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Abstract Quantifying the robot's performance in terms

of dexterity and maneuverability is essential for the

analysis and design of novel robot mechanisms and for

the selection of appropriate robot con�gurations in the

context of grasping and manipulation. It can also be

used for monitoring and evaluating the current robot

state and support planning and decision making tasks,

such as grasp selection or inverse kinematics (IK) com-

putation. To this end, we propose an extension to the

well-known Yoshikawa manipulability ellipsoid measure

[40], which incorporates constraining factors, such as

joint limits or the self-distance between manipulator

and other parts of the robot. Based on this measure

we show how an extended capability representation of

the robot's workspace can be built in order to support

online queries like grasp selection or inverse kinematics

solving. In addition to single handed grasping tasks, we

discuss how the approach can be extended to bimanual

grasping tasks. The proposed approaches are evaluated

in simulation and we show how the extended manipula-

bility measure is used within the grasping and manip-

ulation pipeline of the humanoid robot ARMAR-III.

Keywords Manipulability · Reachability · Redundant
Manipulators · Capability Representation

1 Introduction

For advanced robot systems operating in such di�er-

ent domains as industrial applications, service or hu-
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manoid robotics the ability of supervising own move-

ments is essential for successful task execution. Hence,

the systems must be equipped with methods to mea-

sure their performance, accuracy or success rate. In this

context, measuring the manipulability is a well-known

technique for determining the ability to maneuver in

workspace. This measure, introduced by Yoshikawa in

1985 [40], can be seen as a quality index that gives

information about the distance to singular con�gura-

tions, which limit the possibility to adjust the end ef-

fector pose in workspace. By exploiting the robot's re-

dundancy, poses which result in higher manipulability

can be favored in order to allow better adaption dur-

ing execution. Additionally, manipulability information

can be used to support planning and decision processes,

e.g. when an optimal grasp has to be selected out of a

set of potential grasps. In this context a precomputed

capability representation can be useful for e�cient pro-

cessing of online queries. Such online queries may cover

extended inverse kinematics (IK) problems, including

robot placement queries and grasp selection tasks. Due

to the extended problem formulation, integrated algo-

rithms are preferable, which rely on o�ine generated

data that represents the robot's capabilities in terms of

reaching and manipulation. Since during online process-

ing IK solving is just one processing stage in a usually

complex grasping pipeline, e�ciency is highly desirable.

To achieve the required performance, a representation

of the manipulator's capabilities can be generated in

an o�ine step, whereby di�erent types of information

can be addressed. Usually reachability information is of

high interest since it gives information about workspace

poses which are within reach of the manipulator. As

we showed in earlier work [33] additional quality infor-

mation, such as the manipulability, can be addressed

in order to achieve an extended representation of the

robot's capabilities.

1.1 Related Work

Yoshikawa introduced the manipulability index [40] as

a quality index for redundant manipulators, which de-

scribes the distance of a given pose to a singular con-

�guration. Since the ability to maneuver in workspace

decreases at singular con�gurations this quality index is

useful for online control or IK solving tasks. The qual-

ity measure is based on analyzing the manipulability

ellipsoid which is spanned by the singular values of the

Jacobian matrix. The manipulability measure is de�ned

as

w =
√
det(JJT ) = s1s2 · · · sn. (1)



2 Nikolaus Vahrenkamp, Tamim Asfour

As shown in Eq. 1, w can be rewritten by multiply-

ing the singular values si, which means the measure is

proportional to the volume of the manipulability ellip-

soid. In [28] a measure related to the Condition Number

has been introduced as the relation of the smallest to

the largest singular value

c =
1

cond(J)
=
sn
s1
. (2)

In addition to singularities, joint limits have a major

impact on the end e�ector's maneuverability in work-

space [13,26]. This fact has been addressed by Tsai et al.

[29] by introducing a penalization term that considers

the distance to the lower (l−j ) and the upper (l+j ) joint
limits:

P (θj) = 1− exp(−k
n∏
j=1

(θj − l−j )(l
+
j − θj)

(l+j − l
−
j )

2
). (3)

In this penalty function k is a scaling factor that can be
used to adjust the behavior near joint limits. By multi-

plying the manipulability with P , con�gurations which
are near joint limits are penalized, but redundancy is

not considered, which can lead to an erroneous quality

information (e.g. one joint is close to a boundary while

the end e�ector's maneuverability is not a�ected due

to redundancy). In [38] constraining force e�ects such

as gravity or external forces exerted on the end e�ector

are investigated.

A dexterous performance measure is presented in

[1]. By analyzing the so-called augmented Jacobian ma-

trix, which combines information about the position,

orientation, and joint limits of the end-e�ector, the ma-

nipulability of joint con�gurations can be measured.

It is shown that this approach is more accurate than

Yoshikawa's manipulability measure and exemplary ap-

plications for optimizing base placements are given. How-

ever, the approach relies on the generation of surface

patches to represent the reachable workspace, which

can lead to challenging computational problems.

As shown in [17] or [12], the use of manipulability

ellipsoids can lead to issues that are caused by mixing

translational and rotational sub spaces for manipula-

bility measurement. By using manipulability polytopes

the described problems can be avoided, but higher com-

putational costs have to be taken into account.

In this work, we use a weighting matrix W in or-

der to set the translational components of the Jacobian

matrix in relation with the rotational components. The

in�uence of the translational and the rotational compo-

nents on the quality values can be adjusted with these

weights. In our experiments we setup the weighting ma-

trix in a way that a translation of 1 mm corresponds

to a rotation of 8 degree. More details on the e�ects of

translational and rotational components on the manip-

ulability calculation can be found in [12].

Task constraints are considered by the directional

manipulability approach for single arm [21] or biman-

ual [8] manipulators. Manipulability analysis of multi-

contact setups is related to grasp stability computa-

tion, which is usually done by relating �ngertip contact

forces to the net wrench applied to the grasped ob-

ject. This relation, expressed by the grasp matrix G,
can be analyzed to identify stability features and to

get manipulability information [23]. The manipulabil-

ity of bi- or multimanual setups has been investigated

in [6,9, 16,18,22,27]. Most works consider two or more

end e�ectors cooperatively grasping an object and a dis-

tinction is made between internal (relative) and exter-

nal (absolute) forces. Internal forces describe the possi-

bility of a multi arm system to exert forces on the object

while resting at the given workspace position. Based

on these considerations an analysis of disturbance ab-

sorption and grasping force can be performed. External

forces are considered when the object's Cartesian ma-

neuverability is of interest.

An analysis of the manipulability of parallel robots

is presented in [20].

The polytope approach for manipulability compu-

tation [12] is used in [16] to build up a polytope for

multi arm systems by applying set and geometric op-

erations on the polytopes of the involved single arm

manipulators. As for the single arm case, the multi arm

approach lacks of the possibility to derive the polytopes

via a closed-form analytic method. In [18] a dual arm

manipulability ellipsoid is introduced as an ellipsoid

that approximates the intersection of both manipula-

tor's manipulability ellipsoids. As stated in [9], it may

be di�cult to generalize this representation of the bi-

manual manipulability.

In [19], the so-called Force Workspace, a represen-

tation of the feasible workspace in terms of maximum

forces and torques, has been introduced. The approach

relies on discretizing the con�guration space, which re-

sults in an exponential growth with the number of in-

volved joints and hence this approach is not suitable for

robots with a high number of DoF.

Spatial reachability analysis for redundant manip-

ulators has been addressed in [11, 31, 41] and [25]. In

these works a discretized representation of the Carte-

sian space is used to encode the reachable workspace of

the robot. The reachability of a manipulator is thereby

loosely de�ned as the volume of the workspace that can

be reached by the end e�ector. Usually the Cartesian

space (three- or six-dimensional) around the robot is

investigated, whereas only the position (3D) or posi-
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tion and orientation (6D) is considered. The reacha-

bility data is created during an o�ine step by �lling

a voxelized data structure. The grid entries represent

either a probability that a given pose that lies within

the corresponding workspace voxel is reachable or bi-

nary information is used to indicate that a voxel lies

(partly) within the reachable workspace. Extensions to

bimanual applications have been presented in [35, 42].

In [14] an ego-centered representation of the reachabil-

ity of a humanoid robot's manipulator is learned au-

tonomously. An extension of this work towards whole-

body reaching tasks while considering joint limits is pre-

sented in [15].

2 Extended Manipulability Measure

In the following we will develop an extended measure

that can be used to describe the maneuverability of

an end e�ector in workspace. It is based on existing

methods for determining the manipulability, which we

extended by methods for incorporating limiting con-

straints. Such constraints arise from joint limits and

workspace (self) distance information and hence they

have to be considered in order to get more realistic in-

formation about the end e�ector's possibility to maneu-

ver in workspace. Note, that any other constraint can

be incorporated as long as the derivation with respect

to joint movements can be built.

In the context of optimal control, several approaches

are known to avoid joint limits and obstacles [7, 10].

Compared to these works, where an optimal control

strategy for a requested end e�ector movement is of

interest, we want to investigate the limitations that

are given for any possible movement in workspace. As

shown later, we use several related methods, such as

gradient computations, in order to determine penal-

ization terms that lower the measure according to the

given constraints.

2.1 Constraints Analysis

Throughout this work we consider the two constraints

that are introduced by joint limits and the manipula-

tor's self-collision distance. By incorporating these con-

straints into the manipulability calculation, we have to

consider the fact that the symmetry of the manipula-

bility ellipsoid computation cannot be preserved. This

artefact is obvious since the possibility to move in one

direction is limited di�erently compared to a movement

in the opposed direction. E.g. one can think of a joint

which is near to the lower joint limit, and hence penal-

ization terms must have a higher in�uence for move-

Fig. 1 In a 3D workspace, the space of potential movements
can be partitioned by 23 = 8 octants.

ments towards the lower limit compared to movements

towards the upper limit. The same is true for move-

ments in Cartesian space, where movements in some di-

rections are limited due to obstacles, while movements

in other directions are not.

Since the manipulability computations are based on

an analysis of the Jacobian matrix J , we consider the

constraints by introducing penalization terms that are

applied on each entry of J . As shown above, these pe-

nalization terms change depending on the investigated

movement. Hence, the space of potential movements

has to be partitioned in order to distinguish between the

di�erent penalization factors. This is done by comput-

ing the corresponding manipulability independently for

each hyperoctant in the 6 DoF movement space which

consists of a 3 DoF translational and a 3 DoF rotational

part. Therefore, the space of workspace movements is

partitioned by 26 hyperoctants, which are identi�ed by

Γ ∈ {−1,+1}6. A visualization of the 3D case is shown

in Figure 1.

For each Γ an augmented Jacobian J̃ is constructed

by applying the two penalization terms L (joint limits)

and O (obstacle/self distance) to the corresponding en-

try of the Jacobian matrix J :

J̃i,j(Γ, θ) = Li,j(Γ, θ)Oi,j(Γ, θ)Ji,j(θ). (4)

By applying Eq. 4 to all possible permutations of

Γ , 64 Jacobians are generated, each of which describes

the maneuverability in the corresponding hyperoctant

of the space of potential movements.
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2.1.1 Joint Limit Constraints

With Li,j of Eq. 4, the entries of J are penalized accord-

ing to the quality measure that arises from the current

distance to joint limits (l−j and l+j ). Since the distance
to lower and upper joint limit usually di�ers, the corre-

sponding penalization terms also di�er and hence, the

quality measure depends on the investigated workspace

movement. By exploiting the information that is served

by the entries of J , we are able to determine which joint

limit has to be considered for each Γ . For a given joint

θj , the j-th column of J provides information about the

Cartesian movement direction that is caused by moving

the joint. Hence, for each Γ , which de�nes the Carte-

sian direction, we can identify which joint limits have

to be considered.

In the following, we derive two penalization terms

p−j and p+j for each joint, which are used to build the

joint limit penalization matrix L. In [7] a joint limit

potential function h(θ) is proposed and the joint limit

gradient function 5h(θ) is derived. For each joint θj
the corresponding entry of 5h(θ) is given with

5h(θ)j =
∂h(θ)

∂θj
=

(θj − l−j )2(2θj − l
+
j − l

−
j )

4(l+j − θj)2(θj − l
−
j )

2
. (5)

This gradient is equal to zero, if the joint is at the mid-

dle of its range and goes to in�nity at either limit. It

can be used to avoid joint limits during online control

as shown in [7] or [10]. In order to construct an ac-

cording penalization term we have to distinguish the

di�erent potential movement directions in workspace

(see Section 2.1). Depending of the actual position of

the joint (either located in the lower or the upper half

of its range), the following two penalization terms are

built:

p−j =

{
1, |θj − l−j | > |l

+
j − θj |

1√
1+|5h(θ)j |

, otherwise

p+j =

{
1√

1+|5h(θ)j |
, |θj − l−j | > |l

+
j − θj |

1, otherwise

(6)

In Eq. 6, the penalization term p−j stands for the penal-

ization that has to be applied when investigating the

joint's movement in negative direction. If the current

joint value is located in the upper half of its range, the

value is 1, which means that the movement does not

underlie any penalizations. Otherwise, the movement is

penalized according to Eq. 5. The second part of Eq. 6,

describes the construction of p+j , the penalization term

that is applied when a movement in positive joint direc-

tion is investigated. In this case, the penalization is only

considered when the current joint position is located in

the upper half of its range.

Depending on the investigated movement of θj , ei-
ther p−j (move towards lower joint limit) or p+j (move

towards upper joint limit) can be applied in order to

penalize the computed maneuverability. Therefore, the

following penalization matrix is computed:

Li,j(Γ, θ) =

{
p−j , sgn(Ji,j(θ)) sgn(Γi) < 0

p+j , otherwise
(7)

The selection which penalization has to be applied de-

pends on two facts. First, the sign of the corresponding

Jacobian entry Ji,j indicates the direction a positive

Cartesian movement causes in joint space. Further, the

sign of i-th entry of Γ indicates which hyperoctant is

considered. E.g. a positive sign of Ji,j and a negative

sign of the i-th entry of the hyperoctant description Γ
results in a joint space movement towards the negative

joint limit and hence, p−j has to be considered for pe-

nalization.

2.1.2 Obstacle and Self Distance Constraints

The second constraint that is considered in this work

is caused by limitations arising from obstacles, such as

environmental objects or parts of the robot. In order

to take these constraints into account, the penaliza-

tion matrix O is used as described in Eq. 4. To this

end penalization terms are derived from the distance

and the position of any limiting obstacles. First, the

nearest points po and pm on the surface of the obsta-

cle and the manipulator are determined to build the

corresponding obstacle vector v′ = po − pm and the

obstacle distance d = |v′|. The vector v ∈ R3 is ex-

tended to R6 by setting the rotational components to

zero: v = [v0, v1, v2, 0, 0, 0]
T . Additionally, a collision

function P (θ, d) is needed with the following proper-

ties: P (θ, d) should go to in�nity for d→ 0 and decays

exponentially to zero as d increases. As proposed in [10],

we choose

P (θ, d) = e−αdd−β . (8)

The parameters α and β can be used to adjust the ob-

stacle in�uence (see [10] for details). The gradient of P
is the collision gradient function, which gives informa-

tion about how each joint in�uences the obstacle dis-

tance:

5P (θ, d) = ∂P

∂θ
=

[
∂P

∂θ1
, . . . ,

∂P

∂θn

]
=
∂P

∂d

∂d

∂θ
. (9)

As shown in [10] 5P can be computed with

∂P
∂d = −e−αdd−β(βd−1 + α),
∂d
∂θ = 1

d

[
JT v

]T
.

(10)



Representing the Robot's Workspace through Constrained Manipulability Analysis 5

Finally, two penalization terms can be constructed sim-

ilar to Eq. 6. Again, we are interested in all potential

movements of the end e�ector and therefore a distinc-

tion is made, whether a workspace movement in nega-

tive (o−i,j) or positive (o
+
i,j) direction is investigated:

o−i,j =

{
1√

1+|5Pj |
, vi ≤ 0, i ≤ 3

1, otherwise

o+i,j =

{
1√

1+|5Pj |
, vi > 0, i ≤ 3

1, otherwise

(11)

In Eq. 11 the terms o−i,j and o
+
i,j represent the penaliza-

tions that have to be applied when investigating move-

ments in negative respectively positive Cartesian direc-

tions. Penalizations are only applied for translational

dimensions (i ≤ 3) and if the obstacle is located in the

corresponding direction (vi).

Finally, the collision penalization matrix O is com-

puted for every Γ . Here, either o−i (movement in neg-

ative coordinate axis) or o+i (movement in positive co-

ordinate axis) is considered:

Oi,j(Γ, θ) =

{
o−i,j , sgn(Γi) < 0

o+i,j , otherwise
(12)

2.2 Extended Manipulability Measure

The matrices de�ned by Eq. 4 can be analyzed for ma-

nipulability in order to retrieve a quality index for a

given con�guration. Therefore, for a given con�guration

θ, all Jacobians are decomposed via Singular Value De-

composition (SVD) in order to retrieve the correspond-

ing sets of singular values s̃Γ . The extended manipula-

bility is computed as:

c̃ext =
min{s̃Γ }
max{s̃Γ } . (13)

The quality measure c̃ext implicitly considers re-

dundancy, since a penalization due to joint limits can

be compensated by redundant joints in the kinematic

structure. The results of this measure applied to a 4 de-

grees of freedom (DoF) planar manipulator can be seen

in Figure 2. The �gure on the left shows a 2D visual-

ization of the manipulability ellipsoid without consider-

ing joint limits, whereas the second visualization shows

the scaled manipulability ellipsoids in each of the four

quadrants. On the right, an obstacle is considered and

the minimum distance is visualized. The according joint

limit and obstacle penalization terms are applied as de-

scribed in Eq. 4. Note, that only parts of the manipu-

lability ellipsoids are visualized, so that one can see the

penalization e�ects in the di�erent quadrants. Due to

Fig. 3 A visualization of the SE(2) workspace of a 4 DoF
planar manipulator that is analyzed by di�erent approaches.
The manipulability is encoded from red (high) to blue (low).
Top row: (a) Yoshikawa's manipulability measure. (b) By ap-
plying a global penalization term, joint limits can be consid-
ered, but redundancy is not re�ected by the measure. Bottom
row:(c) The distribution of the extended manipulability mea-
sure c̃ext. (d) The distribution of the extended manipulability
measure when considering a workspace obstacle.

this visualization technique, discontinuous transitions

arise between the quadrants. Such artifacts only a�ect

the visualization and have no in�uence on the computa-

tion, since for each quadrant (respectively hyperoctant

in the general case) the whole manipulability ellipsoid

is considered.

3 Manipulability Analysis and Representation

From reachability analysis, techniques are known to

build a representation of the robot's operational work-

space [11, 35, 41]. Usually these representations serve

information about the reachable part of the Cartesian

workspace that can be accessed by an end e�ector. By

storing this information in the reachability map, a 6D

voxel grid that covers position and orientation of the

tool center point (TCP), the data can be accessed e�-

ciently during online processing.

In [31], we showed how such discretized reachability

data can be used to e�ciently solve IK related tasks.

As we proposed in [33], such reachability maps can

be extended in order to store extended quality infor-

mation, i.e. manipulability data. This leads to a repre-

sentation of the manipulability in workspace, which we

introduced in [33] as manipulability distribution. The

manipulability distribution is represented as a 6D voxel

grid that holds quality information related to the ma-

nipulability that an end e�ector can achieve at the cov-

ered area of the workspace.

For building the representation of the manipulabil-

ity in workspace, a 6D voxelized data structure has to
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Fig. 2 (a) The basic manipulability ellipsoid without joint limit penalization (c = 0.170). (b) For each quadrant di�erent
penalization terms are applied according to the corresponding joint limit in�uence (c̃ext = 0.047). (c) The obstacle in�uences
the penalization terms (c̃ext = 0.067).

be �lled with reference manipulability values. Since the

mapping between C-space and workspace is not unique

for redundant manipulators, either the average manipu-

lability or the lower respectively the upper bound of the

achievable manipulability within a voxel can be stored.

Hence, the manipulability data cannot be seen as an

exact representation of the manipulators capabilities,

but it can be used to e�ciently serve an approxima-

tion of the expected manipulability of a given pose in

workspace. This can be useful in several situations, e.g.

when the selection of a grasp should be made and a

large number of potential grasping poses are available.

Further, the expected manipulability can help in choos-

ing a suitable location for a hand-over process. As we

showed in [32], robot placement problems for grasping

and manipulation can be solved e�ciently based on ma-

nipulability distributions.

To generate the manipulability representation, ei-

ther work or joint space can be discretized and for each

con�guration the manipulability of the corresponding

voxel can be updated. To speed up this process, a ran-

domized approach can be used where a large set of joint

con�gurations is sampled randomly. For each sample,

the corresponding c̃ext value is computed and the 6D

voxel v is determined by computing the forward kine-

matics of the manipulator in order to calculate the lo-

cation of the end e�ector. If the actual entry of v is

lower than c̃ext, the value is updated. This leads to an

upper-bound representation of the achievable manipu-

lability which can be seen as an optimistic view on the

robot's possibility to maneuver in workspace.

Figure 3 shows the visualization of several manipu-

lability distributions of a 2D planar robot with 4 DoF.

Note, that the workspace of the investigated manipula-

tor is given by SE(2), the cross-space consisting of 2D

position and 1D orientation. For visualization purposes

the manipulability is depicted as a 2D grid, in which

the maximum manipulability is shown for each posi-

tion. The color indicates the magnitude of the achiev-

able manipulability (blue:low, red:high).

On the top left the well known manipulability index

c is used, whereas the top right �gure shows the distri-

bution when a penalization term according to Eq. 3

is applied to the manipulability computation. Since re-

dundancy is not considered in Eq. 3, the resulting distri-

bution gives only limited information about the achiev-

able manipulability of a redundant manipulator.

When applying the proposed penalizations, the cor-

responding distribution in a 2D workspace can be seen

in the bottom of Figure 3. The bottom left �gure shows

the result when joint limits are penalized according to

Eq. 7. On the bottom right �gure, the obstacle penaliza-

tion (Eq. 12) is additionally applied and the combined

Jacobians are analyzed as described in Section 2.1.

In Figure 4 a 3D visualization of the manipulabil-

ity distributions of the kinematic chain covering three

torso and seven arm joints of ARMAR-III [2] can be

seen. The underlying manipulability measure incorpo-

rates penalizations due to joint limits and self distance

as described in Section 2.1. The left �gure shows a 3D

visualization of the 6D distribution, which was gener-

ated by showing the orientation with maximum ma-

nipulability at each 3D position. On the right, a cut

through the 6D distribution is shown.

4 Bimanual Manipulability

In this section we will discuss how suitable manipula-

bility representations of bimanual robots can be gener-

ated. According to [9], the manipulability of multi-grasp

setups with two or more end e�ectors cooperatively
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Fig. 4 (a) A 3D visualization of the 6D manipulability dis-
tribution of ARMAR-III's 10 DoF kinematic chain covering
torso and right arm. (b) A cut through the manipulability dis-
tribution of the ARMAR-III's right manipulator (torso and
arm). Joint limits and self-distance are considered by the un-
derlying manipulability measure.

grasping an object, has to be computed separately for

internal (relative) and external (absolute) forces. The

internal forces give information about how much force

can be applied by the grasp w.r.t. the other contacts.

The external forces can be analyzed in order to retrieve

information about how much force can be applied co-

operatively in order to move the object. In this work we

will only consider external forces, which give us infor-

mation about the maneuverability of a grasped object

in workspace.

Further, we use a simpli�ed contact model by as-

suming point contacts at the TCP locations. Similar to

the single handed case, we assume that the generated

data structures serve hints for online processing compo-

nents. The fact that inaccuracies arise in the calculation

is compensated by the ability to quickly query a large

subset of the workspace while assuming that the result-

ing solutions will be investigated by the corresponding

online algorithms.

4.1 Extended Bimanual Manipulability

Manipulability analysis for multi arm systems with k
manipulators can be performed by analyzing a com-

posed Jacobian Ja that incorporates all involved joints

and the grasp matrix [9]:

JTa = JT1kG
†, (14)

where J1k = diag(J1 · · · Jk) is the extended Jaco-

bian that is constructed by combining the manipula-

tor's Jacobian matrices Ji and G
† is the Pseudoinverse

of the grasp matrix.

The grasp matrixGmaps from contact to task space

by converting the generalized contact forces h =
[h1, . . . , hk]

T with hi = [fi, µi]
T (consisting of forces fi

and moments µi) to the net object force ha = [fa, µa]
T :

ha = Gh. (15)

The grasp matrix is composed as G = [G1 · · ·Gk],
where the grasp submatrices Gi are given by

Gi =

[
I O
Ri I

]
. (16)

The matrix Ri can be computed form the relation

ri × fi = Rifi, where ri de�nes the distance vector of
the i-th contact to the object's center of mass.

In the following, we will discuss how this general for-

malism can be applied for bimanual setups while incor-

porating the extended manipulability measure of Sec-

tion 2. First the extended Jacobian J̃1k that considers

joint limit and obstacle constraints is de�ned for the

bimanual case:

J̃12 =

[
J̃1 O

O J̃2

]
. (17)

Here, J̃1 and J̃2 are the augmented Jacobians for

the left and the right manipulator as de�ned in Eq. 4.

Furthermore, the grasp matrix is constructed for

two points as described above. At this point we do not

have any real contact information, but we are interested

in the achievable manipulability for a given setup. In or-

der to generate comparable data, we assume a virtual

object grasped with both hands and derive the center of

mass as the center point between both TCPs. Since no

grasp contact data is available, we simplify the contact

information by considering both TCP positions as point

contacts. With this information we are able to gener-

ate structural data that can be analyzed for bimanual

capability representation. The �nal bimanual Jacobian

J̃a = (J̃T12G
†)T (18)

is processed as described in Section 2.2 in order to

compute the extended bimanual manipulability c̃biext.

4.2 Bimanual Manipulability Representation

The single arm approaches presented in Section 3 can

be extended in order to represent the bimanual manip-

ulability, resulting in a twelve dimensional space that

consists of the two 6 DoF pose spaces of both end ef-

fectors. Since the memory consumption of such a rep-

resentation would be too high for �ne grained approxi-

mations, this representation would only allow a coarse
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discretization. A simple calculation illustrates the ex-

ponential memory consumption: A 3m3 voxelized robot

workspace with a discretization of 5cm and 20◦ results
in 60 × 60 × 60 × 18 × 18 × 18 ≈ 1.3 billion voxels.

When storing 1 byte per voxel, the memory consump-

tion exceeds 1 GB. Although the memory usage can

be darstically reduced by compression and/or hierar-

chical representations, a 12D cross space would cover

1.6 ·1018 ≈ 1600 petabyte, which cannot be represented

e�ciently.

To this end, we propose a di�erent way of repre-

senting the bimanual manipulability of a dual arm sys-

tem: Instead of lowering the pose discretization, which

would make it di�cult to compare di�erent poses, our

approach relies on reducing the encoded information

about the orientational relation of both end e�ectors.

This allows us to generate a 6D data structure with lim-

ited information about the relative end e�ector orienta-

tions but with �ne grain position resolution. As stated

in the introduction, this representation does not repre-

sent the accurate bimanual manipulability distribution,

but it serves as an information source that can be e�-

ciently queried during online processing in order to de-

termine promising areas or sub sets of data structures

(e.g. grasps) for further processing.

Fig. 5 (a) The voxel encodes the center between both end
e�ectors and their relative position. (b) A cut through the
3D visualization of the bimanual manipulability distribution
of ARMAR-III.

We propose to store an approximation of the spatial

bimanual manipulability distribution consisting of a 3D

position vector that describes the center between both

end e�ectors in combination with a 3D spherical coor-

dinate which encodes the relative position and distance

of both end e�ectors. This results in a 6D description

vector which can be stored e�ciently, similar to the sin-

gle arm case. Note, that this description does not serve

any information about the end e�ector orientations, so

that di�erent oriented end e�ectors, which are located

at the same position, result in the same voxel. A visual-

ization of the voxel data can be seen in Figure 5(a). In

Figure 5(b) the bimanual manipulability distribution of

ARMAR-III is depicted. Similar to the single arm case

(see Section 3), this spatial 6D grid is �lled by deter-

mining the maximum c̃biext for each voxel. Therefore, we

need to compare the extended bimanual manipulability

for all con�gurations of the robot which map into one

voxel in order to determine the upper bound. As in the

single arm case, we can use discretization or sampling

techniques to approximate the manipulability distribu-

tion, which allows an e�cient realization.

During buildup, self-collisions between the arms and

the robot's body have been considered in order to dis-

card any self-colliding con�gurations. In addition, the

self-distance of end e�ector and body was considered

to determine the penalization terms according to Sec-

tion 2.1.2 in order to compute the extended Jacobians

J̃1 and J̃2 as described in Section 4.1.

4.2.1 Data covered by the Bimanual Representations

To summarize the bimanual approach, a description of

the bimanual data is given below:

a) End e�ector position

The 6D position vector v of a voxel indirectly encodes

the relation of both end e�ectors. The positions of the

TCPs can be reconstructed (w.r.t. discretization). Ini-

tially, the 3D position p of the voxel is determined:

p = (v0, v1, v2).

From the spherical coordinates s = (r, θ, ϕ) = (v3, v4, v5)
a Cartesian position p′ = (x′, y′, z′) can be derived:

x′ = r sin θ cosϕ , y′ = r sin θ sinϕ , z′ = r cos θ.

Finally, the Cartesian positions of the TCPs are

TCPleft = p− p′ , TCPright = p+ p′.

b) Bimanual manipulability

The bimanual distribution's entry c̃biv at a given voxel

v encodes the upper bound of the achievable bimanual

manipulability for the encoded relation of both end ef-

fectors. Due to the voxelized data structure, this value

can be e�ciently queried for a given end e�ector pos-

ture in order to support online tasks. E.g. it is possible

to quickly discard TCP postures and/or bimanual grasp

setups when the corresponding quality entry is low, as

shown in Section 5.2.

5 Evaluation and Applications

In this section we will evaluate the proposed method

and several applications in the context of mobile ma-

nipulation will be presented.
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5.1 Performance Evaluation

One of the main advantages of having available a repre-

sentation of the robot's manipulability is the fact that

online information retrieval can be e�ciently realized

by using o�ine structured data sources. In the follow-

ing, we evaluate the e�ect of using precomputed ma-

nipulability representations in the context of grasp se-

lection1.

Fig. 6 (a) A subset of reachable grasps. The manipulability
is encoded by color (blue:low, red:high). (b) A grasping con-
�guration with c̃ext = 0.02. (c) The optimal IK solution in
terms of manipulability (c̃ext = 0.12).

A model of a water bottle with 1000 precomputed

grasps for the right end e�ector of ARMAR-III can be

seen on the left of Figure 6. An exemplary subset of

reachable grasps is depicted, whereas the manipulabil-

ity is encoded by color (blue:low, red:high). The per-

formance measurement is realized by placing the bottle

randomly in front of ARMAR-III and evaluating sev-

eral strategies for grasp selection.

In the �rst run (Table 1, row 1), no precomputed

data is used and the IK problem is solved for all grasps

for the kinematic chain covering torso and arm (10

DoF). In case an IK solution could be computed, the

manipulability is determined for the corresponding con-

�guration in order to determine the grasp with maxi-

mum c̃ext.

The second approach (Table 1, row 2) incorporates

reachability data in order to discard all grasps which are

not reachable. Hence, a binary representation of the 6D

reachability similar to the approaches of [11, 31, 41] is

used. In such reachability representations the entry of

a 6D voxel indicates whether the pose is reachable or

not without providing any additional quality informa-

tion. For the remaining sub-set of reachable grasps, the

IK solutions are computed in order to determine the

corresponding manipulability.

1 All performance evaluations have been carried out on a
single core 3GHz Linux PC.

The third approach (Table 1, row 3) takes full ad-

vantage of the precomputed manipulability data2. Due

to the e�cient data structures an ordered set of reach-

able grasps with corresponding manipulability values

can be retrieved in less than one millisecond and the

IK problem has only to be solved for the �rst entry of

this list.

Table 1 Comparison of di�erent approaches for grasp selec-
tion (Average of 100 test runs).

Overall
Manip. IK Manip.
Access Solving Comp.

No precomp.
9.97s - 9.07s 0.90s

data
Reach.

2.24s <0.001s 1.75s 0.49s
data
Manip.

0.01s <0.001s 0.01s -
data

5.2 Bimanual IK tasks

The bimanual manipulability distribution (see Section 4)

can be used to e�ciently solve bimanual IK queries for

a humanoid robot. In the evaluated setup, an object for

bimanual manipulation (a wok) is given with 100 pre-

de�ned grasps for each hand. The IK task comprises

the selection of a suitable bimanual grasp set together

with a collision-free joint con�guration for both arms.

In case of ARMAR-III each arm covers 7 DoF, resulting

in an 14 DoF IK problem.

As showed in [31], precomputed reachability infor-

mation can be used to speed up IK-related queries for

single arm and bimanual tasks. Although a similar ap-

proach for IK-solving is used in this work, we extended

the quality measurement that is used for building the

reachability representation. Instead of using a quality

value that is proportional to the part of the con�gu-

ration space (C-space) that maps to the corresponding

volume in workspace, we use the extended manipulabil-

ity information as described in this article. This mea-

sure produces a better representation of the robot's ca-

pabilities, since it serves elaborate information about

the possibility to maneuver in workspace.

The bimanual IK solver is related to the approaches

of [31], which we summarize brie�y in the following.

� The input of the bimanual IK query consists of the

current robot con�guration and the pose of the tar-

get object. The object de�nition covers a set of pre-

computed grasps for each end e�ector (Gleft and

2 The o�ine step of building the corresponding manipula-
bility data took 6 hours on a standard Linux PC.
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Fig. 7 (a) A subset of reachable grasps with potential biman-
ual combinations, indicated by green lines. (b) An exemplary
14 DoF IK solution.

Gright) and manipulability distributions for the left

and right arm together with a bimanual representa-

tion (see Section 4.2) are assumed to be present.

� An IK query is processed, by �rst determining the

reachable subsetRleft andRright ofGleft andGright
at the current object location.

� Then, the bimanual manipulability distribution is

queried in order to retrieve an ordered list of all

reachable bimanual combinations, starting with the

pair with highest bimanual manipulability.

� This list is processed until a pair of grasps is found

for which both IK sub-queries for left and right arm

can be solved. If the result is not in self-collision, a

solution is reported.

For this evaluation, a wok with 100 prede�ned grasps

for each hand is randomly placed in front of the robot

(see Figure 7) and the bimanual IK solver is queried in

order to determine a bimanual grasping con�guration

together with a collision-free 14 DoF IK solution. Fig-

ure 7(a) shows an intermediate result of the IK query

process. All reachable grasps are shown together with a

visualization of the reachable pairs (green lines). An ex-

emplary IK solution is shown in Figure 7(b). The results

of this evaluation are summarized in Table 2. The av-

erage runtime of a bimanual IK request is shown in the

�rst column (20.2 ms), followed by the average runtime

when an IK solution is available (20.8 ms). The last col-

umn shows the time that was needed by the algorithm

to detect that no IK solution exists for the randomly

placed object with the given grasps (18.2 ms).

Table 2 Results of the Bimanual IK tasks (Average of 100
test runs).

Runtime Runtime Runtime
Overall IK found no IK avail.

Bimanual Query 20.25 ms 20.83 ms 18.18 ms

5.3 Grasping Pipeline on ARMAR-III

Manipulability analysis is used to support the grasp-

ing and manipulation pipeline of the humanoid robot

ARMAR-III. The overview of Figure 10 shows how sev-

eral o�ine and online components play together in or-

der to realize grasping and manipulation capabilities

in a robust, generic and e�cient way. As depicted in

Figure 10, the following o�ine components are used to

generate precomputed representations which are used

to support online queries:

� Grasp Planning is used to automatically build ob-

ject and hand related sets of feasible grasps. Based

on an object's database entry, which serves 3D shape

information, visual features and additional proper-

ties, the medial axis planner [24] is used to build sets

of force closure grasps for both hands of ARMAR-III.

� Hand Eye Calibration is used to weaken errors

that arise due to a misaligned internal robot repre-

sentation. With the approaches of [30], the model

of ARMAR-III's forward kinematics is learned and

used during online control.

� Manipulability Analysis is performed as described

in this article. The data structures, generated by

this o�ine component, serve a manipulability dis-

tribution of the robot's 6D workspace. As discussed

below, this data is available during online processing

for e�cient IK solving or grasp evaluation.

Fig. 10 The grasping and manipulation pipeline of
ARMAR-III.

The discussed o�ine components are used to sup-

port online queries that are processed by several online

processing stages, which are executed in order to e�-

ciently serve a robust and generic robot skill that can

be used for grasping known objects:

� Localization of hand and object(s) is performed

by the vision system of ARMAR-III [4,5] supported

by gaze selection strategies [39].
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Fig. 8 Armar-III's grasping pipeline is supported by precomputed manipulability information. (a) The virtual representation
of the scene and a 2D map of potential robot positions for grasping. (b) All reachable grasps are colorized according to their
manipulability. (c) A collision-free grasping motion. (d) The target grasping pose.

Fig. 9 The execution of the planned grasping motion is supported by ARMAR-III's visual servoing system.

� The Robot Placement problem has to be solved

when the target object is too far away and no reach-

able grasp is available. In order to e�ciently �nd

suitable robot placements, the reachability inversion

technique [32] is used. This approach takes advan-

tage of precomputed manipulability distributions and

generates manipulability-related maps in SE(2) which

can be queried to �nd appropriate robot base poses

(see Figure 8(a)).

� Grasp Evaluation is used for generating an or-

dered subset of reachable grasps. To this end, the

manipulability distribution is queried for all avail-

able grasps which are stored in the object database.

Since the manipulability data is organized as a 6D

voxel grid, such queries can be realized as look-

up table requests and hence, e�ciency is provided

even for large grasp sets. The manipulability query

serves the reachability status together with a qual-

ity value that describes the manipulability of the

target grasping pose. As shown in Figure 8(b), all

reachable grasps can be ordered according to their

manipulability in order to support the grasp selec-

tion process.

� The Motion Generation component generates a

collision-free grasping motion for the hip-arm sys-

tem of the robot. The set of reachable grasps is used

as input for the IK-RRT [35] approach, which com-

bines the IK search with the search for a collision-

free motion. Since the planner relies on probabilis-

tic techniques, the probability of selecting a target

grasp is proportional to its manipulability value.

The result of this planning step is a grasping mo-

tion as depicted in Figure 8(c). The corresponding

target con�guration is shown in Figure 8(d).

� Motion and Grasp Execution is provided by the

control system of ARMAR-III [2].

� With Motion Adaption techniques, errors that

are introduced by calibration imprecisions, inaccu-

rate sensing and actuation or modeling errors, are

reduced. The approach for multi-sensory motion adap-

tion [37] is related to position-based visual servo-

ing and continuously aligns the visually determined

hand-object relation with the expected pose relation

between hand and target object [34] (see Figure 9).

5.4 Manipulability Analysis of ARMAR-IV

We applied the proposed methods to a model of the hu-

manoid robot ARMAR-IV [3] in order to gather infor-

mation about the reachability of the arms and the pos-

sibility to manipulate with the end e�ectors. The visual-

ization of the reachable workspace and the correspond-

ing quality information as shown in Figure 11 was used

to visualize and to analyze the e�ect of the robot's kine-

matic design and to investigate the in�uence of joint

limits. Hence, manipulability analysis provided useful

information during early stages of the robot design to

support mechanical decision processes and for evalu-

ating the performance of kinematic structures. In ad-

dition, the manipulability data is used to implement

grasping and manipulation tasks on ARMAR-IV, sim-

ilar to the proposed methods of Section 5.3.
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Fig. 11 The distribution of the manipulability of
ARMAR-IV's right arm (8 DoF). The left image visualizes
the end e�ector orientation with highest manipulability
at each 3D position. A cut through the manipulability
distribution is shown on the right.

6 Conclusion

With the proposed approaches, extended manipulabil-

ity computations can be performed for redundant ma-

nipulators. We showed how constraining characteristics

like joint limits or the robot's self distance can be in-

corporated into the manipulability measure, allowing

to determine meaningful quality information about the

possibility to maneuver a manipulator in workspace.

Based on this measure, manipulability distributions are

generated as comprehensive capability representations

which allow to e�ciently process online queries such as

grasp evaluation or IK solving. We extended the ap-

proach for bimanual setups and showed how biman-

ual capability representations can be built. The per-

formance of the proposed approaches have been eval-

uated in simulation and we discussed how manipula-

bility analysis is used within the grasping pipeline of

ARMAR-III. The kinematic capabilities of ARMAR-IV

have been analyzed in order to investigate the e�ects of

the robot's kinematic design on the reachability and

dexterity of the manipulators. Further, we provide an

open source implementation of the extended manip-

ulability measure with the robot simulation toolbox

Simox3 [36].
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