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Abstract—In this work, we present an integrated approach
for planning collision-free grasping motions. The proposed
Grasp–RRT planner combines the three main tasks needed for
grasping an object: building a feasible grasp, solving the inverse
kinematics problem and searching a collision-free trajectory that
brings the hand to the grasping pose. Therefore, RRT-based
algorithms are used to build a tree of reachable and collision-
free configurations. During RRT-generation, grasp hypotheses are
generated and approach movements toward them are computed.
The quality of reachable grasping poses is evaluated via grasp
wrench space analysis. We also present an extension to a
dual arm planner which generates bimanual grasps together
with corresponding dual arm grasping motions. The algorithms
are evaluated with different setups in simulation and on the
humanoid robot ARMAR-III.

Index Terms—Grasp Planning, Motion Planning, Humanoid
Robots.

I. INTRODUCTION

HUMANOID robots are designed to assist people in daily
life and to work in human-centered environments. In

contrast to industrial applications, where the environment is
structured to the needs of the robot, humanoids must be
able to operate autonomously in non-artificial surroundings.
One essential ability for working autonomously is to grasp
a completely known object for which an internal represen-
tation is stored in a database (e.g. information about shape,
weight, associated actions or feasible grasps). Furthermore, the
robot should be able to grasp objects for which the internal
representation is incomplete due to inaccurate perception or
uncertainties resulting in an incomplete knowledge base.

The task of grasping an object induces several subtasks that
have to be solved, like searching a feasible grasping pose,
solving the inverse kinematics (IK) problem and finding a
collision-free grasping trajectory. With the algorithms pro-
posed in this article all these problems are solved with one
probabilistic planning approach based on Rapidly Exploring
Random Trees (RRT) [1].

The Grasp–RRT planning algorithm combines the creation
of feasible and reachable grasps with the search for collision-
free motions and thus no pre-calculated grasping data is
needed. This online search for feasible grasping configurations
has the advantage that the search is not limited to a potentially
incomplete set of offline generated grasps. Furthermore, online
generated requirements or constraints, that have to be met by
the the grasping configuration, can be implicitly considered.
Since such constraints (e.g. don’t grasp at a specific part of the
object, consider post-grasping stability for transportation, etc)
usually limit the number of feasible grasps that can be applied,
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Fig. 1. A bimanual grasping trajectory.

the object’s grasp database must be huge in case offline
generated data is used. By generating the grasp hypotheses
online, the Grasp–RRT approach avoids a filter step on offline
generated discretized grasping data. Further, the search for
a feasible grasp is focused on reachable configurations and
thus the computation of grasping poses is only performed for
positions that can be reached by the robot. This focus on the
reachable part of the object allows an efficient implementation,
as demonstrated by the experiments.

The algorithms can be applied for single and dual arm
planning problems and even when just a rough estimation of
an unknown object is given, an approximated 3D model can
be used to search grasping poses online.

The proposed Grasp–RRT planner was originally presented
in [2], where we used an efficient grasp measurement based on
a low dimensional space related to impacting forces resulting
from grasping contacts. In this work we utilize the more
common approach of analyzing the Grasp-Wrench space for
determining the quality of a grasping hypotheses. Additionally
we present a more comprehensive evaluation including the
growth in grasp quality over time and a comparative study
that compares the algorithm to classical approaches.

In the next section, related work dealing with planning
motions for grasping is presented. The three parts of the
Grasp–RRT algorithm (computing grasping poses, generat-
ing approach movements and the online grasp quality mea-
surement) are discussed in Section III. In Section IV the
Bimanual Grasp–RRT algorithm, an approach for generating
dual arm grasping motions, is presented. Several experiments
for planning single arm and bimanual grasping motions in
simulation and on the humanoid robot ARMAR-III (see Fig. 1)
are discussed in Section V.



ROBOTICS AND AUTOMATION MAGAZINE - SPECIAL ISSUE ON MOBILE MANIPULATION 2

II. RELATED WORK

Planning collision-free motions for robots with a high num-
ber of degrees of freedom (DoF) is known to be a P-Space hard
problem in general [3]. Hence, complete algorithms will suffer
from low performance, mainly caused by the complex task of
determining a representation of Cfree, the part of the con-
figuration space (C-Space) whose configurations do not cause
work space collisions. Instead of building a representation of
Cfree, probabilistic algorithms may be used without having
an explicit representation of the free space and thus a time
consuming computation of Cfree can be avoided. RRT-based
approaches are widely used in the context of planning reaching
and grasping motions for humanoid robots. The general theory
for planning collision-free motions with RRT-methods can be
found in [1] or [4].

Planning grasping motions with pre-defined sets of grasping
poses is discussed in [5]–[8]. These approaches use offline
calculated grasping poses for which the IK-solutions are
searched during the planning process. Stilman considers IK-
solutions as constraints that limit the operational space, e.g.
while opening a door or transporting objects [9]. When using
grasp planners (e.g. see [6], [10]), the grasping information is
computed in an offline step and the data is stored in a database
for use during online search. Such grasp planners strongly
rely on determining the quality of a grasping hypothesis.
Evaluation of an object grasp by a multi-fingered robot hand
has been a major topic in robotics for years. A basic quality
criterion for grasp evaluation is the force closure test, first
proposed by Lakshminarayana in 1978 [11]. Another approach
for evaluation the grasp quality is based on the computation
of the wrench space, formed by the contact points between
hand and object, also called Grasp Wrench Space (GWS).
Based on the GWS, a score is introduced in [12] which
approximates the GWS by a convex hull and tries to fit in
the largest wrench space sphere. [13] proposes the concept of
the Object Wrench Space (OWS) which represents the optimal
grasp in wrench space by applying forces on numerous points
distributed along the object’s surface. The OWS is scaled
to fit within the GWS leading to a score in the form of
the scaling factor. In [14], which proposes a task-dependent
wrench space, the complexity of calculating the OWS is
reduced by approximating it by an ellipsoid.

Several approaches use heuristics to generate grasp candi-
dates based on the object’s known geometry. Miller et al. [15]
manually decomposes objects into boxes, spheres, cylinders
and cones in order to plan grasps on the individual primitives.
Huebner et al. [16] performed shape approximation using
only minimum volume bounding boxes. The object’s medial
axis is used by Przybylski et al. [17] to improve the shape
approximation accuracy.

Goldfeder et al. [18] present algorithms to automatically
build a database of stable grasps for numerous objects and
their application resulting in The Columbia Grasp Database.
A related approach was used by Xue et al. [19] for automatic
grasp planning. The results have been published at the KIT
Object Models Database which can be accessed online [20].

Rosell et al. [21] considers observations of humans in
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Fig. 2. The classical approach to planning grasping motions compared with
the Grasp–RRT algorithm.

order to capture the human hand workspace that is reduced
by determining the most relevant so-called principal motion
directions. This allows a mapping to the workspace of a robotic
hand which can be used to efficiently plan hand-arm grasping
movements.

Planning dual arm motions is addressed in [8] where
collision-free motions for two end effectors are planned with
RRT-based algorithms for bimanual grasping or re-grasping
actions. In the work presented in [22], object specific task
maps are used to simultaneously plan collision-free reaching
and grasping motions. The proposed motion optimization
scheme uses analytic gradients to jointly optimize the motion
costs and the choice of the grasp on the manifold of valid
grasps.

III. INTEGRATED GRASP AND MOTION PLANNING

In this section the Grasp–RRT planner and the required
components, like the definition of an end effector, the genera-
tion of approach movements and the algorithms for measuring
the grasp quality, are presented.

A. Motivation

The process of planning collision-free grasping motions can
usually divided in an offline and an online phase. During
offline processing, a representation of the object is built (e.g. a
3D-model) and further preprocessing steps can be performed.
When using a classical approach for planning collision-free
grasping motions, a set G of potential grasping configurations
is built and stored in a database during offline phase (see e.g.
[6]). As shown on the left of Fig. 2 the grasp set G and the
current object location are then used during online processing
to select a reachable grasp g ∈ G.

Note, that there is no guarantee at this point, that a collision-
free motion exists, which brings the end-effector from the
current position to the selected grasping pose pg . Usually
heuristics are used to select a feasible grasp and in case
no motion can be found in later processing steps, different
grasps must be tried. By applying the grasp specific object-
hand relation the workspace target pose pg ∈ SE(3) can
be determined and passed to an IK-solver. The IK-solver is
used to compute a goal configuration qgoal that is passed
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Fig. 3. The behavior of three approaches for planning grasping motions are compared with a simplified 2D example. On the left, the stepwise planning
approach is used, which selects one grasp at first, solves the IK problem and finally uses the RRT planner to find a collision-free motion from qstart to qgoal.
In the middle the IK-RRT planner is depicted [8]. The IK-RRT approach does not use one target configuration qgoal, but a goal region Cgoal, induced by a
set of offline generated grasps, defines all possible targets. While the RRT is extended, Cgoal is sampled by efficient IK-solvers in order to build new seeds
for multiple backward trees. If one of the backward trees can be connected to the forward tree, a collision-free solution is found, which implicitly defines a
grasp and an IK-solution. The Grasp–RRT planner, shown on the right, does not rely on any predefined grasping configurations. Instead, approach movements
are generated during tree expansion in order to guide the growth in direction of Cgoal, the region of all configurations that result in force closure grasps. The
goal region C′

goal may be smaller when task specific constraints or higher grasp qualities are required.

to the motion planning algorithm together with the current
robot configuration qstart. Since the IK-problem may have an
infinite number of solutions, the selection of one specific IK-
solution qgoal could lead to a situation for which no collision-
free path from qstart to qgoal exists. This cannot be detected
directly at this step, since solving the problem of the existence
of a collision-free path in C-space is as hard as solving the
motion planning problem itself [1]. Again heuristics may be
used to select an IK-solution for which it can be assumed that
a solution exists [6]. Finally motion planning algorithms, such
as RRT-related approaches, can be used to search a collision-
free motion.

In contrast to such stepwise approaches, the proposed
Grasp–RRT algorithm integrates the generation of grasping
hypothesis, the selection of feasible grasps, IK-solving and the
search for collision-free motions. In Fig. 2, an overview of the
proposed planner is shown on the right. The only information
that is needed by the planner is the current robot configuration
qstart, the object’s workspace location po ∈ SE(3) and access
to a spatial representation of the target object. There is no
explicit definition of a target configuration, since the goal
is derived from a feasible grasp which is calculated during
the planning process. In Fig. 3 a simplified 2D example
is shown to compare the behavior of three approaches for
planning grasping motions. On the left side a stepwise RRT-
based approach, that relies on an offline generated grasp set,
is shown. As explained before, the selected grasp and the
computed IK-solution specify the target configuration qgoal
that is used for motion planning. The figure in the middle
illustrates the IK-RRT approach [8] that is able to handle
the complete set of IK-solutions, which are induced by a

set of precomputed grasps. Since this set is sampled during
planning to generate new seeds for backward search trees,
no explicit representation of Cgoal is needed. If one of the
backward trees can be connected to qstart, a collision-free
solution, together with the corresponding grasp and IK solution
is found. The right figure depicts the Grasp–RRT planner.
Here, the goal region Cgoal is implicitly defined by the set
of all force closure grasps that can be applied to the object
with the given end effector. Again the goal region must not
be known explicitly, since the Grasp–RRT planner generates
approach movements to guide the tree expansion in direction
of Cgoal. Further, higher requirements in grasp quality and
task specific constraints can be taken into account, resulting
in a smaller goal region C ′goal.

B. The Grasp–RRT Planner

The main loop of the proposed Grasp–RRT apporach is
presented in Alg. 1. The planner is initialized with the root
configuration qstart and po, the 6D pose of the object that
should be grasped. Starting from qstart RRT-based extension
methods are used to build up a tree of collision-free and
reachable configurations. This part of the Grasp–RRT planner
is similar to uni-directional RRT-approaches where sampling-
based extensions are performed to cover the free configuration
space Cfree. Additionally, approach motions together with
grasping hypothesis are generated from time to time (see
Alg. 2) until a collision-free grasping motion can be deter-
mined.

In order to produce appealing solution trajectories, the result
is finally smoothed with path pruning techniques.
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Algorithm 1: GraspRRT (qstart, po)

1 RRT.AddConfiguration(qstart)
2 while (!TimeOut()) do
3 ExtendRandomly(RRT )
4 if (rand()) then
5 ngrasp ← TryGraspObject(RRT, po)
6 if (ngrasp) then
7 return BuildSolution(ngrasp)
8 end
9 end

10 end

Algorithm 2: TryGraspObject(RRT, po)
1 nApproach ← SelectGraspExtensionNode(RRT )
2 pgrasp ← ComputeGraspingPose(nApproach, po)
3 ngrasp ← Approach(RRT, nApproach, pgrasp)
4 Cg ← ContactPoints(CloseHand(ngrasp))
5 if (GraspEvaluation(Cg) ≥ %min) then
6 return n
7 else
8 return NULL
9 end

C. Approach Movements and Grasping Hypothesis

As shown in Alg. 1, approach movements are generated
from time to time in order to test, if a collision-free grasping
motion can be determined. Therefore, the following steps are
performed:
• Select a node nApproach of the RRT as an initial configu-

ration for performing the approach movement (see Alg. 2,
line 1).

• Based on nApproach, a virtual target pose pgrasp is
computed in workspace (see Alg. 2, line 2).

• By utilizing the pseudoinverse Jacobian, the end-effector
is moved toward pgrasp as far as possible, while adding
intermediate configurations to the RRT (see Alg. 2, line
3 and Alg. 3).

• The resulting grasping pose is evaluated by closing the
fingers, determining the contacts and performing grasp
wrench space analysis (see Alg. 2, line 4 and 5).

In the following, these steps are explained in more detail:

1) Selecting an RRT-node for extension: The approach di-
rection, defining the direction of approach movements toward
an object, is essential for finding a feasible grasp, since in
general a stable grasp may only be found for a small amount
of all possible approach directions. In our case, where an RRT-
node nApproach has to be selected as a starting point for gen-
erating an approach movement, a random node selection does
not respect this fact, since the distribution of configurations
of the RRT is independent from the 3D relation between end
effector and object. In contrast, if the distribution of the node
selection uniformly covers the approach directions, the search
for good grasps benefits from varying relations between object

Fig. 4. (a) For each node of the RRT the corresponding surface triangle
of the ApproachSphere is determined by projection the TCP position on the
sphere’s surface. (b) The distribution of approach directions is visualized for
a planning task by setting the color intensity proportional to the number of
RRT-nodes in the direction of the triangle.

and end effector.
In order to encode different approach directions, we propose

the use of a data structure, that we call ApproachSphere
throughout this paper. This data structure represents a triangu-
lated surface of a sphere that is located at the object’s center
of mass. Whenever a new RRT-node n is added during the
planning loop, the corresponding surface triangle tn of the
ApproachSphere is determined by projecting the TCP position
onto the sphere (see Fig. 4(a)). Then n is added to a list of
associated RRT-nodes of tn.

When a random RRT-node nApproach for grasp testing is
selected, at first one of the available approach directions rep-
resented by the triangles of the ApproachSphere is randomly
chosen and then one of the associated nodes is randomly se-
lected. Hence, the distribution of the node selection uniformly
covers the possible approach directions (within the limits
resulting from the approximation of the sphere). The advantage
of selecting RRT nodes this way can be seen in Fig. 4(b). Here,
the state of the ApproachSphere after building up an RRT is
shown. The color intensity of a triangle is proportional to the
number of RRT-nodes in direction represented by the triangle.
It can be seen clearly that choosing nApproach randomly from
all RRT-nodes will result in a non-uniform distribution of
approach directions.

2) Computing the target pose: For computing the target
grasping pose pgrasp a virtual representation of the hand in-
cluding a preshape, a grasping point and an approach direction
is used. Based on the work of [23], the grasp center point
(GCP) and the approach direction are defined for the hand that
should be used for grasping. The preshape, the definition of the
GCP and the approach direction of the anthropomorphic hand
that is used in our experiments can be seen in Fig. 5. Based on
this GCP definition, the target grasping pose pgrasp ∈ SE(3)
is determined by searching the point pto ∈ R3 on the object’s
surface which has the shortest distance to the GCP. pto defines
the translational part of pgrasp and the rotational component
is derived by rotating the coordinate system of the GCP by α,
so that the approach direction points toward ptobj (see Fig. 5).

3) Approaching the object: In Alg. 3, the generation of an
approach movement can be seen. Beginning with the selected
RRT node nApproach, intermediate RRT nodes are created by
iteratively moving the end-effector toward the grasping pose
pgrasp. This is done by computing the workspace difference
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Fig. 5. The computation of the grasping pose pgrasp.

Algorithm 3: Approach(RRT, nApproach, pgrasp)

1 n← nApproach
2 repeat
3 ∆p ← pgrasp · (n.p)−1
4 ∆q ← J+(n.q) · LimitCartesianStepSize(∆p)
5 n′.q ← n.q + ∆q

6 if (Collision(n′.q) || !InJointLimits(n′.q)) then
7 return n
8 end
9 n′.p← ForwardKinematics(n′.q)

10 RRT.AddNode(n′)
11 n← n′

12 until (Length(∆p) < ThresholdCartesean);
13 return n

∆p between the current TCP pose (stored in the RRT node
n.p) and the target pgrasp. To ensure small steps in workspace
the method LimitCartesianStepSize is applied to limit the
resulting displacement. Afterwards the corresponding move-
ment ∆q in C-space is computed by utilizing the pseudoinverse
Jacobian. The pseudoinverse J+ is derived via singular value
decomposition (SVD), although other approaches, which may
be more efficient, can be chosen as well. If the resulting
configuration n′.q, that is computed by applying the movement
to the current configuration n.q, is in collision or joint limits
are violated, the last valid RRT node n is returned. Otherwise
the corresponding TCP position of n′.q is computed and the
RRT is extended by n′. This is performed until the distance
to the target pose pgrasp falls below ThresholdCartesean.

4) Determining the grasp quality: To evaluate the quality
of the resulting pose ngrasp, the fingers are closed and the
set Cg of resulting contacts are determined. Closing the hand
is performed by iteratively moving the finger joints with
small steps until (self-)collisions are detected. Based on this
contact information (consisting of positions and normals on the
object’s surface), a grasp wrench space analysis is performed
as described in the appendix.

IV. PLANNING BIMANUAL GRASPING MOTIONS

When large objects like the wok in Fig. 8 should be grasped
by a humanoid robot, both hands are needed for applying a sta-
ble grasp. On basis of the Grasp–RRT planner, introduced in
the last section, we propose the Bimanual Grasp–RRT planner
which combines the search for a bimanual feasible grasp
with the search for a collision-free grasping motion for both

arms. Since the bimanual planner decouples the search for
left and right arm, the approach cannot be used for planning
common parts of the robot, as torso or platform. In case such
joints should be considered for planning a bimanual motion,
a different approach that does not rely decoupling must be
chosen.

A. Bimanual Grasp–RRT

Fig. 6 depicts an overview of the Bimanual
Grasp–RRT planner. The planner instantiates two
Grasp–RRT planners, one for each end effector. These
instances are started in parallel, so that the search for feasible
grasps is done simultaneously for the left and the right hand.
Furthermore they are configured to search and store grasps
until the main planner terminates.

Bimanual GraspRRT Plannerpobj 

qstart

bimanual
grasping
trajectory

GraspRRT
Left

grasps
trajectories

GraspRRT
Right

Bi-Grasp Scoring
Self Collision Checking

Fig. 6. Overview of the Bimanual Grasp–RRT planner.

The Bimanual Grasp–RRT planner collects the grasps and
the corresponding grasping trajectories for the left and the right
end effector and tries to find a feasible bimanual solution by
performing quality evaluations of bimanual grasping combi-
nations. Every time a planner for one end effector reports that
a new grasping trajectory was found, all possible bimanual
combinations of this grasp together with the already stored
grasps of the other hand are built and evaluated as described
in Section IV-B. If the resulting bimanual score is above the
threshold %min, the self-collision status of the two pruned
grasping trajectories is checked. If no collision was determined
the combined solution for both arms together with the resulting
grasping information is returned (see Alg. 4).

B. Evaluation of Bimanual Grasps

The grasp wrench space analysis can be easily applied on
bimanual grasping. Considering a robot with two hands, one
obtains the two contact point sets Clg and Crg , for the left
and the right hand. The united set C ′g = Clg ∪ Crg is used
to build the GWS analogously to the single-handed case. The
increase of the number of contact points leads to wider wrench
space which results in an higher grasp evaluation, whereas
the position of the contact points, respectively the pose of
the hands, plays a more crucial role. Another aspect is the
performance to quality ratio. As shown in the experiments
of Section V, the performance of a bimanual planner can be
increased when the force-closure test is only performed for the
resulting bimanual grasp and not for the single handed grasps,
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Algorithm 4: BimanualGraspRRT (qlstart, q
r
start, po)

1 GraspRRTl ← GraspRRTInstance(qlstart, po)
2 GraspRRTr ← GraspRRTInstance(qrstart, po)
3 GraspRRTl.start()
4 GraspRRTr.start()
5 while (!TimeOut()) do
6 /* process new results of GraspRRTl */
7 sl ← GraspRRTl.GetNewSolution()
8 if (sl) then
9 Resultsl.add(sl)

10 foreach (sr ∈ Resultsr) do
11 if (BiGraspEvaluation(sl, sr) > %min &&

!SelfCollision(sl, sr)) then
12 GraspRRTl.stop()
13 GraspRRTr.stop()
14 return BuildSolution(sl, sr)
15 end
16 end
17 end
18 /* process new results of GraspRRTr */
19 ...
20 end

since force closure is only needed for the resulting grasp. This
leads to an significant improvement in performance, but the
appearance of some of the resulting grasping configurations
was not appealing. Because of the missing force closure
condition for one hand sometimes degenerated grasps for one
hand (e.g. just two fingers in contact with the object) were
generated when the corresponding grasp of the other hand was
already force closure. Such bimanual grasps are evaluated as
satisfactory by the grasp wrench space algorithm, but the result
does not look natural. Hence, the GWS metric is not sufficient
for generating anthropomorphic looking bimanual grasping
configurations and we extended the evaluation of bimanual
grasps. An enhancement can be achieved by claiming force
closure for both single handed grasps. Beside the already men-
tioned drawback of an increased planning time, the number of
valid grasps that can be found by such an approach is limited.
Usually there exist bimanual force closure grasps which are
composed by two single handed grasps that do not necessarily
have to be force closure (one can think of a large vase that is
held with both hands from the left and the right, where one
grasp alone is not force closure but both grasps together form
a force closure bimanual grasp). Hence, we introduce a simple,
but efficient constraint that the grasp of one hand must have at
least ncontact contacts with the object. By setting ncontact to
the number of fingers that are considered for planning (five in
all our experiments), the results were improved significantly.
The resulting algorithm for evaluating a bimanual grasp is
shown in Alg. 5.

V. EXPERIMENTS
The following experiments state that the

Grasp–RRT planner is suitable for generating collision-
free motions for a wide range of single handed and bimanual

Algorithm 5: BiGraspEvaluation(sl, sr)

1 Clg ← ContactPoints(sl)
2 Crg ← ContactPoints(sr)
3 C ′g = Clg ∪ Crg
4 return GraspEvaluation(C ′g)

Fig. 7. The Grasp–RRT planner is used to search a feasible grasp and a
collision-free grasping trajectory for 10 DoF (hip and arm) of ARMAR-III.

grasping tasks. Therefore several grasping setups for the
humanoid robot ARMAR-III in complex environments are
investigated.

A. Measuring Cup in a Drawer

In this experiment the humanoid robot ARMAR-III is
supposed to grasp a measuring cup located in a drawer of a
kitchen. The robot should use three hip and seven arm joints
and thus the C-Space used for planning is 10-dimensional.
The setup, depicted in Fig. 7, limits the possibility of applying
a feasible grasp in a collision-free way, since the measuring
cup is located near the side walls of the drawer. Nevertheless,
the Grasp–RRT algorithm is able to find a suitable grasping
pose together with a collision-free trajectory in 7.2 seconds
on average (measured over 50 test runs). When higher grasp
qualities are requested, the planning time increases as shown
in Table I. The first row shows the results when only force
closure grasps are generated and the grasp quality % is ignored.
The second row shows results that have been measured when
setting %min to 0.08, resulting in grasping configurations with
higher quality.

In the top row of Fig. 7 the starting configuration is shown
on the left and on the right, the RRT, that was generated
during planning, is visualized (the visualization of the C-Space
search tree was build by illustrating the corresponding end
effector movements in workspace). The approach movements,
that were generated during planning are highlighted in red
and the final end effector trajectory is shown in green. The
bottom row of Fig. 7 shows the final configuration on the left
and on the right, a narrow view of the computed grasping
configuration is shown.
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B. A Wok in the Kitchen: Evaluating the Bimanual
Grasp–RRT Planner

In this simulation experiment, the Bimanual
Grasp–RRT planner is queried to find a grasping trajectory
for a wok located at the sideboard of the kitchen. The use
of both arms of ARMAR-III results in a 14 DoF planning
problem which is solved in 0.6 seconds on average. As
mentioned in Section. IV, the bimanual approach cannot be
applied when common joints, such as hip or platform, should
be considered for planning. Due to the parallelized search for
a left and a right trajectory, the planner performs well in this
experiment (see Table I, row 3). For comparison we present
the average performance when all (single handed) grasps are
tested for force closure in row 4 of Table I. As described in
Section IV-B, the force closure test for single handed grasps
limits the set of bimanual grasps that can be found by the
planner. Further, the planning time increased significantly to
7.6 seconds.

A resulting grasping configuration together with the
collision-free trajectories for the left and the right arm are
shown in Fig. 8. The top row shows the initial configuration
on the left and an RRT, that was generated during a planning
process, is visualized on the right. The final configuration and
a narrow view of the planned grasp is shown in the bottom
row. The contact points of the bimanual grasping configuration
are visualized by the corresponding friction cones.

Fig. 8. The Bimanual Grasp–RRT planner is used to search a collision-free
grasping trajectory for 14 DoF of both arms of ARMAR-III.

C. Experiment on the Humanoid Robot ARMAR-III
This experiment is performed online on the humanoid robot

ARMAR-III. The Bimanual Grasp–RRT planner is used to
search a collision-free trajectory for grasping a bowl on the
sideboard with both hands. The ketchup bottle, located near
the target object, is limiting the number of feasible grasps for
the left hand. Fig. 9 shows the results of the planner and the
execution of the planned trajectories on the humanoid robot
ARMAR-III. The average planning time of this experiment
was measured with 0.6 seconds (see Table I, row 5).

Fig. 9. The Bimanual Grasp–RRT planner enables the humanoid robot
ARMAR-III to grasp a bowl in the kitchen.

D. Bicycle

In this setup, ARMAR-III is supposed to grasp a bicycle
with both hands in order to lift it afterwards. As shown in
Table I, the Bimanual Grasp–RRT planner is able to find a
force closure grasp in 4.0 seconds on average. An exemplary
result can be seen in Fig. 10(a). Fig. 10(b) shows a visual-
ization of all generated grasping hypothesis that were build
by the sub planners of the Bimanual Grasp–RRT algorithm.
A workspace visualization of the resulting RRTs generated by
both subplanners is given in Fig. 10(c). The approach move-
ments that were generated during planning are highlighted in
red and the solution trajectory is shown in blue (original) and
green (pruned).

Fig. 10. (a) The final grasp (% = 0.032) that was generated with the
Bimanual Grasp–RRT planner. The friction cones are visualized at the contact
points. (b) The visualization shows all grasps that have been generated by the
Grasp–RRT planners for the left and right hand. The resulting configuration
was evaluated with % = 0.027. (c) The workspace visualization of the RRTs,
generated by the subplanners for the left and right arm. The red parts depict
the approach movements that have been built by the Grasp–RRT planners.

E. Grasp Quality

When runtime is crucial, the Grasp–RRT planner can be
used to quickly find a solution that is not optimal. By increas-
ing the runtime better grasping trajectories can be optionally
generated. This allows to adapt the quality of the grasp to
the demands of online processing, where in some cases a
suboptimal solution is preferred over long computation time.
In the experiment, depicted in Fig. 11, the quality of the best
solution is determined over time (see Fig. 12).

F. Performance

The performance of the proposed Grasp–RRT planner in
single and dual arm planning setups is presented in Fig. 13
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Fig. 11. To evaluate the grasp quality over time, a grasping motion for
the left and the right end effector is searched. Once a solution is found, the
Grasp–RRT planner is not stopped. Instead it is tried to find a solution that
results in a better grasp evaluation. The setup is depicted on the left and
two resulting grasps are shown in the middle (% = 0.066) and on the right
(% = 0.119).
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Fig. 12. The quality of the resulting grasp increases over time. In this ex-
emplary setup the first force closure grasp was found after 70 ms respectively
530 ms. When high quality grasps are needed several seconds have to be
spent until the quality of a resulting grasp cannot be increased significantly.

and Table I. The runtime analysis has been carried out on
a dual core CPU with 2.7 GHz by averaging 50 test runs.
The time spent for the three main parts of the algorithm
are distinguished, pointing out that the parameter setup was
well balanced since approximatively the same amount of time
is spent for building up the RRT, computing the approach
directions and for evaluating the grasping poses. The last two
columns of Table I show the number of approach trajectories
which have been generated and the number of grasp measure-
ments that were calculated during the planning process. These
values differ, since not all approach trajectories result in a
suitable grasping configuration.

G. Comparative Study

In the following experiment, we simulate the application of
the Grasp–RRT approach for grasping an unknown object in
order to compare the proposed approach with classical step-
wise algorithms for planning grasping motions (e.g. [19]).
Therefore we use an imperfect 3D model of an object that
was created with the approaches of [24]. The object is located
in front of the robot and the task is to create a collision-
free grasping motion without utilizing any pre-computed sets
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Fig. 13. Overview of the average performance measurements.

TABLE I
PERFORMANCE EVALUATION.

Planning Time (seconds) # Ap. # Gr.
Total RRT Ap. Score Traj. Scores

Measuring Cup
(force closure) 7.2 2.5 2.9 1.8 147.7 86.6
Measuring Cup
(%min = 0.08) 13.3 4.6 5.4 3.3 281.3 165.0
Wok (bimanual
force closure) 0.6 0.2 0.2 0.2 20.0 10.2
Wok (single arm
force closure) 7.6 2.2 2.5 2.8 332.6 142.7
Bowl (bimanual
force closure) 0.6 0.2 0.2 0.2 18.7 9.9
Bike (bimanual
force closure) 4.0 1.4 0.8 1.7 195.2 81.0

of grasps. Hence, RRT- and IK-RRT-related planning ap-
proaches must initially create such grasping information in
order to solve IK-queries to determine target configurations
for planning, whereas the IK-RRT algorithms continuously
samples IK-solutions until a valid grasping motion can be
determined. Grasp planning is done by computing a set
of 50 feasible grasps with the wrench-space approach, as
it is used in GraspIt! [10]. To allow comparison with the
Grasp–RRT approach, the grasp planner that is included in
Simox is used, so that the performance measurement as well
as the resulting grasp quality is based on the same source
code. Further, an efficient IK-solver must be present for the
RRT and IK-RRT planner in order to determine collision-free
IK-solutions to one of the planned grasps. Since in general
the majority of the planned grasps are not reachable by the
manipulator, we perform a filter step to generate a sub-set
of reachable grasps. This is done by utilizing pre-computed
reachability information, similar to the approaches presented
in [8].

One of the advantages of the Grasp–RRT approach is that
neither a dedicated grasp planner nor a robot-specific IK-solver
is needed. Further, no precomputed reachability information is
needed to speed up any IK-queries. In Fig. 14 the 3D mesh,
the start and the final configuration, that was generated during
planning, are depicted.

In Table II the results of the RRT, IK-RRT and
Grasp–RRT approach are shown. Initially the three approaches
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Fig. 14. A 3D-model that was generated with shape retrieval algorithms [24] and the start and configuration, that was used to compare the results of different
approaches. Two visualizations of the results of the Grasp–RRT approach are shown on the right. The RRT is visualized in workspace, whereas the generated
approach movements are shown in red and the collision-free grasping motion and its pruned version are depicted in blue and green.

TABLE II
COMPARISON OF THE DIFFERENT APPROACHES.

Total Grasp IK- Motion
Planning Solving Planning

No Obstacle, 50 grasps
RRT 2 834 ms 2 727 ms 32 ms 75 ms
IK-RRT 2 907 ms 2 727 ms - 180 ms
Grasp–RRT 339 ms - - 339 ms
With Obstacle, 200 grasps
RRT 10 222 ms 9 601 ms 193 ms 428 ms
IK-RRT 10 200 ms 9 601 ms - 599 ms
Grasp–RRT 4 181 ms - - 4 181 ms

are compared in a scene where the target object is reachable
without difficulty. In this situation, it was sufficient to plan
50 grasps in order to achieve a collision-free and reachable
IK-solution for the RRT and IK-RRT algorithms. The average
time for this step was measured with 2.7 seconds. Before plan-
ning a collision-free motion with the RRT approach an IK-
solver for 10 DoF is queried in order to generate a feasible tar-
get configuration. This step, together with filtering the grasps
according to their reachability took 32 ms on average. Due to
the simple scene the motion planning itself could be performed
within 75 ms on average, resulting in an overall planning
time of 2 834 ms. The IK-solving step can be omitted with
the IK-RRT approach since here, IK-solutions are sampled
during motion planning. Nevertheless a set of grasps has to
be generated in advance similar to the RRT approach. Overall,
planning with the IK-RRT algorithm took 2 907 ms on average.
The Grasp–RRT planner is able to compute a collision-free
grasping motion, without the need of pre-computing a set of
feasible grasps, in 339 ms on average. Row 3-6 of Table II
show the results when an additional obstacle is introduced
in the scene (see Fig. 14 on the right). Due to the limited
workspace, 200 grasps have to be planned for the RRT and IK-
RRT approaches in order to serve a dense set of grasps that can
be used for reliable IK-solving. Hence, the overall planning
time increased to over 10 seconds for the RRT and IK-RRT
algorithms. The Grasp–RRT planner was able to solve the
problem in 4.2 seconds on average. As shown in Table II,
the Grasp–RRT planner performs well when no grasping in-
formation is present. In case offline generated grasping data
is stored in a database, the proposed approach introduces

some overhead, which is caused by the online generation
of grasping hypotheses. Further, the Grasp–RRT approach is
a single directional planner which is known to be slower
compared to bidirectional approaches (such as RRT and IK-
RRT). Nevertheless the Grasp–RRT algorithm is able to find
suitable solutions quickly while having the advantage that no
IK-solver, no reachability information and no dedicated grasp
planner must be present for the robot.

VI. CONCLUSION
In this work, a planning approach for computing grasping

trajectories was presented. Compared to existing state-of-
the art planners, the proposed Grasp–RRT planner does not
rely on any precomputed grasping positions, since suitable
grasping poses are determined during the planning process.
The algorithm integrates the search for solutions of the three
main tasks needed for grasping an object: finding a feasible
grasp, solving the inverse kinematic problem and computing a
collision-free trajectory. Since the Grasp–RRT approach does
not rely on any precomputed set of grasps, the results are not
limited to such a discretization of potential goal configurations.
Compared to stepwise approaches, where a grasp is selected
from a set of precomputed grasps in order to compute a
specific IK solution that is finally used as a goal configuration
for planning a grasping motion, the whole set of potential
goal configurations is considered by the Grasp–RRT planner.
Hence, the approach can be used without any heuristic for
grasp selection or IK solving and thereby a more general way
of generating grasping motions can be achieved.

Further, it was shown that bimanual grasping trajectories can
be efficiently planned with the Bimanual Grasp–RRT planner.
The approach relies on decomposing the high dimensional
planning problem, that arises when considering two arms and
two multi-fingered hands. This is achieved by independently
consider the generation of grasping trajectory hypotheses for
each end effector. These single arm motions are investigated
in order to find a feasible combination resulting in bimanual
configuration with the requested grasp quality. Since the
decomposed subtasks do not directly depend on each other,
parallelized concepts can be used to improve the efficiency.

As shown by the experiments in Section V, collision-
free motions for a large variety of single arm and bi-
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manual grasping tasks can be efficiently planned with the
Grasp–RRT planners. Depending on the environment and the
task, the planning time varies from less than a second to 7.6
seconds. If runtime is not crucial, higher grasp qualities can
be achieved by extending the time that is spent for planning.

Further improvements may be achieved by considering
constraints within the grasp quality evaluations. Such con-
straints may result from demands of post-grasping actions such
as lifting or object specific manipulations which should be
performed after grasping. Also task specific constraints can
be taken into account in order to adjust the generation of
grasping candidates with respect to a task dependent goal.
Furthermore, a local optimization of the calculated grasping
trajectory could be applied to locally maximize the quality of
the grasping pose. In case of grasping non-convex objects,
a better grasp quality evaluation could be achieved by a
hierarchical decomposition in multiple superquadrics, which
can be used to generate a more comprehensive set of approach
directions as introduced in [25].

APPENDIX

The quality of a grasp is an important aspect for the
selection of the best candidate from the set of grasps resulting
from grasp planning. A common approach to evaluate the
quality of grasps is the construction of the Grasp Wrench
Space (GWS), which describes the set of all wrenches that
can be applied on the grasp contact points. A single wrench is
defined as the concatenation of the force and the torque vector
exerted on a grasp contact point. A frictional point contact
ci = (pi, ni) is defined by the position pi ∈ R3 on the surface
of the object and the corresponding contact normal ni ∈ R3.

To evaluate the quality of a grasp, the contacts between end
effector and object are used to build friction cones.

A friction cone (defined by contact point, contact normal,
and material dependent friction coefficient µ) covers all stable
contacts for the given material property [14], [26].

a) Grasp Wrench Space: By approximating the friction
cones with m-sided pyramids, force vectors fi,1, . . . , fi,m
are defined, describing the border of the pyramid. For such
force vectors, an 6D force wrench wi,j can be constructed
as shown in Eq. (1), whereas wi,j reflects the impacting
forces and torques. The torque depends on the position of the
contact point with respect to the object’s center of mass pcom.
Dividing the distance to the center of mass by λ guarantees
scale invariance, which can be useful in comparing grasps on
different objects [13].

wi,j =

(
fi,j

1
λ (ci − pcom)× fi,j

)
(1)

Based on Eg. 1, the grasp wrench space can be built by
determining the convex hull over the union of all wrenches as
described in [27].

In Fig. 15 a grasp together with the resulting contacts and
the corresponding friction cones is shown on the left. The force
sub space of the GWS is visualized in the middle by setting the
torque components to zero. On the right the torque sub space
is shown, that was built by disabling the force components.

Fig. 15. Two visualizations of the 6D grasp wrench space that was generated
for the depicted grasp. The friction cones are visualized at the corresponding
contact points. The sub space representing the forces is depicted in the middle.
On the right the covered torques are visualized.

b) Object Wrench Space: In [13] the Object Wrench
Space (OWS) was introduced as a representation of all po-
tential grasps that can be applied to the object. The OWS can
be computed by applying the GWS computation to a set of
virtual contacts which are randomly chosen on the object’s
surface.

As shown in Fig. 16, the resulting force space is represented
by a unit sphere, but due to the object dependent definition of
λ, the torque components do not form a unit sphere. Hence,
the 6D wrench representation differs between objects.

To avoid the manual definition of a scaling factor for every
object, which will limit the significance of the quality score,
the OWS is analyzed in order to determine a reference quality
value. This ensures that an invariant grasp quality score is
computed by the evaluation algorithm.

Fig. 16. Two 3D visualizations of the 6D object wrench space. The
visualization in the middle shows the projection in force space and the
projection in torque space is shown on the right. The shown OWS subspaces
were build by setting the torque respectively the force to zero.

c) Grasp Quality: Several approaches to determine the
quality of a grasp wrench space can be found in literature, such
as the volume of the GWS, the radius of the largest inscribing
ball or the minimum distance ε from the origin to the border of
the GWS. Further, the grasp is stable (or force closure) when
the GWS contains the wrench space origin [11], [26].

When doing online grasp planning, computation time is
crucial. In earlier work, we presented a grasp quality measure
based on forces, which are adapted to the torques exerted on
the object [2]. The performance of the proposed approach was
very convincing, since the 3D force space was investigated in-
stead of analyzing 6D wrench spaces. One drawback was that
the magnitude of the forces has to be determined by steepest
descent methods, which tend to get stuck in local minima. To
increase the reliability of grasp evaluation, we implemented
a high efficient grasp quality measurement component within
the GraspStudio library of Simox [28], which offers the fast
determination of object and grasp wrench spaces.

This implementation allows efficient computation for online
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grasp quality evaluation. The grasp quality is determined by
performing a test for force closure followed by computing
the minimum distance ε from the wrench space origin to the
surface of the GWS.

Additionally the OWS ε value (denoted with ε′) is deter-
mined in a precomputing step. With ε′ a reference value for
a perfect grasp is computed that can be used to correlate
the quality score of the GWS during online processing. The
computation of ε′ has to be done once for every object and can
be stored in a database together with other object properties.
The objects that were used in this article resulted in an ε′ value
between 0.4 and 0.85. Finally the quality % ∈ [0, 1] of a grasp
is computed as follows:

% =
ε

ε′
. (2)

Note, that the grasp quality evaluation component of the
Grasp–RRT approach is exchangeable, allowing to incorporate
other algorithms for determining the grasp quality. Further, we
want to explicitly mention that other algorithms for evaluating
grasps are known in literature, which may result in a more
realistic computation of grasp qualities. A more in-depth
discussion of grasp wrench space analysis can be found in
[14], [29] or [30].
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