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Abstract: With ArmarX we introduce a robot programming environment that has been
developed in order to ease the realization of higher level capabilities needed by complex
robotic systems such as humanoid robots. ArmarX is built upon the idea that consistent
disclosure of the system state strongly facilitates the development process of distributed
robot applications. We show the applicability of ArmarX by introducing a robot
architecture for a humanoid system and discuss essential aspects based on an exemplary
pick and place task. With several tools that are provided by the ArmarX framework,
such as graphical user interfaces (GUI) or statechart editors, the programmer is enabled
to efficiently build and inspect component based robotics software systems.
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systems organization — Embedded and cyber-physical systems — Robotics
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Component-based Software Development, Software for Humanoid Robots.

1 Introduction

Robotic platforms in the service and assistive robotics
area have made tremendous progress in the last decade
regarding integration of motor and sensory capabilities.
Complex motor capabilities such as locomotion, two-
arm and dexterous manipulation combined with rich
sensory information from visual, auditory, and haptic
systems allow us to push the limits towards more dy-
namical and interactive areas of application. Both fle-
xibility and adaptability of these platforms constantly
increases through a steady increase of onboard compu-
ting power as well as the availability of distributed and
cloud computing facilities.

In order to benefit from these developments and to esta-
blish current service and assistive robots in our daily
life, required algorithms and software tools need to co-
develop in a similar way. To support the development
and integration of all required capabilities of such robots
is the goal of robot development environments (RDEs).
On one side, RDEs should provide the glue between dif-
ferent functionalities and capabilities of the robot soft-
ware in terms of system architecture and communica-
tion. On the other side, RDEs should provide a pro-
gramming interface allowing roboticists to include new
capabilities at an appropriate level of abstraction with
a minimum amount of training effort.

Several RDEs have been presented in the past deca-
des accompanying the development of robotic platforms.

Figure 1: The humanoid robots ARMAR-Illa [1] and
ARMAR-4 [2].

Depending on the target platform and its intended
application, a different level of abstraction is reali-
zed by each RDE. Several RDE frameworks such as
OpenRTM [3], MatLab/Simulink®, MCA [4] focus on
the control level. Others focus on the implementation of
higher level system capabilities (e.g. ROS [5] and Oro-
cos [6]). Yarp [7], the software framework of the iCub
robots, provides low level communication features on
top of which higher level robot capabilities are imple-
mented. RDEs with message-based communication me-
chanisms, like ROS and YARP, provide simple but con-
venient communication methods that allow passing data
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between components. In addition, ROS and YARP pro-
vide mechanisms for remote procedure calls. Compared
to these approaches, the RDEs Orocos and OpenRTM
rely on the CORBA middleware which supports remo-
te method invocation. This concept allows operating on
remote objects as if they were available locally. Since
CORBA is known to be complex and implementations
do not cover the full feature set of the specification [§],
we decided to use Ice [9] as communication middleware
for ArmarX as described in the next section.

In addition to such technical design choices, we think
it important to provide an initial set of structured and
extensible components communicating via well-defined
interfaces. Compared to ROS, which provides just ba-
sic communication mechanisms, but a huge set of com-
ponents, such structuring elements support the concept
of exchangeable and reusable components. Based on this
idea, ArmarX provides generic framework elements that
can be used to establish a robot specific software frame-
work as well tools to support the development of robot
applications.

Robot programs for complex robots, such as humano-
ids, are difficult to handle, in particular when the con-
trol flow is not disclosed. To cope with this problem,
statecharts [10] offer a convenient and robust way of re-
presenting robot programs. ROS offers a Python-based
library for specifying models of robotic behaviour cal-
led SMACH [11] that allows realizing robot programs
as flowcharts. With Orocos the restricted Finite State
Machine (rFSM) model can be used to coordinate the
execution flow of a robot program. More details and a
good survey on different statechart mechanisms in the
robotics context can be found in [11].

Most state-of-the-art RDEs fulfill preconditions like
platform independence and distributed processing re-
quired to support a variety of robotic platforms. Inte-
roperability and open source availability are necessary
in addition to ease software integration. Assistance in
developing higher level skills is another critical aspect
which essentially requires disclosure of the system state.
Access to the current system state on all levels enables
online inspection and debugging facilities while reducing
training times of new developers significantly.

Disclosure of the system state is one of the key ideas
behind the ArmarX RDE. ArmarX makes use of well-
defined interface definitions and flexible communication
mechanisms in contrast to traditional message passing
protocols. In this work we will show how to establish
disclosure of the system state as well as an application
programming interface (API) at a high level of abstrac-
tion on top of the previously mentioned mechanisms.
To this end, we will introduce a robot architecture for a
complex humanoid system (see Figure 1) based on the
ArmarX framework and discuss essential aspects based
on an exemplary pick and place task.
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Figure 2: ArmarX is organized in three layers. The Middle-
ware Layer provides all core facilities to implement distribu-
ted applications as well as basic building blocks for robot soft-
ware architectures. Based on these building blocks, the Robot
Framework Layer provides a robot APl implementing more
complex functionality like kinematics, memory, and perception.
Robot specific APIs can be implemented by extending the provi-
ded generic robot APl modules. Robot programs are realized in
the Application Layer. They are implemented as distributed
applications, making use of the generic and specific robot APls
and statecharts. The ArmarX Tools comprise a plugin-based
GUI that can communicate with the components and visuali-
ze their content. Specialized components can interact with the
ArmarX Simulator or the robot hardware via ArmarX RT.

2 ArmarX Overview
2.1 Design Principles

In this section we are going to provide a brief discussi-
on of several essential prerequisites and design principles
any RDE must meet in order to be applicable to today’s
platforms in robotics research and to match current de-
velopment processes.

e Distributed processing
The integrated hardware architectures of typical ro-
botic platforms consist of several embedded PCs.
Each PC usually interfaces with a set of robot sub-
systems and might contain specialized hardware such
as CAN cards, camera interfaces, or high performan-
ce computing facilities. Therefore, robot programs are
inevitably distributed by nature in order to support
such heterogeneous systems. Consequently, all Ar-
marX applications are distributed and communicati-
on is realized using either Ethernet or shared memo-
ry to allow transparent distribution of robot program
parts onto the available hardware.
e Interoperability

Both Hard- and software used in today’s robotic
platforms vary and are far from being standardized.
Hence, it is essential for RDEs to allow bridging the-
se gaps by providing interoperability through suppor-
ting heterogeneous hardware platforms and operating
systems. This enables easy integration of new hard-
ware components without the necessity to adapt the



Figure 3: ARMAR-III control GUI for Android. Interfacing with
ArmarX applications is based on an interface definition langua-
ge (IDL) which supports a variety of hardware platforms and
operating systems using different programming languages.

RDE to a new platform. To account for this require-
ment, the ArmarX RDE can be compiled under Li-
nux, Windows, and Mac OS X. A distributed appli-
cation can be built out of the box spanning platforms
running any of the mentioned operating systems.
Further, ArmarX uses an interface definition language
(IDL) supporting a variety of platforms and program-
ming languages (C++, Java, C#, Objective-C, Py-
thon, Ruby, PHP, and ActionScript). Thus, the cover-
ed hardware can be easily extended by implementing
these interfaces on the target hardware using its pri-
mary programming language. These capabilities fa-
cilitate interfacing with the robot using for example
mobile devices as illustrated in Figure 3.

e Open source
ArmarX is available open source under the GPL licen-
se. Providing RDEs under an open source license is
essential in order to achieve the most impact on robo-
tics by allowing researchers and developers to achieve
a deep insight in the underlying mechanisms. Addi-
tionally, feedback and experience from projects are
easy to integrate in the RDE development process.

One other key design principle of ArmarX is disclosure
of the system state. As stated in the introduction, this
idea is supported by two mechanisms on the technical
level: well-defined interfaces and flexible communicati-
on mechanisms. In subsequent chapters, we will further
develop this idea and show how disclosure of the system
state is established for the whole system, including the
distributed application, the robot program, the robot
kinematics, and the internal model of the world.

2.2 System Architecture

ArmarX is organized in three layers as illustrated in
Figure 2: the Middleware Layer, the Robot Frame-
work Layer, and the Application Layer. The Middlewa-
re Layer abstracts communication mechanisms, provides
basic building blocks for distributed applications, and
defines entry points for visualization and debugging. Ar-
marX RT establishes a bridge to real time components,
needed for accessing low level robot control modules.
The Robot Framework Layer comprises several projects
providing access to sensori-motor capabilities on a hig-
her level. These projects include memory (MemoryX),
robot and world model, perception (VisionX), and exe-
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Figure 4: Each ArmarXManager can create ArmarXObjects
that are able to communicate with any object in the distri-
buted application. Explicit ArmarXObject dependencies allow
monitoring its connectivity. If all dependencies are resolved, the
object enters the connected state. Losing a dependency returns
the object to the initialized state to ensure consistency among
objects in the distributed application.

cution modules. Robot specific APIs can be implemen-
ted by extending and further specializing the generic
robot API building blocks. Usually, such robot speci-
fic APIs include interface implementations for accessing
the lower sensori-motor levels and models dedicated to
the actual robot. This layer can also include speciali-
zed memory structures, instances of perceptual functi-
ons, and control algorithms. The final robot program is
implemented in the Application Layer as a distributed
application, making use of the generic and specific robot
APIs.

We will step through this architecture bottom-up, star-
ting with the Middleware Layer in the subsequent sec-
tion and the Robot Framework Layer in Section 4. An
example for a robot specific API for the humanoid ro-
bot ARMAR-III [1] is discussed in Section 5. The app-
lication of this API is demonstrated in a pick-and-place
scenario.

3 The Middleware Layer
3.1 Communication in ArmarX

The Middleware Layer builds upon the ZeroC Internet
Communication Engine (Ice) [9] as distributed compu-
ting platform to provide the basic building blocks for
implementing distributed robot architectures. The Ice
platform implements distributed processing over Ether-
net in a platform and programming language indepen-
dent manner. With ArmarX, we extended this network
based-communication mechanism by a shared-memory
channel in order to allow efficient transfer of large da-
ta blocks in a transparent way. Further, Ice provides the
Slice interface definition language (IDL) for defining net-
work transparent interfaces and classes. Several commu-
nication modes such as synchronous and asynchronous
remote procedure calls, remote method invocation, or
publisher-subscriber are supported.

Two key components are offered by the ArmarX Midd-
leware Layer: the ArmarXObject and the ArmarXMa-
nager. The ArmarXObject is the basic building block
of the distributed application. It is reachable within
an ArmarX distributed application via aforementio-
ned communication mechanisms. Each process contains
an ArmarXManager for creating ArmarXObjects and



handling their lifecycle (see Figure 4). Explicit ArmarX-
Object dependencies allow the ArmarXManager to gua-
rantee the consistency of the distributed application.
Only if all dependencies of an ArmarXObject are ful-
filled, the connected state is entered. If a dependency is
lost, the ArmarXObject returns to the initialized state
and waits until all dependencies become available again.
The lightweight ArmarXManager can easily be integra-
ted into existing applications, thus supporting interope-
rability and integration of third-party software.

Additionally, the Middleware Layer provides a number
of essential tools such as transparent shared-memory,
Ethernet transfer of data, and thread pool based threa-
ding facilities. Further, several bridging mechanisms to
real time components are provided with ArmarX RT
allowing convenient communication with time critical
modules such as the low level robot control layer.

3.2 Building Blocks of the Robot Application

An outline of the three basic elements of the application
programming interface (API) is illustrated in Figure 5.
The lowest level of abstraction is the Sensor-Actor Unit
serving as abstraction of robot components. Observers
monitor sensory data streams and generate application
specific events which trigger Operations to issue control
commands to the robot.

e Sensor-Actor Units

Sensor-Actor Units provide abstractions of robot
components such as kinematic structures or cameras.
Within the ArmarX distributed application, sensory
data is made available using a publisher-subscriber
mechanism whereas the control interface is reali-
zed using remote method invocation. Sensor-Actor
Units provide a request-release mechanism for hand-
ling concurrent access. Due to this unique represen-
tation of control and sensory data, other components
such as Observers are enabled to communicate with
these units in a standardized way.

e Observers

The ArmarX API uses an event driven approach. API
events originate from desired patterns in sensory da-
ta such as high motor temperatures or reaching a
target pose. Observers generate these events by eva-
luating application defined conditions on the sensory
data stream. These conditions are realized as distri-
buted expression trees where each leaf corresponds
to a check on specific sensor data. The API offers a
set of basic checks and provides interfaces to support
implementing more advanced and application specific
checks easily.

e Statecharts
One inherent design decision of ArmarX is to re-
present robot operations as state-transition networks
which are implemented as hierarchical, distributed,
and orthogonal statecharts (see [12] for more details

Robot Operations Observers

distributed,
hierarchical,
orthogonal State-
Transition-Networks

mapping of sensor
data to events using
conditions based on
expression trees

Sensor Actor Units

abstraction of robot
components (e.g. arms,
cameras, microphones, ...)

Figure 5: The application programming interface provided by
the ArmarX Middleware Layer comprises four different elements.
The Sensor-Actor Units serve as abstraction of robot com-
ponents, the Observers generate events from the continuous
sensory data stream resulting in transitions between Operati-
ons. Operations are organized as hierarchical state-transition
networks. These elements are connected by the communicati-
on mechanisms (arrows in the figure).

on statecharts in robotics). Each state in the net-
work is defined by a set of input/output parameters
and can issue control commands or start asynchro-
nous calculations. State transitions define the data
flow between states by mapping output values of one
state to input values of another state. These transi-
tions are triggered by events issued from Observers.
Every statechart is embedded into an ArmarXObject
and can be used as a substate in other statecharts
(see Figure 9).

4 The Robot Framework Layer
4.1 Overview

The Robot Framework Layer of the ArmarX architec-
ture comprises robot definitions and framework com-
ponents that allow interfacing uniformly with percepti-
on modules and memory structures. Several generic and
ready-to-use API components can be parametrized and
customized in order to adapt the API for a specific robot
as shown in Section 5. In the following, we will briefly
discuss these components.

4.2 Robot Kinematics and Dynamics

The internal robot model consists of the kinematic struc-
ture, sensors, model files and additional parameters such
as mass or inertial tensors. The data is consistently spe-
cified via XML or COLLADA files which are compatible
with the robot simulation toolbox Simoz [13]. This al-
lows making use of all Simox related functionality, such
as collision detection, motion and grasp planning or defi-
ning reference frames for transforming poses to different
coordinate systems. Further, ArmarX provides mecha-
nisms to conveniently access a shared and network trans-
parent data structure of the robot model. This enables
all distributed components to query for robot internal
data such as joint values or to perform coordinate con-
versions.
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Figure 6: The Robot Framework Layer offers the MemoryX
architecture consisting of working memory, long-term memory,
and a prior knowledge component. All memories are accessible
within the distributed application. Appropriate interfaces allow
attaching processes to the memory for updating and inference.

4.3 MemoryX

MemoryX comprises all memory related components
of the ArmarX Robot Framework Layer. These com-
ponents include basic building blocks for memory struc-
tures which can be either held in the system’s memory
or made persistent in a database [14]. A memory ar-
chitecture comprising a working memory (WM) and a
long-term memory (LTM) is realized using these buil-
ding blocks (see Figure 6). Both memory types are or-
ganized in individually addressable segments containing
arbitrary types or classes which are accessible within the
distributed application. The WM is updated via an up-
dater interface either by perceptual processes or by prior
knowledge. Prior knowledge is stored in a non-relational
database and allows enriching entities with known data
(such as models or features). Besides directly addressing
the WM, the working memory observer allows genera-
ting events based on changes of the memory content.
The LTM offers an inference interface which allows at-
taching learning and inference processes.

4.4 VisionX

The perception components of the ArmarX Robot Fra-
mework Layer provide facilities for including camera ba-
sed image processing in the distributed robot applicati-
on. VisionX allows implementing image providers and
image processors as illustrated in Figure 7. The image
provider abstracts from imaging hardware and provides
a data stream via shared memory or over Ethernet. Dif-
ferent image processors can be implemented that fall
into the classes of object perception, human perception,
and scene perception. Processing results are written to
the working memory of MemoryX via the updater inter-
face. An exemplary result of a processed image stream
in the VisionX GUI plugin can be seen in Figure 8.

4.5 ArmarX Simulator

In order to ease development of robot applications it is
essential that an RDE provides mechanisms to simulate

Image provider

Transport & bjec

conversion

Kinect '

Videofile

Image processor

Human motion

Hardware interface
Updater interface

Figure 7: Image processing in VisionX. The image provider ab-
stracts from hardware and streams data via shared memory or
Ethernet to an image processor. Processing results are written
to the working memory.
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Figure 8: The VisionX image provider stream (top) and the
corresponding output of an image processor related to single
colored object recognition (bottom).

program flow and robot behavior. Despite being unable
to provide realistic and reliable information regarding
physical interaction, sensor information, or execution
timing, a simulation environment helps in testing the
structural setup of a robot program, in particular when
distributed components are used, before executing the
application on the real robot. The ArmarX Simulator
component provides such a simulation environment wi-
thin the ArmarX framework (see Figure 14). The simu-
lator comprises simulations of motors, sensors, and dy-
namics. It communicates with the ArmarX framework
by implementing the robot’s Sensor-Actor Unit inter-
faces in order to receive motor commands and provide
sensor feedback. This enables developers to run robot
programs completely in simulation in order to test and
inspect its program logic.

4.6 Robot Program

Statecharts are used to organize any robot program re-
sponsible for the overall robot behavior. The execution
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Figure 9: An excerpt of operations involved in a pick and place task on ARMAR-III. The operations are realized using the ArmarX
hierarchical statechart mechanism. On each hierarchy level of this example the state highlighted in blue is further refined.

of such a robot program is embedded in a robot ap-
plication defining the component setup which includes
configuration settings. All program logic is represented
as one comprehensive statechart consisting of many ope-
rations which might be executed on different hosts due
to the distributed nature of ArmarX. The root state of
each robot program contains administrative substates
for starting, stopping, and initializing the robot hardwa-
re. But most importantly, the root state is responsible
for dynamically loading and executing program logic. It
was a deliberate design choice to not use static loading of
programs to allow dynamic reconfiguration at runtime.
This feature is essential to support high level planning in
ArmarX which requires executing dynamically created
action chains.

5 Disclosure of System State: A case study
on ARMAR-III

In this section we will show the disclosure of the sy-
stem state by realizing a pick and place task for the
ARMAR-III robot using the ArmarX framework. Ro-
bot specific extensions to the generic ArmarX robot API
are discussed in the first part. A pick and place robot
program is realized using these extensions in the second
part. Note that only components needed for accomplis-
hing pick and place actions are discussed here. Last,
we present several mechanisms for disclosing the system
state and discuss how to apply them in the context of
the proposed robot program.

5.1 Robot API for ARMAR-III

The generic ArmarX robot API of the Robot Framework
Layer (see Section 4) provides several components which
have to be customized for ARMAR-IIIL. In most cases it
is sufficient to provide an adequate set of parameters and
configuration files which are processed by the ArmarX
robot API components. Additionally, the generic robot
API is extended with robot specific implementations for
hardware access.

¢ Kinematics and Dynamics
The robot kinematics and dynamics together with all
relevant coordinate frames of ARMAR-III are speci-
fied via XML definition files. A visualization of the
robot including all coordinate frames is shown in Fi-
gure 10(a).

¢ Memory
The spacial segment of MemoryX contains knowledge
about the robot’s environment which is assumed to
be known for the task. Additional known objects and
grasping information are stored in the prior knowled-
ge database.

e Perception
The visual perception framework of ARMAR-III in-
cludes methods for camera based object recognition
and localization for segmentable and textured objects
using the methods described in [15]. Resulting object
locations are stored and made available in the spatial
memory segment of the working memory.

e Hardware Access
Sensor-Actor Units are implemented to control arms,
hands, head, and platform. These units connect to
ARMAR’s low level control framework for sending
joint commands and receiving sensor information.

e Simulation
Generic robot API components are configured in or-
der to simulate Sensor-Actor Units for all robot com-
ponents.

5.2 The Pick and Place Robot Program

A robot architecture for the humanoid robot
ARMAR-IIT has been realized based on the ArmarX
framework. Therefore, several components have been
implemented based on the Middleware and Robot Fra-
mework Layers (see Section 5.1).

To realize the pick and placed robot program, 5
ARMAR-IIIa specific Sensor-Actor Units have been im-
plemented. Beside these robot-specific implementations,
several components of the generic robot API are used
without modifications just by setting their parameters
accordingly. Events are triggered by 7 Observers which
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Figure 10: 3D visualizations of ARMAR-III and the kitchen environment in ArmarX augmented with additional information.

are associated with corresponding units or memory com-
ponents. In addition, 4 memory components are requi-
red as well as 3 vision components and 3 general system
components. All components can be exchanged without
source code modifications since they are accessed via
their generic interface descriptions located in the robot
API package.

The hierarchically organized pick and place statechart
contains 15 operations built from approximately 50 un-
ique states. Some of these states are very versatile and
therefore instantiated and configured multiple times. An
excerpt of involved operations is illustrated in Figure 9.
All operations are realized using the hierarchical Ar-
marX statechart mechanism. All state transitions are
initiated by suitable observers which issue the required
events.

5.3 Disclosure of system state

Disclosure of the system state is an important aspect of
the ArmarX RDE. It allows programmers to access the
data of many parts of the system required for debugging,
monitoring and profiling purposes. Since the amount of
available data increases with the size of the developed
system an abstraction of the data flow into easy to grasp
visualizations is required.

To allow creating visualizations easily, we provide
an extensible graphical user interface (GUI) named
ArmarXGui which is based on the well established Qt
framework. An ArmarXGui instance provides extension
points for loading and displaying custom plugins. Each
plugin is able to communicate with the ArmarX frame-
work and offers a visualization which is displayed in the
GUTI’s window. A variety of ready-to-use GUI plugins is
already available within ArmarX, such as the LogView-

er, the data plotter or the 3D visualization. Mechanisms
for disclosing the system state in ArmarX programs used
by these plugins will be presented in the next section.

An exemplary GUI layout is presented in Figure 11 con-
taining a 3D visualization and plugins related to sever-
al Sensor-Actor Units of the robot. These Sensor-Actor
plugins can be used for emitting control commands as
well as for visualizing internal data such as joint values.

5.3.1 Disclosure Mechanisms

ArmarX provides mechanisms to disclose the internal
state of a robot program on different levels. These me-
chanisms include monitoring of sensory data, events,
conditions, and the execution state of the distributed
application. The following paragraphs explain a selecti-
on of available mechanisms and respective GUI plugins.
e Logging

ArmarX provides a distributed logging facility, as al-

ready mentioned in Section 3.1. Each part of a distri-
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Figure 11: The ArmarXGui provides a variety of ready-to-use
widgets and can be extended by user supplied plugins.
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buted ArmarX robot program is capable of sending
log messages which are accessible via the aforementio-
ned Publish/Subscribe mechanism. A corresponding
ArmarXGui LogViewer plugin is available which al-
lows displaying, grouping, sorting, and searching of
all gathered log messages. Additionally, it is possible
to inspect extended information such as component
state, application IDs and back tracing information
(see Figure 13).

Application Dependencies

The system state of a distributed ArmarX robot
program can be queried and visualized at runtime.
As explained in Section 3.1, all ArmarXObject in-
stances are accessible over Ice together with their
explicit dependencies. Thus, a hierarchical view of
the system’s connectivity can be generated contai-
ning information about established and missing de-
pendencies. Figure 12(a) shows a system state whe-
re all components except the SystemObserver ha-
ve been started. This prevents the ConditionHand-
ler from entering the initialized state which in turn
blocks both RobotStateHandler and PickAndPlace-
StatechartStateHandler components. Once the mis-
sing dependency can be resolved all remaining wai-
ting connections can be established and both red and
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Figure 13: The LogViewer GUI plugin provides a structured
view of all components in the network providing convenient
additional debugging information and filtering options.

orange blocks will turn to green. Even though com-
ponents are running on different hosts, their depen-
dencies can be inspected from anywhere in the net-
work.

Conditions

Section 3.2 talked about the observer mechanism pro-
vided by ArmarX. Distributed conditions are used to
trigger events upon failure or fulfillment. The Condi-
tionViewer plugin helps in analyzing currently active
and already expired conditions. This plugin visualizes
arbitrarily large, boolean conditions as a tree-graph
structure (see Figure 12(c)). Colors are used to visua-
lize the current state of a complete condition and its
subterms. Green is used for fulfilled terms, while red
is used to highlight unfulfilled terms. In the context
of the pick and place scenario such a condition might
be a check for the distance between the current end
effector pose and the target grasping pose. Once this
distance falls below a defined threshold, the condition
is met and an event is triggered resulting in a switch
to the next state (i.e. close the hand for grasping).
Statecharts

The ArmarX statecharts have been described in detail
in Section 3.2. Since one statechart design principle is
state disclosure, it is possible to extract and visualize
the program logic of an ArmarX robot program at
runtime. This can be done with the StatechartViewer
plugin depicted in Figure 12(b). Each hierarchy level
in the statechart of a robot program can be visua-
lized with this plugin. All substates within the hier-
archy level, connecting transitions as well as input-
and output parameters of each state are shown. Both
data flow and the currently active state at each hier-
archy level are continuously updated. Additionally,
user interactions with the statechart are provided. It
is possible to trigger transitions manually or to insert
breakpoints in specific states to halt the complete ro-
bot program for debugging purposes.

Memory

Besides control flow, the memory contents is another
important aspect of a robot’s state. It is possible to in-
spect all memory types and their segments. Multiple



Figure 14: The humanoid robot ARMAR-4 [2] and ARMAR-III [16] in the ArmarX Simulator environment. The left image shows
ARMAR-4 with a visualization of the robot’s support polygon and its center of mass projected to the ground. In the middle and on
the right, the KIT kitchen environment with the humanoid robot ARMAR-III is shown while a pick-and-place operation is performed.

plugins are available to visualize different aspects of
the memory structure. The current environment sto-
red in the robot’s working memory can be visualized
in a 3D view. Figure 10(b) depicts the memory state
of ARMAR-III for learned common object locations.
The object segment of the long-term memory (see Fi-
gure 6) holds information about known objects, such
as visual features, 3D models or precomputed gra-
sping data. Figure 10(c) shows a visualization of the
3D model of a cereal box and an associated grasp
which can be used as a target coordinate frame for
grasping. The current state of relevant coordinate sy-
stems (left TCP and target pose) can be plotted as
shown in Figure 10(c), which allows inspecting spatial
data channels that are considered by the observers. In
addition, ArmarX supports a generic concept of refe-
rence frames. Any coordinate system can be used as
reference frame, including the ones defined in the ro-
bot model (see Figure 10(a)). The long term memory
of the robot for the common object locations can be
inspected as shown in Figure 10(b).
e ArmarX Simulator

The execution of the robot program can be analy-
zed within the ArmarX Simulator environment which
supports physical interaction with the environment.
Since both motor commands and sensor readings are
transparently connected with the physics simulation,
the execution of the robot program can be inspected
under realistic conditions (see Figure 14). Hence, Ar-
marX offers the possibility to test the behavior of im-
plemented robot programs in simulation before exe-
cuting them on the real robot hardware. No changes
to application level code are required for this step.

6 Conclusion

We presented the robot development environment Ar-
marX and showed how higher level capabilities of com-
plex robots can be realized in heterogeneous computing
environments. The ArmarX framework provides mecha-

nisms for developing distributed robot applications whi-
le offering support to disclose the system state on all
abstraction levels. Basic functionality is covered by a
generic communication framework (the ArmarX Midd-
leware Layer) on top of which the Robot Framework
Layer provides a generic robot API, which can be fur-
ther specialized and adapted to the demands of a spe-
cific robot. Based on an exemplary pick and place task,
we showed how this specialization can be performed for
a humanoid robot. Further, we presented several tools,
such as graphical user interfaces and inspection plugins.
These tools enable users and developers to visualize and
monitor the current system state through the available
disclosure mechanisms of ArmarX.
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