);

Algorithm 4: ConnectRDT(Tree, c)

1 e← NearestNeighborEdge(Tree, c);
2 cNN ← NearestNeighborOnEdge(Tree, e, c);
3 dext ← (e.c1.dext + e.c2.dext)/2;
4 if (CollisionFree(cNN , c)) then
5 enew ← AddEdge(Tree, e, cNN , c);
6 e.c1.dext ← 2e.c1.dext;
7 e.c2.dext ← 2e.c2.dext;
8 return true;
9 else

10 c′ ← GetMaxValidPosition(cNN , c);
11 enew ← AddEdge(Tree, e, cNN , c

′);
12 e.c1.dext ← e.c1.dext/2;
13 e.c2.dext ← e.c2.dext/2;
14 enew.c1.dext ← dext/2;
15 enew.c2.dext ← dext/2;
16 return false;
17 end

stored for each node of the search tree. Initially this value is
set to |cgoal − cstart| and by bisecting it when an extension
step fails or doubling it when it was successful, the shape of
Cfree is approximated. The search loop in Alg. 2 is based on
the classical RRT-CONNECT approach, described in [1], but
the adapted ExtendRDT and ConnectRDT methods are used
for extending the search trees. In Alg. 3, the EXTEND step
is described: First cNN , the nearest configuration on the edge
e is determined and by considering the local extend radius
of the edge e, the length of the extension step is limited
to dext. The CONNECT method in Alg. 4 is used to build
new edges of the search tree. If the path between cNN and
c is collision-free, a new edge is added to the tree and the
corresponding extend radii of e are doubled. Otherwise, the
edge to the maximal valid position on the path cNN to c is
added and the extend radius is bisected. The effects of both
methods are depicted in Fig. 3: In the left figure the Extend-
RDT method is used to determine dext and c′ in order to limit
the length of the extend step. The right figure shows how the
extend radii are bisected by the Connect-RDT method when
an edge is not completely collision-free.

By using the RDT-DE approach within the RDT+ concept,
the RDT+-DE algorithm is defined similar to Alg. 1.
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Fig. 3. Left: The EXTEND method cuts the extension path to the local
extend radius dext of the edge. Right: The CONNECT method reduces the
extend radii due to an unsuccessful connection.

V. EVALUATION

A. A free flying spaceship: 6D C-Space

In this experiment1, a path for a free flying spaceship
in a scene with 500 randomly placed obstacles is searched.
The C-Space is six-dimensional, covering the position and
orientation of the spaceship. In Table I the results of several
planning approaches are listed. The BiRRT planner (row 1)
was setup with a sampling size of 20 and 5 for adding new
configurations and for DCD-sampling respectively. Note that
these values are given for the translational components and
the rotational dimensions of the C-Space are weighted by
the factor 62.9, which is the extend of the spaceship. The
results point out, that the planner is able to find solutions very
quickly due to the discrete collision detection, but 26.7% of
the results are not collision-free. Different parameter setups
for the BiRRT planner are evaluated (row 2 and 3 in Table I)
and it can be seen, that more reliable results can be achieved
by decreasing the sampling sizes at the cost of performance.
The BiRDT approach (row 4 and 5 in Table I) is able
to find exact motions, but since exact algorithms for path
verification are used, the planning time has increased. Best
results can be achieved with the RDT+ planners (row 6 and
7 in Table I), where most of the time is spent for verifying
the results of the underlying BiRDT-based planners. The
difference in the planning time between the RDT+

FB and
the RDT+

C2A approach is caused by the use of different
algorithms for exact path verification. A comparison to the
RDT+-DE concept is given in the last two rows. Here, the
Dynamic Extend extension for handling narrow passages is
used and it can be seen, that this approach introduces some
overhead in planning time compared to the RDT+ planners
when no narrow passages are present. A planned motion
together with the search tree is depicted in Fig. 4.

1All experiments have been carried out on a 2.4 GHz System

TABLE I
AVERAGE PERFORMANCE OF THE DIFFERENT PLANNING APPROACHES.

Run Time Valid # CD
BiRRT(5,20) 81ms 73.3% 2 011
BiRRT(1,5) 417ms 93.3% 11 856
BiRRT(0.1,1) 4 650ms 100.0% 149 849
BiRDTFB 3 444ms 100.0% 1 922
BiRDTC2A 2 357ms 100.0% 333
RDT+

FB 1 018ms 100.0% 5 046
RDT+

C2A 256ms 100.0% 3 192
RDT+-DEFB 1 813ms 100.0% 4 299
RDT+-DEC2A 613ms 100.0% 5 407

Fig. 4. The RDT+ planner was used to compute an exact motion through
a scene with 500 randomly placed obstacles.

B. Straw and Bottle

In this experiment the RDT+-DE planner is used to
compute a collision-free motion in a high-dimensional C-
Space with the goal of putting a straw in a bottle. Therefore,
the humanoid robot ARMAR-III holds both objects in its
hands as shown left in Fig. 5. Since both arms are used for
planning, the resulting C-Space is 14-dimensional and both
arms with hands and objects together with the static part of
the robot are mutually considered as obstacles to avoid self-
collisions. Please note, that the upright orientation of the
bottle is not considered as a constraint in this experiment,
since this is not topic of this work. A visualization of the
resulting search trees in workspace can be seen in the right
image of Fig. 5 and the execution of a planned motion on
ARMAR-III is shown in Fig. 6. For accurate execution of
the planned bimanual motion, visual servoing techniques are
used as proposed in [35].

Since the C2A approach does only support straight line
movements, no articulated multi-body systems, where suc-
ceeding joints perform curved motions, can be handled with
this approach. Thus, only the free bubble (FB) algorithm
can be used for this planning setup. Please note that the FB
algorithm can be used even when multiple kinematic chains
of one system are accessed, since the motion bound for
the complete system is based on the accumulated maximal
allowed motions of all joints.



Fig. 5. The start and goal configuration of the ARMAR-III experiment.
The search trees, generated by the RDT+-DE planner are visualized in the
right figure.

Fig. 6. Execution of the planned motion on ARMAR-III.

As shown in Table II the planning problem could not
be solved with the Adaptive Domain RRT, due to the
long time that is needed to find suitable samples in this
high dimensional configuration space. This is caused by
the sampling strategy of the ADD-RRT approach, where a
randomly chosen sample is discarded when it lies outside the
dynamic domain radius of it’s nearest neighbor and in the
given C-Space the dynamic domain radii of the search tree
nodes around the goal configuration are small compared to
the whole C-Space. Therefore, finding a single configuration
for extending the tree often resulted in discarding more than
50 million samples and it was not possible to find a parameter
setup that allows to plan the motion within 20 minutes.

In the following rows (2-4) the results of a BiRRT planner
using the bridge sampling strategy are presented. Here, the
variance was set to 20, which is related to the weighted C-
Space dimensions, so that the size of the opening of the bottle
is approximately represented. With none of the parameter
setups (the first index number shows the DCD collision
detection parameter, the second one the sampling parame-
ter) a satisfying result can be achieved. The percentage of
collision-free motions reached 91.8 % in the last BiRRT-
Bridge experiment (row 4), but the planning time increased
to more than 17 minutes on average.

Exact motions are planned with the BiRDT-DE approach,
using the free bubble approach for path verification (row 5 of
Table II). The planning time was measured with 6 minutes
on average and the distance computation routines were called
more than 25 thousand times. The bad performance is mainly
caused by the slow FB path verification process: Due to
the large numbers of involved joints and the low distances
between the static part of the robot and the arms, the motion
bounds that are used to calculate bubbles of free space tend to

TABLE II
STRAW AND BOTTLE: AVERAGE PERFORMANCE OF THE DIFFERENT

PLANNING APPROACHES.

Run Time Valid # CD # Dist
BiRRT-ADD(5,20) - 0.0% - -
BiRRT-Bridge(5,20) 24.1s 80.0% 206.7K 0
BiRRT-Bridge(0.05,5) 234.3s 83.3% 2.1M 0
BiRRT-Bridge(0.01,2) 1049.5s 91.8% 9.4M 0
BiRDT-DEFB 360.1s 100.0% 17.5K 25.5K
RDT+-DEFB 61.4s 100.0% 40.8K 3.7K

get small and a huge number of intermediate configurations
have to be checked until the verification is passed.

In the last row the results of the RDT+-DE planner
using the free bubble approach for path verification are
shown. Since the exact path verification is not performed
on the complete search tree, but on the solution paths, the
performance is better compared to the BiRDT-DE algorithm.
Also in this setup, the verification process takes a long
time compared to planning the motion due to the described
limitations of the FB approach. In Table III the accumulated
run times for planning and verification for all steps of the
RDT+ planner can be seen. The verification time for the
straw setup is more than 13 times higher than the overall
time needed for planning. Hence, by using a more efficient
CCD algorithm for approximating motion bounds of a large
kinematic chain, the efficiency of the RDT+ concept can
be improved. Nevertheless, with the proposed planner, a
guaranteed collision-free motion for a high dimensional
planning problem with a narrow passage can be planned in
61.4 seconds on average, which is six times faster than the
BiRDT planner that was enhanced by the dynamic extend
approach.

TABLE III
DETAILED OVERVIEW OF THE RDT+-DE PLANNING RESULTS.

Acc. Time Acc. Time Avg DCD
Planning Verification Sampling Size

Space Ship (6D) 228.3ms 1 579.0ms 8.6
Straw (14D) 4 302.9ms 57 127.6ms 7.4

VI. CONCLUSION AND FUTURE WORK

In this work the RDT+ algorithm for parameter-free
planning of exact motions was presented. The RDT-concept
is used to avoid an heuristically based definition of sampling
parameters and due to resolution adaptive techniques, fast
discrete collision detection can be used. Therefore, the RDT+

approach successively decreases the sampling distance for
discrete collision detection and queries the results of a
classical BiRDT planner. The resulting motions are checked
with exact path verification algorithms, in order to guarantee
a collision-free execution. When this verification fails and
the solution of the current planning phase results in a
collision, the sampling parameter is reduced to retrieve a finer
approximation in the next step. For exact path verification,



two concepts are investigated: The free bubble approach and
a native implementation of continuous collision detection.

To handle narrow passages the parameter-free BiRDT-
DE planner was introduced and combined with the resolu-
tion adaptive concept. The resulting RDT+-DE planner was
evaluated in different scenarios, including high-dimensional
planning problems with narrow passages.

The experiments showed, that the bottleneck of exact
motion planning in high-dimensional configuration spaces
is the algorithm for exact path verification, even when
resolution adaptive techniques are used. Thus, future work
will address the integration of CCD algorithms for articulated
multi-body systems in order to improve the performance of
the RDT+-DE planner.
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[35] N. Vahrenkamp, C. Böge, K. Welke, T. Asfour, J. Walter, and
R. Dillmann, “Visual servoing for dual arm motions on a humanoid
robot,” in Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS
International Conference on, Dec. 2009.


