
High-Level Robot Control with ArmarX

Nikolaus Vahrenkamp, Mirko Wächter, Manfred Kröhnert,
Peter Kaiser, Kai Welke, Tamim Asfour

High Performance Humanoid Technologies (H2T)
Karlsruhe Institute for Technology (KIT)

Adenauerring 2
76131 Karlsruhe

{vahrenkamp,waechter,kroehnert,kaiser,welke,asfour}@kit.edu

Abstract: The robot development environment (RDE) ArmarX aims at providing an
infrastructure for developing a customized robot framework that allows realizing dis-
tributed robot software components. This includes communication properties, start-up
and error handling, mechanisms for state implementations, interface definitions and
concepts for the structured development of robot programs. In addition to this core
functionality, we will show in this paper that ArmarX provides customizable building
blocks for high level robot control and how these components can be used to build a
generic backbone of the robot software architecture. ArmarX provides standard inter-
faces and ready-to-use implementations of several core components which are needed
to setup a distributed robot software framework.

1 Introduction

In the last decade, service and humanoid robot technologies have made enormous progress
in terms of integrating sensori-motor capabilities (see Figure 1). The trend towards dy-
namic and interactive areas of application leads to complex, distributed and asynchronously
operating software systems where the robot state is distributed over multiple components.
These dedicated distributed components can be developed and tested independent of the
whole system, for example in a simulation environment. Nevertheless, software develop-
ment complexity increases due to synchronizing aspects, concurrent access, data distribu-
tion and all challenges that arise in parallel software development.

To support development and integration of all required capabilities of such robots is the
goal of robot development environments (RDEs). Different functionalities and capabilities
of the robot software should be glued together by such environments in terms of system ar-
chitecture and communication. In addition, RDEs should provide programming interfaces,
allowing programmers to include new capabilities at appropriate levels of abstraction with
minimal training effort.

As stated in [WVW+13] several RDEs have been presented during the last decades accom-
panying the development of robotic platforms. Different levels of abstraction are realized
by RDEs, depending on the robot platform and its intended application.



Figure 1: The humanoid robots ARMAR-IIIa [AAV+08] and ARMAR-IV [ASP+13].

Several RDE frameworks put their focus on the control level, such as OpenRTM [ASK08],
MatLab/Simulink R©, MCA1, whereas others focus on the implementation of higher level
capabilities of the system (e.g. ROS [QCG+09], Yarp [MFN06] and Orocos [BSK03]).

In [WVW+13] we presented the ArmarX RDE framework and its disclosure capabilities.
Compared to earlier work, we will focus on the layered architecture of ArmarX in this
paper. In addition, we will discuss the generic features of ArmarX that allow creating
tailored robot frameworks on top of which application specific robot programs can be
implemented.

2 The Robot Development Environment ArmarX

The Robot Development Environment ArmarX provides several components, functional-
ities, interfaces and generic ready-to-use components for building distributed robot ap-
plications. In contrast to traditional message passing protocols, well-defined interface
definitions and flexible communication mechanisms are used. ArmarX is organized in
several layers as shown in Figure 2. The Middleware Layer provides all facilities for
implementing distributed applications. It abstracts the communication mechanisms, pro-
vides basic building blocks of distributed applications, and facilities for visualization and
debugging. Bindings to a wide area of programming languages covering Python, C++, C#
and Java are provided. While the Middleware Layer comprises a predefined set of com-
ponents, interfaces and methods, the Robot Framework Layer serves several extendable
and exchangeable components which can be assembled to an appropriate robot software
framework. Currently provided are interfaces and corresponding components for memory,
robot and world model, perception, and execution. Since no framework is suitable for all
robot systems, this layer can be customized and adapted to the demands of the specific
robot platform in order to tailor the robot framework to the needs of the application of
the robot. ArmarX comprises several customizable components like memory structures

1http://www.mca2.org/



VisionX

Robot API

Robot Framework Layer

Skills

MemoryX

Simulator Robot

Application Layer

API Skills Applications

Middleware Layer

Communication

Tools

Deployment Monitoring

Custom ImplementationProvided by ArmarX

ArmarX RT

Configurable/Extensible

Figure 2: The Middleware Layer of the ArmarX framework provides core functionalities like dis-
tributed communication, deployment, start up mechanisms, and network transparent statecharts. The
Robot Framework Layer consists of several ready-to-use parameterizable and extendable compo-
nents regarding perception, memory and generic robot API methods (e.g. kinematics and visualiza-
tion). Additionally, a set of basic skills such as visual servoing, grasping or navigation are included.
Robot programs are developed in the Application Layer supported by the ArmarX toolset. The hard-
ware abstraction layer (bottom of the figure) implements the interfaces of the Robot Framework layer
for a specific hardware type or the simulator. Different colors indicate at which points extensions
can be realized. Blue layers provide ready-to-use concepts without the possibility for extension. Red
layers require user specific implementations. Within orange layers, several ready-to-use components
are available which can be parametrized and/or exchanged by user specific implementations.

with interfaces to corresponding update processes compatible with the perception compo-
nents. Additionally, a generic robot API is provided which includes a network transparent
representation of the robot’s sensor state, generic methods related to kinematics, collision
detection, motion and grasp planning and scene representation. A set of basic skills is pro-
vided as configurable statecharts and can be adapted to the needs of the robot framework.
The robot application is realized as a network transparent statechart within the Application
Layer. ArmarX supports developing application specific extensions to APIs and the skill
library. Tool support comprises GUI elements, a statechart editor, a physics-based simula-
tion environment and state disclosure mechanisms for online inspection and debugging.

As shown in [WVW+13], the main design principles of ArmarX are distributed process-
ing, interoperability, and disclosure of system state. In this work we will focus on the
interoperability features of the framework provided by the ArmarX Middleware Layer, al-
lowing the implementation of ArmarX components in different programming languages
and their execution on different operating systems. Another aspect of interoperability is
covered by the Robot Framework Layer. The proposed structures allow tailoring the soft-
ware framework according to application-specific requirements and the capabilities of the
robot. To this end, ArmarX provides generic building blocks which can be customized, pa-
rameterized, and extended to ease the possibility of embedding ready-to-use components
on different robot platforms.



3 ArmarX Middleware: The Core Layer

--->
--->

--->

Figure 3: The application programming interface comprises four different elements. Sensor-Actor
Units serve as abstraction of robot components, Observers generate events from continuous sensory
data streams resulting in transitions between Operations. Operations are organized as hierarchical
state-transitions networks. All elements are connected via the communication mechanisms (arrows
in the figure).

The middleware layer of ArmarX comprises four main building blocks: inter-object com-
munication, Sensor-Actor Units, Observers, and Operations. Inter-object communication
provides convenient mechanisms for communication between objects in the system. These
objects can be any of the other buildings blocks. The Sensor-Actor Units offer a generic
interface on a low level of abstraction for robot components like motor controllers or sen-
sors. ArmarX includes a default set of sensor-actor units for common robot components,
e.g. joints, force/torque-sensors and haptic sensors. Implementing additional sensor-actor
units for unsupported components is encouraged and straightforward. Observers monitor
sensor values from sensor-actor units and send application specific events to configured
Operations. These operations process events and send resulting control commands to the
sensor-actor units controling the robot. More details can be found in [WVW+13]. In
addition to these building blocks, monitoring facilities for data flow and system state are
incorporated into the ArmarX framework.

3.1 Inter-Object Communication

As shown in [WVW+13], ArmarX uses well established communication mechanisms (e.g.
Ethernet, TCP/IP, UDP) to provide convenient ways to create distributed applications for
robot architectures. To this end, we employ the Internet Communication Engine (Ice) by
ZeroC as fundamental communication middleware [Hen04].

Ice implements type-safe distributed communication over Ethernet with a variety of sup-
ported platforms and programming languages. It manages the connections between objects
and provides convenient communication modes such as synchronous and asynchronous
remote procedure calls and publisher-subscriber mechanisms. Communication interfaces
are defined in the platform and programming language independent Interface Definition
Language (IDL) Slice, which is then compiled to the chosen programming language.



3.2 Monitoring

Monitoring is an important concept for any robotic system. ArmarX provides means to
retrieve CPU load, network utilization, IO operations, and data update frequency informa-
tion. Additionally, generated sensor measurements, control flow information as well as
more abstract information like condition histories can be retrieved.

Monitoring information can be gathered within a distributed ArmarX robot program for
profiling running robot programs and identifying bottlenecks in the distributed application.
This information can be used to improve the deployment of ArmarX components and
therefore the load balancing in order to provide seamless program execution. Furthermore,
resource usage profiles of ArmarX components can be generated by performing offline
analysis on monitoring data.

Using the disclosure mechanisms of ArmarX [WVW+13] it is even possible to monitor the
execution of robot program statecharts to build an execution model of the robot software
components. Combining such execution models with generated resource profiles allows
for creating control-flow dependent resource usage diagrams.

4 ArmarX RT: Real-Time Hardware Abstraction

Sensor-actor units provide a sufficient and thin hardware abstraction when real-time re-
quirements do not apply, e.g. when working in simulation or when using inherently stable
robots. However, for many robots, especially bipeds, the low-level hardware control soft-
ware needs to satisfy real-time constraints in order to maintain the robot’s stability and
safety. To address this issue, ArmarX supports a second layer of hardware abstraction that
is intended to run in a real-time context on a Xenomai2 real-time OS.

The purpose of this hardware backend is to control the attached hardware entirely within
a real-time context. Communication between hardware backends and sensor-actor units
happens via Xenomai’s real-time pipes. Figure 4 depicts the complete hardware abstrac-
tion layer including a generic real-time hardware backend for CANopen3-based robots
that is included in ArmarX. Additionally, adding real-time hardware backends for other
hardware as well as operating systems other than Xenomai is supported.

5 ArmarX Robot Framework: Generic Building Blocks for High-
Level Robot Control

ArmarX provides a generic robot framework layer that offers standard components and
interfaces to ease development of tailored robot frameworks. Several generic and ready-to-
use API components can be parameterized and customized in order to build robot specific

2http://www.xenomai.org
3http://www.can-cia.org

http://www.xenomai.org
http://www.can-cia.org


Connected ArmarX objects 

Unit 1 Unit N … 

Ice 

RT Pipes 

CAN Bus 

Device Device Device Device 

Hardware Backend 

Connected ArmarX objects 

Sim. 
Unit 1 

Sim. 
Unit N 

… 

Simulation Backend 

Ice 

Figure 4: ArmarX hardware abstraction for a simulated robot (left) compared to the real-time capable
hardware abstraction for a CANopen based robot (right). Both setups are possible with ArmarX.
Switching between a simulation backend and the real hardware is completely transparent to higher-
level ArmarX objects.

APIs. Robot model, world model, perception and memory components are available, each
providing entry points for custom robot program implementations. These components will
be briefly discussed in the following section.

5.1 Robot API and Skills

The robot API comprises several components which can be used off-the-shelf by speci-
fying required parameter settings. If needed, the API can be extended in order to reflect
specialized capabilities of the robot.

5.1.1 Kinematics, Robot and World Models

The internal robot model consists of the kinematic structure, sensors, model files and ad-
ditional parameters such as mass or inertial tensors. The data is consistently specified via
XML or COLLADA files compatible to the robot simulation toolbox Simox [VKU+12].
This allows making use of all Simox related functionalities, such as inverse kinematics,
collision detection, motion and grasp planning or defining reference frames for coordinate
transformations. Further, ArmarX provides network transparent access to a shared robot
model data structure. This allows all distributed components to query robot internal data
such as joint values or to perform coordinate transformations.

5.1.2 Kinematic Units and Robot Skills

The robot API provides reference implementations for simulating kinematic units. Several
control modes such as position, velocity or torque can be used out of the box. The robot
skill components cover basic functionality like Cartesian manipulator control, zero force
control, platform navigation, unified end effector access, and visual servoing. This skill



library can be used by parameterizing related components, by extending them and/or by
re-implementing the corresponding interfaces.

5.2 MemoryX

Working Memory 

 
Segment 1 

Segment 2 

…
 

Long-term Memory 

Segment 1 

Segment 2 

…
 

Prior Knowledge 

Segment 1 

Segment 2 

…
 

Memory Observer 

Updater interface 

Recall 

Snapshot 

Enrichment 

In
fe

re
n

ce
 in

te
rf

ac
e 

Events 

Perception 

Conditions 

Common Storage Common Storage 

Figure 5: The offered MemoryX architecture consisting of a working memory and a long-term
memory. Both memories can be accessed within the distributed application. Appropriate interfaces
allow attaching processes to the memory for updating and inference.

MemoryX, the memory layer of ArmarX, includes basic building blocks for memory
structures which can either be held in the system’s memory or made persistent in a non-
relational database [WVW+13, WKK+13]. Based on these building blocks, the memory
architecture illustrated in Figure 5 is realized. A key element of MemoryX are network
transparent access facilities which allows consistently updating or querying the memory
within the distributed application. The architecture consists of different memory types
such as working memory (WM), long-term memory (LTM), and prior knowledge (PK).
Each memory type is organized in segments which can be individually addressed and used
to store arbitrary data types or classes. Each segment may cover data related to classes of
known objects, perceived locations of object instances or positions and status of agents in
the world.

• The Working Memory represents the current context of the robot’s internal state. It
can be updated by perceptual processes or prior knowledge via an updater interface.

• Prior Knowledge contains information which is already known to the robot and
which has been predefined by the user or operator. Entities in the PK can be enriched
with known data such as 3D models or features for object recognition.

• The Long-Term Memory provides long-term storage capabilities and offers an infer-
ence interface which allows attaching learning and inference processes. The LTM
allows creating snapshots of the current WM state to be used for later re-loading.



Although PK and LTM provide capabilities for long-term data storage, both memories dif-
fer in their conceptual role within MemoryX. While the PK holds user generated data and
provides enrichment methods for entities of the WM, the LTM is used to create snapshots
of the current content of the WM in order to recall them later and/or use them for inference
processes.

As depicted in Figure 5, the different memories can be organized in segments. MemoryX
provides several types of segments which are listed below:

• The Object Classes segment holds information on classes of objects and their rela-
tion. Enrichment with 3D models and or localization methods are provided.

• In the Object Instances segment information is stored about the positions of actual
object instances which have for example been recognized by the perception sys-
tem. These instance entities link to the corresponding object types within the Object
Classes segment.

• The Agent segment stores information related to agents (e.g. robots, humans) in the
world. The robot itself and any other operators, users, or robots relate to entries in
this memory segment.

This memory structure allows the realization of powerful update mechanisms. For exam-
ple, a perception component localizes a known object and updates the WM. This update
creates a new entity of the object with the current location and automatically enriches it
with the 3D model from the prior knowledge database. Besides the possibility of directly
addressing the WM, an observer exists which allows installing conditions based on the
memory content. If the associated content changes the matching events will get generated
and processed by the according states of the robot program.

Note, that the memory components are expandable in order to customize the memory
structure. However, when a lightweight framework is sufficient, it is possible to use only
a subset of the components in order to avoid bloated setups.

5.3 VisionX

With VisionX we provide a perception building block in the robot framework layer which
offers facilities for sensor processing in the distributed robot application. Processing cur-
rently covers stereo camera images, RGB-D data and offline video streams coming from
persistent data files. VisionX consists of interfaces for image providers and image pro-
cessors as illustrated in Figure 6. The image provider abstracts the imaging hardware and
provides the sensor data as a stream either via shared memory or over Ethernet. Different
image processors can be implemented that realize tasks related to object perception, hu-
man perception, and scene perception. The MemoryX update interface is used to write the
processing results to the working memory. Optionally, perception confidence and proba-
bilistic measures can be stored additionally in order to support quality queries and to allow
for probabilistic reasoning.



Image provider 

Firewire camera 

Kinect 

…
 

Videofile 

H
ar

d
w

ar
e 

in
te

rf
ac

e 

Image processor 

Objects 

Human motion 

…
 

Scenes 

U
p

d
at

er
 in

te
rf

ac
e 

Transport & 
conversion 

Figure 6: Image processing in the VisionX robot API. The image provider abstracts the hardware
and streams the data via shared memory or Ethernet to the image processor. The processing result is
written to the working memory.

6 The ArmarX Toolset

ArmarX is equipped with a set of tools designed to ease the development process in the
creation and debugging phase. ArmarXPackage, a command line tool to easily create and
manage own projects, several GUI viewer tools to inspect the system state on different
levels, and a simulator are the key applications of the ArmarX toolset.

6.1 ArmarXPackage

Creating new C++ projects by hand is a tedious and often repetitive task. It is common
practice to recycle an existing project structure and adapt it to new demands, often differing
in details only. On this account, ArmarX offers the command line tool ArmarXPackage
to easily create and manage user projects that depend on ArmarX. With this tool, standard
ArmarX components like network accessible objects, statecharts or gui-plugins are created
from templates and integrated into the project structure.

6.2 ArmarXGui

Disclosure of the system state is an important aspect of the ArmarX RDE and allows
programmers to access data of many parts of the system they are working on. This data is
required for debugging, monitoring and profiling purposes. Since, the amount of available
data increases with the size of the developed system an abstraction of the data flow into
easy to grasp visualizations is required.

To allow creating visualizations easily, we provide an extensible graphical user interface
(GUI) named ArmarXGui which is based on the well-established Qt framework. An Ar-
marXGui instance provides extension points for loading and displaying custom user sup-



plied plugins. Each plugin has the ability to communicate with the ArmarX framework
and offers a visualization which is displayed in the GUI’s window. A variety of ready-to-
use GUI plugins is already available within ArmarX, such as LogViewer, data plotter, 3D
visualization widgets or MemoryX inspection tools.

An exemplary GUI layout is presented in Figure 7(a) containing a 3D visualization and
plugins related to several sensor-actor units of the robot. These sensor-actor plugins can
be used for emitting control commands as well as for visualizing internal data such as joint
values. Below, an exemplary selection of GUI plugins are listed:

• LogViewer This plugin allows displaying, grouping, filtering, and searching of all
gathered log messages emmitted by ArmarXObjects anywhere in the distributed sys-
tem. Furthermore, it is possible to inspect extended information such as component
state, application IDs and back tracing information.

• Working Memory The content of the robot’s working memory can be visualized in
a 3D view of the current environment. Figure 7(b) depicts an exemplary snapshot of
the current content of a robot’s working memory.

• StatechartViewer Since one statechart design principle has been state disclosure, it
is possible to extract and visualize the program logic of an ArmarX robot program at
runtime. With the StatechartViewer plugin it is possible to visualize each hierarchy
level in the statechart of a robot program. All substates within the hierarchy level,
connecting transitions as well as input- and output parameters of each state can be
inspected. Both data flow and the currently active state at each hierarchy level are
continuously updated.

• Prior Memory Object Editor This plugin offers a convenient way to add, inspect
and update the object data that is stored in the Prior Memory. Properties such as the
3D object model, the recognition method, the motion model or parent object types
can be viewed and changed.

(a) Gui with 3D visualization and sensor-actor
unit plugins.

(b) Gui plugin for inspecting the current content of the
robot’s Working Memory.

Figure 7: ArmarXGui provides a variety of ready-to-use widgets and can be extended by a plugin
mechanism in order to customize graphical user interaction



6.3 ArmarX Simulator

In order to ease development of robot applications it is of high interest that an RDE pro-
vides mechanisms to simulate program flow and robot behavior. Although a simulation
environment cannot calculate the fully correct physical interaction, sensor information or
execution timing, the structural setup of a robot program, in particular when distributed
components are used, and an approximated physical robot behavior can be tested before
the application is executed on the real robot. The ArmarX Simulator provides such a sim-
ulation environment within the ArmarX framework. The simulator comprises simulations
of motors, sensors and dynamics and communicates with the ArmarX framework by im-
plementing the robot’s KinematicUnit interfaces in order to receive motor commands and
to serve sensor feedback. This enables developers to run a robot program completely in
simulation in order to test and inspect the program logic. An exemplary scene is shown in
Figure 8.

Figure 8: The KIT kitchen scene in the ArmarX Simulator.

7 Conclusion

The robot development environment ArmarX provides infrastructure for building cus-
tomized robot frameworks to ease the development of distributed robot software. The
layered architecture of ArmarX supports lower level functionalities like access to real time
components (ArmarX RT) and core features like communication, deployment, start-up,
and error handling (ArmarX Middleware Layer). Additionally, ArmarX offers ready-to-
use framework components for perception, memory, and control that can be used with
little programming effort but remain open for modification and extension (ArmarX Robot
Framework Layer). These customizable building blocks for high level robot control can
be used to build a robot software framework and to tailor it according to robot capabilities
and demands of potential robot applications. Finally, the ArmarX toolset offers a variety of
components to support the implementation and debugging of complex robot applications.



8 Acknowledgement

This work was partially supported by the European Union Seventh Framework Programme
under grant agreement no. 270273 (Xperience) and the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Centre Invasive Computing
(SFB/TR 89).

The authors would like to thank all members and students of the Humanoids group at KIT
for their various contributions to this work.

References

[AAV+08] T. Asfour, P. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum, K. Welke,
J. Schröder, and R. Dillmann. Toward Humanoid Manipulation in Human-Centred
Environments. Robotics and Autonomous Systems, 56:54–65, January 2008. 1

[ASK08] Noriaki Ando, Takashi Suehiro, and Tetsuo Kotoku. A Software Platform for Compo-
nent Based RT-System Development: OpenRTM-Aist. In Proceedings of the 1st In-
ternational Conference on Simulation, Modeling, and Programming for Autonomous
Robots, SIMPAR ’08, pages 87–98, Berlin, Heidelberg, 2008. Springer-Verlag. 1

[ASP+13] T. Asfour, J. Schill, H. Peters, C. Klas, J. Bücker, C. Sander, S. Schulz, A. Kargov,
T. Werner, and V. Bartenbach. ARMAR-4: A 63 DOF Torque Controlled Humanoid
Robot. In IEEE/RAS International Conference on Humanoid Robots (Humanoids),
2013. 1

[BSK03] Herman Bruyninckx, Peter Soetens, and Bob Koninckx. The Real-Time Motion Con-
trol Core of the Orocos Project. In IEEE International Conference on Robotics and
Automation (ICRA), pages 2766–2771, 2003. 1

[Hen04] M. Henning. A new approach to object-oriented middleware. Internet Computing,
IEEE, 8(1):66–75, 2004. 3.1

[MFN06] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. YARP: Yet Another Robot Plat-
form. International Journal on Advanced Robotics Systems, 2006. 43–48. 1

[QCG+09] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y. Ng. ROS: an open-source Robot Operating System. In
ICRA Workshop on Open Source Software, 2009. 1

[VKU+12] N. Vahrenkamp, M. Kröhnert, S. Ulbrich, T. Asfour, G. Metta, R. Dillmann, and
G. Sandini. Simox: A Robotics Toolbox for Simulation, Motion and Grasp Planning.
In International Conference on Intelligent Autonomous Systems (IAS), pages 585–594,
2012. 5.1.1

[WKK+13] K. Welke, P. Kaiser, A. Kozlov, N. Adermann, T. Asfour, M. Lewis, and M. Steedman.
Grounded Spatial Symbols for Task Planning Based on Experience. In IEEE/RAS
International Conference on Humanoid Robots (Humanoids), pages 474–491, 2013.
5.2

[WVW+13] K. Welke, N. Vahrenkamp, M. Wächter, M. Kroehnert, and T. Asfour. The ArmarX
Framework - Supporting high level robot programming through state disclosure. In
INFORMATIK Workshop, 2013. 1, 2, 3, 3.1, 3.2, 5.2


	Introduction
	The Robot Development Environment ArmarX
	ArmarX Middleware: The Core Layer
	Inter-Object Communication
	Monitoring

	ArmarX RT: Real-Time Hardware Abstraction
	ArmarX Robot Framework: Generic Building Blocks for High-Level Robot Control
	Robot API and Skills
	Kinematics, Robot and World Models
	Kinematic Units and Robot Skills

	MemoryX
	VisionX

	The ArmarX Toolset
	ArmarXPackage
	ArmarXGui
	ArmarX Simulator

	Conclusion
	Acknowledgement

