
Simox
A Robotics Toolbox for Simulation,
Motion and Grasp Planning

N. Vahrenkampa,b, M. Kröhnerta, S. Ulbricha, T. Asfoura, G. Mettab,
R. Dillmanna, and G. Sandinib

1 Introduction

Software development plays a major role besides hardware setup and mechan-
ical design when it comes to building complex robots such as mobile manipu-
lators or humanoids. Different requirements have to be addressed depending
on the application. A low-level controller for example must be implemented
for real-time use, whereas a task planning component will interact with the
robot on a higher abstraction level. Hence, developing robotics software is
subject to several constraints such as performance and robustness.

The selection of libraries or frameworks for software development is influ-
enced by the application and the existing software environment. Therefore,
several aspects have to be considered when building and/or choosing software
components for developing robotics applications:

• Performance and Robustness: Although increasing CPU speed allows to
run complex algorithms in reasonable amounts of time, performance is al-
ways an issue in the context of mobile manipulation and planning. There-
fore often C++ is the preferred choice in robotics since it combines high
level programming language features with efficient compilation techniques.
Robustness can be achieved by relying on advanced coding techniques like
smart pointers, exception handling and automated test cases.

• Extensibility: A library should offer easy extension capabilities. One possi-
ble way to achieve this is offering a plugin mechanism which uses common
interfaces to provide uniform extension points to developers.

• Platform-independence and Dependencies: Since software development
takes place on different platforms, a framework should at least offer sup-

a Institute for Anthropomatics, Karlsruhe Institute of Technology (KIT), Adenauerring 2,
Karlsruhe, Germany,
b Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia (IIT),
Via Morego 30, Genova, Italy



Fig. 1 Robot models realized with Simox : Kuka KR60-3, iCub and ARMAR-III.

port for the main operating systems WindowsTM, Unix/Linux, and Mac
OS XTM. Additionally, a low number of necessary compile-time dependen-
cies ease the setup and compilation process of a library.

Furthermore, the license model might play an important role in selecting
software libraries. In the scientific context, open-source software is preferred
since it allows both reusing results from others as well as sharing own solutions
with the community. The widely used GNU General Public License (GPL)
is one possible open-source license, but it enforces projects that use GPL
libraries to be published as GPL as well. Therefore, many libraries apply the
GNU Lesser General Public License (LGPL), since it does not require derived
products to be released under LGPL terms, thus allowing the usage of the
library in commercial products [1].

Several open source frameworks exist in the context of robot simulation,
differing in complexity, licensing, and objectives. Physics simulation libraries
such as ODE [2], IBDS [3] or Bullet [4] usually offer possibilities to define con-
strained objects which can be used to setup joints of a robot. Based on these
joints the kinematic structure of a robot can be defined. Motion planning
libraries (e.g. OMPL [5], MSL [6], MPK [7]) and grasp planning frameworks
such as GraspIt [8] or OpenGRASP [9] either rely on external frameworks
for defining robot kinematics or a custom kinematic representation is used.
With OpenRAVE [10] a comprehensive simulator for motion and manipu-
lation planning is available under an open-source license. Although a lot of
features are offered with OpenRAVE, a large number of external libraries
have to be installed in order to take advantage of the full functionality. Users
can write plugins in order to interact with the simulator and therefore the
whole system needs to be running. In contrast Simox explicitly offers several
lightweight libraries that can be used within a custom project without hand-
ing over the control to a simulator. The Robotics Toolbox offers a set of useful
MATLABTM scripts covering a wide range of algorithms related to robotics
[11].



In contrast to existing frameworks for robot simulation, Simox tries to
achieve both: Covering a wide range of simulation features while not relying
on a large number of dependencies to other libraries. Having lots of depen-
dencies may cause difficulties in installing and using the framework when the
execution environment is limited, e.g. when the framework should be running
on a robot.

2 Simox

With Simox we tried to cover many of the above mentioned requirements.
The library is completely implemented in C++ while using modern program-
ming paradigms to achieve both efficiency and robustness. Reliability being
a critical aspect, especially in robotic applications, the library comes with
numerous unit test cases and relies on smart pointer usage to avoid memory
leaks. Simox is released under the LGPL license and can therefore be used
both in open-source and commercial products. The low number of dependen-
cies required to compile and use the library ensures a convenient setup and
a straightforward integration into any type of project.

Simox itself is divided into the three main libraries:VirtualRobot provides
functionality for describing robot models including kinematic chains, end ef-
fectors and visualizations. These models can be read from XML files and
afterwards be used for collision detection, inverse and direct kinematics cal-
culation as well as reachability analysis. Saba provides sampling-based motion
planning algorithms. The library holds several configuration space represen-
tations that are used by the planning algorithms. Additionally, path pro-
cessing approaches and visualization routines are included. GraspStudio is
a library offering grasp planning capabilities. Methods for generating grasp-
ing hypotheses, evaluating grasp qualities, and planning grasps are available.
Visualization methods for all generated results are included additionally.

2.1 3D Visualization

Providing meaningful and easy to use visualization methods is crucial for a
good framework dealing with geometric data. In Simox we provide abstract
visualization interfaces which are independent of the underlying 3D libraries.
To support a new 3D library it is only necessary to provide the matching
models and to implement the visualization interfaces using the API of the
specific library. Up to now, support for the two visualization frameworks
OpenSceneGraph [12] and Coin3D [13] is realized with Simox.



Fig. 2 The visualization model of iCub’s hand (left) and its reduced model (right) that

is used for efficient collision detection.

2.2 Collision Detection

Fast collision detection is important for efficient motion and grasp planning,
since sampling-based approaches need to perform numerous calls to the col-
lision detection engine to validate sampled configurations. Hence, an efficient
approach is needed, preferably not limiting the shape of the models (e.g.
only convex shapes). The PQP library [14] offers efficient collision detection
for arbitrary 3D models and an extended version, that is able to handle
multi-threaded collision queries, is fully encapsulated by Simox. For collision
detection we provide the same functionality as for visualization. Therefore,
it is possible to use other collision detection engines by implementing the
interface classes for collision detection.

3 VirtualRobot

The VirtualRobot library offers methods to define robots and environments
and numerous simulation tools. Furthermore, advanced algorithms such as
collision detection, Jacobian calculations or reachability analysis are covered.

Robot Modeling
A robot is defined via its kinematic structure resulting in a tree-like structure
of connected Robot Nodes, whereas parameters describing the dynamics can
be optionally specified. In Fig. 1, three exemplary models are shown.

Visualization and Collision Detection
Based on the kinematic definition, 3D models for visualization and for data
processing can be attached to the Robot Nodes resulting in two models: one
in high resolution for appealing visualizations and a reduced one that can be
used for efficient collision detection and distance calculations (see Fig. 2).



right TCP

elbow height

left TCP

(a) The target locations
for the body parts.

(b) Solution without el-
bow target height.

(c) Solution considering
the elbow.

Fig. 3 Results of differential inverse kinematics queries.

Kinematic Chains and Robot Node Sets
Usually when a robot is used, several kinematic chains, as logical sets of
joints, are needed. Therefore, so-called Robot Node Sets can be defined in
VirtualRobot, allowing to specify a collection of Robot Nodes or a strictly
defined kinematic chain.

End Effectors
End effectors play an important role in grasp and manipulation planning in
the context of humanoid robots. Hence, a convenient end effector definition
is provided by VirtualRobot, allowing to easily open and close hands while
considering self-collisions and collisions with the environment.

Jacobian Calculations and Differential IK
The Jacobian of a robot manipulator is required for many complex calcula-
tions in a robotic application and, hence, has to be calculated very efficiently.
The most prominent example is the numerical solution of the inverse kine-
matics (IK) but it also plays a crucial role in calculating the dynamics of a
robot. In short, the Jacobian matrix holds the partial derivatives of an end
effector’s Cartesian position in its columns and can be used to transform
joint angle velocities into Cartesian movement. In Simox, special attention
has been paid to the construction of the Jacobian and its convenient usage.
It is well integrated into its differential inverse kinematics algorithm – a nu-
merical IK solver – but it can also be used easily in other applications. For
any node of a node set, the Jacobian as well as its pseudo inverse can be
obtained conveniently in its reference frame. In addition, it is possible to ex-
clude either the position or orientation and even individual coordinates from
the matrix. This can be useful, for instance, if one is only interested in the
vertical acceleration of the end effector while balancing.



(a) The support polygon together

with the projected center of mass.

(b) The 6D reachability considering 10 DoF

(torso and left arm).

Fig. 4 Stability and reachability computation.

In Fig. 3, a use-case for the algorithm is shown. The differential IK is used
to calculate the bimanual robot configuration covering 17 degrees of freedom
(DoF) of ARMAR-III (see Fig. 3(a)). Two IK requests have been performed,
where both TCPs should reach a given position. Firstly, the left elbow may
move freely and has no assigned target location (see Fig. 3(b)). For the second
IK-query, the desired height for the robot’s elbow is considered additionally
to the TCP positions (see Fig. 3(c)). For both queries the differential IK
approach is able to serve a solution after few iterations.

An application of Jacobian calculations for stability analysis can be seen in
Fig. 4(a). Here, the center of mass (CoM) Jacobain is used to move the robot
until the surface projection of its CoM lies within the 2D support polygon to
ensure static stability.

Reachability Analysis
Having a representation of the reachability of a kinematic chain, e.g. a robot
arm, helps to fulfill several tasks in the context of grasp planning, inverse
kinematics (IK) solving and mobile manipulation. The reachability is defined
as a 3D or 6D volume being reachable by the end effector. In 6D, the ori-
entation is explicitly considered while it is ignored in the 3D case. Several
approaches exist to build a representation of the reachability [15, 10, 16], most
of which use a voxelized approximation of the 6D workspace. Reachability
structures in VirtualRobot can be created for arbitrary kinematic chains con-
sidering joint limits and self collisions. A visualization of iCub’s reachability
for the left end effector is shown in Fig. 4(b). The kinematic chain used for
building the reachability data covers three torso and seven arm joints.



Fig. 5 Extended visualization features allow to analyze planned motions as well as low
dimensional configuration spaces.

4 Motion Planning

Saba, a sampling-based motion planning library, is part of Simox.
Generic interfaces are provided for collision detection setups, configura-

tion spaces and planners in order to offer a comprehensive and extensible
implementation.

4.1 Setup of Collision Detection

Static and moving environmental objects as well as parts of the robot are
handled uniformly. All objects of these types which are considered for collision
detection are thus grouped into collision sets. Mutual collision detection is
achieved by defining pairs of collision sets.

4.2 Representation of Configuration Spaces

The configuration space C (C-space) is defined based on a collision detection
setup and a set of Robot Nodes, which in most cases form a kinematic chain of
the robot. A configuration c ∈ C can either be valid or invalid, i.e. resulting
in a collision in the workspace. In derived implementations, additional con-
straints or quality measures can be incorporated. When considering paths
from c0 ∈ C to c1 ∈ C, several implementations for collision detection are
offered. In most cases, a sampling-based approach, where intermediate sam-
ples on the path are checked for collisions will be sufficient (see Fig. 5 left).
Nevertheless, different implementations, e.g. relying on continuous collision
detection, are explicitly supported, as we showed in [17], where continuous
collision detection was realized by Quinlan’s Free-Bubble approach [18].



Fig. 6 The bimanual IK-RRT approach is used to plan hand-over motions.

4.3 Motion Planners

Motion planners in Saba basically rely on the definition of a C-space, which
implicitly defines the incorporated joints and the collision setup. Several
ready-to-use implementations, related to Rapidly-exploring Random Trees
(RRT), are offered as well as advanced planners, such as the IK-RRT [19] ap-
proach for the planning of reaching and grasping motions (see Fig. 6). Further,
several visualization features allow analyzing the results in the workspace and
in low-dimensional C-spaces (see Fig. 5).

4.4 Path Processors

A well-known issue in motion planning with sampling-based approaches is
that the resulting trajectories are not optimal. In order to create appeal-
ing movements, the trajectories have to be smoothed. This has been done
by classes implementing the path processor interface of Saba. For example,
one processor named ShortcutProcessor searches collision-free shortcuts in
C-space in order to smooth the result. A resulting path in C-space can be
seen in Fig. 5 on the right. Here the planned path is shown in blue and the
smoothed one in yellow.

5 Grasp Planning

Grasp planning can be performed with the GraspStudio library which is part
of Simox. Based on the robot definitions, any end effector can be decoupled
from the model and considered for grasp planning. The Grasp Center Point
(GCP) of an end effector defines the favorite grasping position and an ap-
proach direction. A generic grasp planner consists of a module for creating
approaching motions and a second module for evaluating the grasp quality.
Both components are exchangeable by custom implementations of the pro-
vided interfaces. Further, custom grasp planners, which do not rely on the
presented planning loop, are explicitly supported. When using the generic



planning approach, the following steps are executed until the number of re-
quested grasps or a timeout is reached:

• A collision-free grasping hypothesis is generated by an implementation of
the Approach Movement Generator interface.

• The fingers are closed and all contacts are stored.
• The contact information is passed to the Grasp Evaluation module in order

to compute the grasp quality and/or force closure information.
• Depending on the quality, the grasp is discarded or added to the set of

valid grasps.

5.1 Grasping Hypotheses: Approach Movement
Generator

GraspStudio provides an already built-in implementation for generating
grasping hypotheses. This Approach Movement Generator randomly creates
grasping positions based on the object’s triangle model:

• The normal information of the object’s surface is used to sample potential
approach directions, which are aligned with the favorite approach move-
ment of the end effector as given with the GCP definition. Additionally,
the remaining DoF (rotation around the approach direction) is randomly
sampled.

• The end effector is moved towards the object until the GCP is reached by
the object’s geometry or a collision is detected.

• In case a collision was detected, the end effector is moved backwards until
it is collision-free again.

This approach is suitable for most applications, although the interface
definition for Approach Movement Generators allows convenient realizations
of custom approaches.

5.2 Grasp Evaluation: Grasp Wrench Space
Computation

A common approach in grasp quality measurement is the grasp wrench space
computation, where 6D wrenches are constructed from the contact informa-
tion [20, 21, 8]. The 6D wrenches represent the contact force and torque
and a quality measure is given by analyzing the convex hull of all contact
wrenches. Checking whether the origin is inside the convex hull gives an ini-
tial indication if the resulting grasp will be a force closure or not, i.e. the
object will be fixed in the hand. Further, the minimum distance from the



Fig. 7 Several planned grasps for the hand models of iCub and ARMAR-III.

surface of the convex hull to the wrench space origin gives a quality evalua-
tion since it describes the ability of compensating external disturbances. On
the left of Fig. 7, a grasping configuration with corresponding friction cones
is shown. The right picture shows several grasps that have been planned with
GraspStudio.

Note that neither the contact model nor the grasp wrench space compu-
tation can perfectly represent the reality, but these approaches are meant to
approximate the grasping process and to allow efficient planning or efficient
first guesses to be refined through learning. Due to the expandable design,
GraspStudio offers the possibility to also implement more sophisticated plan-
ning approaches.

6 Conclusion

With Simox, we provide a collection of efficient algorithms to be used in the
context of robot simulation, motion and grasp planning. This open source
toolbox supports a wide range of applications by offering both state-of-the-
art implementations and extendable basic functionalities which can be used
to realize more complex algorithms. Future work will address the support
for industry standards, such as the COLLADA file format. Further, network
transparency and support for shareable objects to be handled within a net-
work of loosely coupled components will be emphasized.

7 Acknowledgments

The research leading to these results has received funding the German Re-
search Foundation (DFG: Deutsche Forschungsgemeinschaft) under the SFB
588 and from the European Union Seventh Framework Programme under
grant agreement 270273 (Xperience).



References

1. A.M.S. Laurent, Understanding Open Source and Free Software Licensing (O’Reilly

Media, Inc., 2004)
2. Open Dynamics Engine (ODE) (2011). URL http://www.ode.org

3. J. Bender, Computer Animation and Virtual Worlds 18(4–5), 225 (2007). DOI
http://dx.doi.org/10.1002/cav.v18:4/5

4. Bullet Physics Engine (2011). URL http://bulletphysics.org

5. Open Motion Planning Library (OMPL) (2010). URL http://ompl.kavrakilab.org
6. Motion Strategy Library (MSL) (2003). URL http://msl.cs.uiuc.edu/msl

7. Motion Planning Kit (MPK) (2006). URL http://ai.stanford.edu/ mitul/mpk

8. A.T. Miller, Graspit!: a versatile simulator for robotic grasping. Ph.D. thesis, Depart-
ment of Computer Science, Columbia University (2001)

9. S. Ulbrich, D. Kappler, T. Asfour, N. Vahrenkamp, A. Bierbaum, M. Przybylski,

R. Dillmann, in IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS) (IEEE, 2011), pp. 1761–1767

10. R. Diankov, Automated construction of robotic manipulation programs. Ph.D. thesis,

Carnegie Mellon University, Robotics Institute (2010)
11. P.I. Corke, IEEE Robotics Automation Magazine 3(1), 24 (1996)

12. Open Scene Graph (2011). URL http://www.openscenegraph.org
13. Coin3D (2011). URL http://www.coin3d.org

14. E. Larsen, S. Gottschalk, M.C. Lin, D. Manocha, Fast proximity queries with swept

sphere volumes. Tech. rep., Department of Computer Science, University of North
Carolina (2000)

15. F. Zacharias, C. Borst, G. Hirzinger, in Intelligent Robots and Systems, 2007. IROS

2007. IEEE/RSJ International Conference on (2007), pp. 3229–3236
16. N. Vahrenkamp, S. Wieland, P. Azad, D. Gonzalez, T. Asfour, R. Dillmann, in Hu-

manoid Robots, 2008. Humanoids 2008. 8th IEEE-RAS International Conference on

(2008), pp. 406–412
17. N. Vahrenkamp, P. Kaiser, T. Asfour, R. Dillmann, in International Conference on

Robotics and Automation (ICRA 2011) (Shanghai, China, 2011), pp. 715–722

18. S. Quinlan, Real-time modification of collision-free paths. Ph.D. thesis, Stanford Uni-
versity (1994)

19. N. Vahrenkamp, D. Berenson, T. Asfour, J. Kuffner, R. Dillmann, in Intelligent Robots
and Systems, IROS (2009)

20. N. Pollard, Technical Report AI-TR 1464, MIT, Artificial Intelligence Laboratory

(1994)
21. D. Kirkpatrick, B. Mishra, C. Yap, in Proc.of the 20th ACM Symp. on Theory of

Computing (1990), pp. 341–351


