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Abstract— Having a representation of the capabilities of a
robot is helpful when online queries, such as solving the
inverse kinematics (IK) problem for grasping tasks, must
be processed efficiently in the real world. When workspace
representations, e.g. the reachability of an arm, are considered,
additional quality information such as manipulability or self-
distance can be employed to enrich the spatial data. In this
work we present an approach of inverting such precomputed
reachability representations in order to generate suitable robot
base positions for grasping. Compared to existing works, our
approach is able to generate a distribution in SE(2), the
cross-space consisting of 2D position and 1D orientation, that
describes potential robot base poses together with a quality
index. We show how this distribution can be queried quickly in
order to find oriented base poses from which a target grasping
pose is reachable without collisions. The approach is evaluated
in simulation using the humanoid robot ARMAR-III [1] and
an extension is presented that allows to find suitable base poses
for trajectory execution.

I. INTRODUCTION

The capabilities of a robot can be expressed in several
ways. Usually a set of basic parameters, such as joint limits
or maximum torque, is given to describe the capabilities
in terms of reaching and manipulation. This information
can be used offline to build a representation of the robot’s
operational workspace in order to support online tasks.
Since performance is crucial during online processing, a
beneficial representation can clearly improve the efficiency
of inverse kinematics (IK) queries [2], [3], [4]. Usually such
a representation is given by a spatial grid which covers the
3D (position) or 6D (position and orientation) workspace.
Either a binary value is stored, indicating whether the grid
cell (voxel) is reachable, or each cell holds additional in-
formation, such as quality values, which allows to compare
different voxels.

The IK-problem is usually given by a requested workspace
pose p ∈ SE(3), for which a joint configuration q ∈ Rn is
searched that results in an end effector pose euqal to p. In
case multiple targets are available, e.g. a set of predefined
grasps are given for an object, the selection which grasp
should be considered for IK solving can be supported by
reachability data. Further, these data structures can be used
to efficiently solve bimanual IK queries, where a grasping
configuration for both arms of a humanoid robot are searched
[5], [6].

A workspace representation of the robot’s capabilities
can also be used to support the search for suitable robot

Fig. 1. The reachability distribution of the robot’s right TCP. The kinematic
chain covering hip and right arm with 10 degrees of freedom (DoF) was
used for generation while manipulability, self-distance and joint limits were
incorporated for determining the quality.

base poses for grasping. In [4] equivalent classes, repre-
senting the potential poses of the robot’s base, are built
and the resulting data structure is queried to find suitable
placements. Experience-based representations of robot poses
from which grasping was successful is presented in [7].
The so-called action related places (ARPlaces) implicitly
cover any uncertainties that affect the grasping task. The
ARPlace representation has to be trained and it gets invalid
when internal parameters (e.g. camera calibration) change.
In [8] an approach for finding suitable robot placements for
execution of workspace trajectories is presented. Therefore,
trajectories are interpreted as patterns and searched using
multi-dimensional correlation. In earlier work, we showed
how a 2D distribution can be built that describes potential
base poses for bimanual grasping [9].

Compared to these works, we present a generic and
efficient approach for inverting spatial reachability data in
order to generate a distribution in SE(2) of potential base
poses for grasping. With the proposed reachability inversion
approach we present a generic formalism for transforming a
robot’s capability representation to an object-centered view.



As we will show, with this transformation extended IK
queries covering the robot’s joints and base placement can
be solved efficiently.

II. REPRESENTING THE ROBOT’S WORKSPACE

In order to generate a representation of the robot’s ca-
pabilities in terms of reaching and grasping, a spacial data
structure is generated and filled in an offline step. Therefore,
the 6D workspace (position and orientation of the end
effector) is voxelized and the resulting voxel grid is filled
with pose quality information. Each voxel represents all
possible spatial poses of the end effector for which the tool
center point (TCP) lies within the extends of the voxel. Note,
that position and orientation is considered here, while other
approaches exist where the 3D workspace is voxelized and
the orientation is additionally encoded [3].

To build up a representation of the robot’s workspace, the
voxel grid is filled with quality information describing the
capabilities of the corresponding kinematic chain (e.g. an
arm). Usually reachability information is used [3], [5], [4],
but other performance indices, such as the manipulability,
can be used as showed in [2], [10].

When using a discretized workspace representation, the
reachability of a voxel v cannot be reliably expressed as
a binary value, since there might be poses p ∈ v that are
reachable while other poses p′ ∈ v are not. Hence, the
reachability of a voxel can just give a hint (or a probability)
that a pose inside that voxel is reachable. By considering
the reachability of a voxel as a probability that a pose is
reachable, the discretized reachability data can be interpreted
as a frequency distribution known from descriptive statistics
[11]. Hence, we use the term reachability distribution in
this work to name the discretized reachability data that is
represented by entries of 6D workspace voxels [12].

A. Extended Manipulability Measurement

In this work are using an extended manipulability mea-
surement in order to get a good approximation of the robot’s
ability to maneuver in workspace. Compared to the classical
manipulability index [13], [14] where the distance to singular
configurations is determined by analyzing the manipulability
ellipsoid that is spanned by the singular vectors of the
Jacobian, we are explicitly considering joint limits under
redundancy. Additionally, the distance between body parts
of the robot (self-distance) is incorporated in order to penal-
ize configurations that result in a limited maneuverability.
Further details can be found in [10].

In Fig. 1 the distribution of the manipulability is shown
for a 10 degrees of freedom (DoF) kinematic chain covering
hip and right arm of the humanoid robot ARMAR-III [1].

B. Reachability Distribution

The reachability in workspace can be constructed by going
through all 6D voxels around the robot while trying to solve
the inverse kinematics (IK) problem. If an IK solution can
be determined, the voxel can be marked as reachable. This
results in a binary representation of the reachability, having

Fig. 2. One octant of the IRD’s 3D visualization. Each voxel is colorized
by the maximum entry of any potential rotation at the corresponding
workspace position.

the disadvantage that no quality comparisons between voxels
can be performed (except reachable or not reachable). To get
a better representation, sampling can also be performed in
joint space and forward kinematics can be used to determine
the corresponding voxels. By doing so, the number of hits
of a voxel can be counted and a voxel’s quality entry gives
then information about the volume in joint space that maps
to the voxel. This approach would serve information about
how large the volume in joint space is for which the TCP
pose ends up in the corresponding voxel. This can be of
interest, e.g. when a variety of potential IK-solutions are
helpful in finding collision-free configurations, but singular
configurations are not handled appropriately. Hence, we use
the approach of [10] to compute a distribution of the robot’s
extended amnipulability.

Depending on the involved number of degrees of freedom
(DoF), complete sampling can be time consuming, but since
the generation is performed in an offline step, performance is
not critical here. Nevertheless, random sampling can be used
in order to generate an approximated representation more
quickly.

III. REACHABILITY INVERSION

Once a workspace representation of the robot’s reachabil-
ity is generated, the data can be inverted in order to generate
an object-centered reachability representation: Instead defin-
ing the reachability of the TCP w.r.t. a fixed robot base pose,
the inverted data gives information about potential robot base
poses when a fixed TCP pose in workspace, e.g. a grasp to
be applied on an object, is given. This data can be generated
once in an offline step and during online processing it can be
quickly queried to find suitable robot base poses for grasping.

Note, that the inverse reachability data contains all pos-
sible base poses in workspace together with their according



probability. Hence, any additional constraints, e.g. when the
robot should be located upright on the ground plane, will be
considered during online processing. This allows to store the
inverse reachability data in the most flexible way.

A. Building the Inverse Reachability Distribution (IRD)
A given reachability distribution RD is usually defined in

a base coordinate system of the robot. This can be located in
the waist for legged robots or in the platform for platform-
based humanoid and service robots. Hence, the data provides
information about the reachability of the TCP in the base
frame.

In order to prepare the generation of the inverted reachabil-
ity distribution IRD, in a first step all tuples (ti, ei) are built
by going through all 6D voxels vi of RD, while determining
the corresponding base-to-TCP transformation ti ∈ SE(3)
and the voxel entry ei.

Then, a second voxelized data grid IRD is filled by
the tuples (t−1i , ei), which are generated by inverting the
transformations ti. For each t−1i the corresponding IRD
voxel v′i is determined and its entry is set to ei.

The IRD has to be computed only once in an offline
step and the resulting data can be stored in a file. During
online processing, the IRD is positioned at a target location
in workspace (e.g. a grasping pose) in order to obtain the
distribution of potential poses of the robot’s base frame.

As shown in Fig. 2, the reachability inversion results
in an approximated spherically shaped volume around the
investigated pose in workspace. The figure shows one octant
of the IRD’s 3D visualization, which was built by colorizing
the voxels according to the maximum entry of any potential
rotation at the corresponding voxel position in workspace.

B. Building the Oriented Reachability Map (ORM)
The inverse reachability data can be used to efficiently

query suitable robot base poses w.r.t. a grasping pose. Since
the IRD holds information about all reachable poses of the
robot’s base frame, constraints must be applied in order to
define the subset of possible poses. Such constraints will
usually be defined by the surface on which the robot is
allowed to stand on. In the following, we assume that the
surface is flat and the robot’s base frame is located in an
upright direction. Hence, the floor F ∼= SE(2) ∼= R2×S1 is
defined as the subspace of SE(3) that goes through the origin
and is parallel to the xy plane:

F = {

 Rz 0 px,y
0 1 0
0 0 1

 ∈ SE(3)|px,y ∈ R2, Rz ∈ S1}.

(1)
By cutting F with the IRD volume located at a grasping

pose p ∈ SE(3), one can obtain the three dimensional
distribution ORM ∼= SE(2) which gives information about
potential robot base positions and orientations.

A visualization of this Oriented Reachability Map (ORM)
can be seen in Fig. 3. For each grid point on the floor, the
potential orientations of the base frame are depicted. The
color indicates the quality of the corresponding ORM entry.

Fig. 3. The reachability inversion for the given grasp visualized on
the ground plane. The potential platform orientations are depicted by
arrows which are colored according to their inverse reachability (red:high,
blue:low).

IV. ROBOT PLACEMENT

In this section we show how the inverted reachability data
can be used to efficiently find suitable robot base poses.

A. Robot Placement for Grasping

The ORM can be queried in order to find suitable robot
base poses for which the target pose p is reachable by the end
effector. This can be done by choosing (x, y, γ)max ∈ SE(2)
for which the ORM-entry is at its maximum. Note, that due
to discretization, a set M ⊂ SE(2) of poses exists for which
the entry is at the maximum:

M = argmax
x,y,γ

ORM(x, y, γ). (2)

Further, randomized techniques can be applied in order
to query the inverse reachability data. Here, the probability
of choosing an (x, y, γ)sample is proportional to its ORM
entry. This can be useful when additional constraints, such
as obstacles, have to be considered, which may lead to
situations where no valid IK-solution exists for base poses
b ∈M .

B. Lazy ORM

Since the ORM computation introduces some computa-
tional overhead when only one IK-query has to be computed,
a lazy evaluation of the ORM entries can speed up single-
query IK tasks. Hence, the ORM data is not calculated in
advance, but for every query it is checked whether the entry
of the corresponding ORM cell has already been calculated
or if it has to be computed. In the second case the entry of
the corresponding ORM cell is updated for the query pose



p = (x, y, γ). With px,y = (x, y)T and the rotation matrix
Rz = R(γ) the pose p can be rewritten to

p2 =

(
Rz px,y
0 1

)
∈ SE(2),

and

p3 =

 Rz 0 px,y
0 1 0
0 0 1

 ∈ SE(3).

Then the IRM entry of the workspace pose p3 can be
easily determined in order to compute the ORM cell entry.

By doing so we loose the ability of determining the
maximum ORM entry in advance since we do not have
knowledge about the complete data. However, robot place-
ment queries can be processed by generating a fixed number
of samples in order to determine the maximum of the
corresponding ORM entries. Since sampling and the IRM
query process can be performed efficiently, the performance
of single-query tasks can be improved as shown by the
evaluation in Section VI.

Fig. 4. A workspace trajectory with corresponding Oriented Reachability
Map (ORM) visualized on the ground plane.

C. Robot Placement for Trajectory Execution

Reachability inversion can also be useful when multiple
workspace poses should be reached by the TCP. This can
be the case for pick and place operations or for trajectory
execution, e.g. door opening tasks. In the following, trajec-
tories are represented by a finite sequence (s0, . . . , sn) of
workspace poses. For each si, the corresponding ORMi is
generated and the united ORMtr, representing the capability
of reaching the whole trajectory, is built by going through
(x, y, γ) and determining the minimum entry of all ORMi:

ORMtr(x, y, γ) = min{ORMi(x, y, γ)}ni=0. (3)

The visualization of an exemplary trajectory with corre-
sponding ORMtr is depicted in Fig. 4.

V. IK SOLVING

Based on the ORM data structure the complete IK query
for grasping tasks, that consists of finding a suitable robot
base pose together with a configuration of the arm, can be
realized as shown in Algorithm 1. Initially the ORM is built
as described in Section IV. The IK search loop consists of
sampling suitable robot base poses followed by a call to the
robot’s IK solver and a collision check. The IK solver for the
arm can be realized by a generic Jacobian-based approach,
or custom algorithms can be used. Once an IK result has
been found, the resulting configuration is checked against
self-collisions and collisions with the environment.

Algorithm 1: IK solver covering the robot’s base pose
and arm configuration.

Input: Target pose p ∈ SE(3),
Inverse Reachability Distribution IRD

Output: Robot base pose r ∈ SE(2),
joint configuration j ∈ Rn

IRD.setPose(p);
ORM ← IRD.cut(F );
while (!timeOut) do

r ← ORM.sampleRobotPose();
robot.apply(r);
j ← solveIKArm(p);
if (j) then

robot.apply(j);
if (!robot.isInCollision()) then

return {r, j};
end

end
end
return NULL;

An IK-solver that uses the LazyORM approach can
be built analogous by omitting the ORM initialization
and performing the robot pose sampling as described in
Section IV-B.

VI. EVALUATION

In the following we evaluate the performance of the
proposed approach in different setups. All evaluations have
been carried out with the 43-DoF model of the humanoid
robot ARMAR-III and the C++ robotics simulation package
Simox [15]. All results were gained by averaging 100 queries
which have been carried out on a 3.0 GHz Core i5 PC within
a single-threaded application.



A. IK Performance

The setup of this test case can be seen in Fig. 5. For
this experiment we use a precomputed grasp that is defined
relatively to the target object. During the tests the bottle
is randomly placed on the table and the target pose p ∈
SE(3) is derived by applying the object related grasping
transformation. The IK task consists of finding a suitable
robot base pose (3 DoF) and a configuration of hip and right
arm (10 DoF). As shown in Algorithm. 1 the result is checked
against self-collisions and collisions with the environment.

TABLE I
PERFORMANCE EVALUATION OF THE 13 DOF IK TASK.

Complete ORM Base Pose IK Arm
Query Setup # Time # Time

Full ORM
Rand. target 732.3ms 726.9ms 23.0 5.5ms 1.8 2.2ms
Fixed target 2.4ms 0.0ms 2.6 0.6ms 1.4 1.7ms
Lazy ORM
Rand. target 7.0ms 0.0ms 19.9 2.9ms 4.5 3,9ms
Fixed target 4.4ms 0.0ms 6.9 2.5ms 1.6 1.9ms

An overview of the results is given in Table I. The perfor-
mance of the full (Section IV-A) and the lazy (Section IV-
B) ORM approach is shown in the upper and the lower
part of the table. The average runtime of one complete IK
query is shown in the first column, followed by the ORM
setup time and details about the ORM and arm-IK query.
The IK solver that was used for this experiment is based on
a Pseudoinverse Jacobian gradient descent algorithm. The
rows labeled with Rand. target show the results which were
measured when placing the target randomly on the table
(with upright orientation). The rows with label Fixed target
show the average results for a fixed target position when
multiple IK requests have to be performed. The setup time
is not considered in this case, since the ORM has to be
created only once for all queries.

The results show, that the query time can be clearly
reduced when the lazy ORM approach is chosen. The
complete 13 DoF IK query including robot placement and
collision detection can be realized in less than 10 ms for the
investigated setup.

B. Searching Base Poses for Trajectory Execution

In this test case the ability of finding suitable robot base
poses for door opening tasks is evaluated. We assume that
the trajectories are given as a vector of workspace poses
which must be reached in order to open the door. Hence,
the extended IK task consists of sampling an potential robot
base pose according to the ORM followed by determining,
if a collision-free IK solution for the hip-arm system can
be found for all trajectory points. In Fig. 6 three workspace
trajectories in a kitchen environment are depicted. The left
figure shows a trajectory for opening the dishwasher together
with the corresponding ORM that was computed as de-
scribed in Section IV-C. The figure in the middle shows an
opening trajectory related to a drawer. Again, the ORM is
depicted and additionally the robot is set to the IK solution

Fig. 5. The target object with grasp (left). An exemplary IK result with
13 DoF (right).

for the final trajectory position. On the right of Fig. 6 the
same setup is depicted for a third trajectory that can be used
to open the fridge.

TABLE II
DOOR OPENING PERFORMANCE EVALUATION.

Compl. ORM Base Pose IK Arm
Query Setup # Time # Time

Full ORM
Dishwasher 1161ms 1141ms 5.7 3.3ms 21.6 16.3ms
Drawer 1158ms 1154ms 3.0 1.1ms 4.1 3.1ms
Fridge 1209ms 1203ms 1.6 0.3ms 6.8 5.0ms
Lazy ORM
Dishwasher 33ms 0ms 4.5 14.5ms 21.2 18.1ms
Drawer 10ms 0ms 3.1 6.7ms 4.2 3.1ms
Fridge 7ms 0ms 1.7 2.1ms 6.7 4.9ms

The results of this test case are shown in Table II. The
first three rows show the evaluation when the complete
ORM is computed for every query. It can be seen that the
biggest part of the query time is spent for ORM calculation
(column ORM Setup: ∼1.2 sec.) while the query itself can be
processed quickly. The columns labeled with Base Pose show
the detailed analysis of the robot base pose search. For every
successful query 1.6 to 5.7 base poses have to be sampled
until a valid solution can be determined. The runtime for this
step was measured with 0.3 to 3.3ms. Once a potential base
pose is sampled the IK query for the hip-arm kinematic chain
is called 4.1 to 21.6 times on average (column IK Arm). If
the IK query is successful for all trajectory poses, a valid
solution has been found. The accumulated runtime for this
test is 3.1 to 16.3ms on average.

The three rows on the bottom of Table II show the
evaluation for the same setup when the lazy ORM approach
is used. Since the ORM is not completely calculated, no
setup time has to be considered and hence the IK pro-
cessing can be performed more efficiently. The runtime for
the three trajectories varies from 7 to 33ms on average.
This performance measure includes all necessary steps to
generate a valid and collision-free base pose together with
the corresponding IK solutions for the hip-arm system.



Fig. 6. A trajectory for opening the dishwasher with depicted ORM (left). The trajectory for opening the drawer with exemplary IK solution for the
final pose (center). A trajectory for opening the fridge with robot configured at the final trajectory point (right).

VII. CONCLUSIONS

In this work we presented a generic approach for deter-
mining the inverse reachability related to a kinematic chain
of a robot. We showed how this reachability inversion can
be used to find suitable base poses in order to place the
robot w.r.t. an object that should be grasped. Therefore, the
Oriented Reachability Map (ORM) was introduced which can
be built by placing the inverse reachability data at the target
pose and constraining the allowed poses (e.g. upright on the
floor). Based on the ORM data structure we showed how
an efficient IK solver can be implemented which generates
valid robot base poses together with correct joint configu-
rations while avoiding self-collisions and collisions with the
environment. Further, the Lazy ORM was introduced that can
be used to avoid the computation of the complete ORM data
structure by determining the required data on the fly while
procesing the IK query. It was shown that the resulting data
structure can be queried efficiently and several tasks such
as placement for grasping or trajectory execution can be
solved with high performance. The evaluation showed that
the Lazy ORM approach is suitable for online IK processing
in changing surroundings and hence it can be used for real
world applications such as humanoid robots operating in
human-centered environments.
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